文档库 最新最全的文档下载
当前位置:文档库 › 用首次适应算法模拟内存的分配和回收

用首次适应算法模拟内存的分配和回收

用首次适应算法模拟内存的分配和回收
用首次适应算法模拟内存的分配和回收

操作系统实验报告完成日期:2011-12-5

用首次适应算法模拟内存的分配和回收一、实验目的

在计算机系统中,为了提高内存区的利用率,必须给电脑内存区进行合理的分配。本实验通过对内存区分配方法首次适应算法的使用,来了解内存分配的模式。在熟练掌握计算机分区存储管理方式的原理的基础上,编程模拟实现操作系统的可变分区存储管理的功能,一方面加深对原理的理解,另一方面提高根据已有原理通过编程解决实际问题的能力,为进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。

二、实验内容与数据结构:

(1)可变式分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需要,

并且分区的个数是可以调整的。当需要装入一个作业时,根据作业需要的贮存量,查看是否有足够的空闲空间,若有,则按需求量分割一部分给作业;若无,则作业等待。随着作业的装入、完成,主存空间被分割成许多大大小小的分区。有的分区被分配作业占用,有的分区空闲,例如,某时刻主存空间占用情况如图所示:

为了说明哪些分区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表,如下图所示。

(2)当有一个新作业要求装入贮存时,必须查空闲区说明表,从中找出一个足够大的空闲

区。有时找到的空闲区可能大于作业的需求量,这时应将空闲区一分为二。一个分给作业,另一个仍作为空闲区留在空闲区表中。为了尽量减少由于分割造成的碎片,尽可能分配地地址部分的空闲区,将较大的空闲区留在高地址端,以利于大作业的装入。为此在空闲区表中,按空闲区首地址从低到高进行登记。

(3)当一个作业执行完成时,作业所占用的分区应归还给系统。在归还时,要考虑相邻空

间区合并问题。作业的释放区与空闲区的邻接分以下4种情况考虑:

A、释放区下邻空闲区;

B、释放区上邻空闲区;

C、释放区上下都与空闲区邻接;

D、释放区上邻空闲区不邻接;

二、实验要求

1.内存大小初始化

2.可以对内存区进行动态分配,采用首次适应算法来实现

3.可以对已分配的内存块进行回收,并合并相邻的空闲内存块。

三、实验内容

把一个作业装入内存,按照首次适应算法对内存区进行分配,作业结束,回收已分配给该作业的内存块,并合并相邻的空闲内存块。

四、实验结果

运行效果:

1.初始化内存区大小,并添加作业,选择1添加作业

2. 当作业大小超过存储块大小时,分配失败。

3.选择3,可查看内存分配情况

4.选择2回收内存

5.选择1添加新作业

6.回收C作业,相邻的空闲内存块合并。

五、程序流程图:

六、实验源代码:

// FirstFit.cpp : 可变分区用首次适应算法来模拟内存回收

#include

#include

int MAX_SEGMENT=10;//最大碎片值

struct Partition //分区表目

{

int Par_Size; //分区大小

int Par_No; //分区序号或者名字

int Addr; //分区地址

int IsUse; //分区使用情况,0表示空闲,1表示使用

Partition *pri; //前向指针

Partition *next; //后向指针

};

Partition * Int()//函数,返回Partition类型指针

{ //初始化空闲分区表

Partition *list,*H,*H1;

list=(struct Partition *)malloc(sizeof(struct Partition));

list->next=NULL;

H=list;

if(!list)

{

printf("\n错误,内存初始化分配失败!程序结束");

exit(1);

}

H1=(struct Partition *)malloc(sizeof(struct Partition));

printf("请预先输入分区总大小(以KB为单位):");

scanf("%d",&H1->Par_Size);

H1->Addr=0;

H1->Par_No=0;

H1->IsUse=0;

H1->pri=H;

H1->next=NULL;

H->next=H1;////list--->H1

return list;

}

Partition * InitFP()

{ //初始化已分配分区表

Partition *FP,*F,*H;

int i;

FP=(struct Partition *)malloc(sizeof(struct Partition));

FP->next=NULL;

H=FP;

for(i=0;i<10;i++) //已分配区先暂定分配十个表目

{

F=(struct Partition *)malloc(sizeof(struct Partition));

if(!F)

{

printf("\n错误,内存分配失败!程序结束");

exit(1);

}

F->Par_Size=0;

F->Addr=0;

F->Par_No=0;

F->IsUse=0;

F->next=NULL;

H->next=F;

F->pri=H;

H=H->next;

}

return FP;

}

Partition * New_Process( Partition *list, Partition *FP)

{ //为新的进程分配资源

Partition *H,*P,*H1;

int Size,Name,L;

H=list;

H1=FP->next;

H=H->next;

printf("请输入新作业的名称和大小(整数):");

scanf("%d %d",&Name,&Size);

while(H)

{

if(!H) //表目已查完,无法分配

{

printf("\n已无空闲分区,本次无法分配!");

return list;

}

else{

if(H->IsUse==0) //空表目

//if(H->Par_Size>=Size) //大小满足,空闲分区大小》要分配的大小

if(H->Par_Size>=Size) //大小满足,

{

bool temp=false;

if((H->Par_Size-Size)<=MAX_SEGMENT){//空闲分区大小-要分配的大小<碎片值,会产生碎片,将整块内存大小分配出去,

Size=H->Par_Size;//分配的大小为整块内存

temp=true;//会产生碎片

}

//其他情况就分配大小为请求大小,不会产生碎

片,

L=H->Addr;//保存空闲分地址

if(temp){

printf("该次内存分配会产生碎片,将整块内存大小%d分配出去!",Size);

}else{

printf("该次内存分配不会产生碎片");

}

break;

}

}

H=H->next; //否则,继续往下查找}

if(H)

{

if(H->Par_Size>Size) //大小满足,空闲分区大小》要分配的大小

{

P=(struct Partition *)malloc(sizeof(struct Partition));

//分配新的表目,处理一条数据,分配一次内存

P->IsUse=1;

P->Addr=L;//指向空闲分区地址

P->next=H; //修改指针

H->pri->next=P;

P->pri=H->pri;

H->pri=P;

P->Par_Size=Size;//分配大小为要请求分配的大小

P->Par_No=Name;//名称

H->Par_Size-=Size; //修改空闲分区,H所指区块大小减Size

H->Addr+=Size;//H所指区块地址加Size

}else

{

H->IsUse=1; //大小相等的,把当前表项设置空表目}

while(H1)

{

if(H1->IsUse==0)

{

H1->Par_No=Name;

H1->Par_Size=Size;

H1->Addr=L;//保存已分配地址

H1->IsUse=1;//在已分配表中设置为已分配

break;

}

H1=H1->next;

}

}else

printf("所申请资源已大过系统所拥有的,请重新输入!\n");

return list;

}

Partition *Reclaim( Partition *list, Partition *FP)

{ //结束作业,资源回收,No为作业名,回收内存

Partition * H1,*H2,*H3,*HF;//H1为释放区,H2为后分区,H3为前分区int No; //作业名

H1=list;

HF=FP;//可有可无?

H1=H1->next;

HF=FP->next;

printf("请输入您想结束的作业名:");

scanf("%D",&No);

while(HF)//对已分配表进行操作

{

if(HF->Par_No==No)

{

HF->IsUse=0; //标志为空表目

break;//这时保存着HF所指分区的信息

}

HF=HF->next;

}

if(!HF) //如果找不到该作业,则提示出错

printf("所输入的作业名称不正确,请重新输入!");

else{

while(H1)//对空闲表进行操作

{

if(H1->Par_No==No)

{

H1->IsUse=0; //标志为空表目

printf("内存回收成功");

break;

}

H1=H1->next;

}

H2=H1->next;//后分区

H3=H1->pri;//前分区

if(H2&&H2->IsUse==0) //后接分区为空闲

{

if(H2->next==NULL) //判断后接分区是否为尾结点

{

H1->Par_Size+=H2->Par_Size; //把H2合并到H1

H1->next=NULL;

free(H2);

printf("已回收%d大小内存",H1->Par_Size);

}else //后分区不为空闲,表示已经被使用

{

H1->Par_Size+=H2->Par_Size;

H1->next=H2->next;

H2->next->pri=H1;

free(H2);

printf("已回收%d大小内存",H1->Par_Size);

}

}

if(H3&&H3->IsUse==0) //前分区为空闲分区,则合并去前分区

{

H3->Par_Size+=H1->Par_Size;

H3->next=H1->next;

if(H1->next!=NULL) //若H1为尾结点

H1->next->pri=H3;

free(H1);

printf("已回收%d大小内存",H1->Par_Size);

}

}

return list;

}

void Print( Partition *list, Partition *FP)

{ //输出已分配分区和空闲分区

Partition *H1,*H2;

H1=list->next;

H2=FP;

H2=H2->next;

printf("****************已分配分区表*******************\n");

printf("分区序号大小始址状态\n");

while(H2)

{

printf("%d %d %d",H2->Par_No,H2->Par_Size,H2->Addr);

if(H2->IsUse==1)

printf(" 已分配\n");

else

printf(" 空表目\n");

H2=H2->next;

}

printf("**************************************************\n");

printf("****************总的空闲分区表*******************\n");

printf("分区序号大小始址状态\n");

while(H1)

{

printf("%d %d %d",H1->Par_No,H1->Par_Size,H1->Addr);

if(H1->IsUse==1)

printf(" 已分配\n");

else

printf(" 空表目\n");

H1=H1->next;

}

printf("**************************************************\n");

}

void Main_Print( Partition *list, Partition *FP)

{ //主入口函数,进行菜单选择

int op;

while(1)

{

printf("\n 主菜单\n");

printf("1.申请新的作业,分配内存\n");

printf("2.结束作业,回收内存\n");

printf("3.查看内存表\n");

printf("4.退出系统\n");

printf("\n请选择:");

scanf("%d",&op);

switch(op) //根据输入,选择分支方向

{

case 1:

New_Process(list,FP);

break;

case 2:

Reclaim(list,FP);

break;

case 3:

Print(list,FP);

break;

case 4:

break;

default:

printf("\n选择错误,请重新选择!");

break;

}

if(op==4)

break; //退出循环

}

}

void main()

{ //主函数入口

struct Partition *list,*FP;

list=Int();

FP=InitFP();

Main_Print(list,FP);

}

七、实验结果图示:

五、实验总结

首次适应算法要求空闲分区链以地址递增的次序链接。在分配内存时,从链首开始查找,直到找到一个大小能满足要求的空闲分区为止;然后按照作业大小,从该分区中划出一块内存空间分配给请求者,余下的空闲区仍留在空闲链中。若从链首到链尾都不能找到一个能满足要求的分区,则此次分配失败。这里,我采用数组的方式,模拟内存分配首次适应算法,动态的为作业分配内存块。可以根据作业名称回收已分配的内存块,当空闲内存块相邻时,则合并。

通过此次的实验,让我对内存分配中首次适应算法更加熟悉,通过编程模拟实现操作系统的可变分区存储管理的功能,一方面加深对原理的理解,另一方面提高根据已有原理通过编程解决实际问题的能力,为进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。

操作系统第六次 内存分配与回收模拟

操作系统课程实验报告 姓名学号系计算机 任课教师指导教师评阅教师 实验地点丽泽楼C304-2 丽泽楼C304-1 (请勾选实际实验地点) 实验时间 实验课表现出勤和个人表现Q1(15+15(组 长评分)=30分) 得分: 实验 总分 (Q1+Q2+Q3 +Q4) 实验完成情况Q2(45分(组长评 分,教师根据实际情况微调)) 得分: 实验编号与实验名称: 第六次实验内存分配与回收模拟 实验目的: 通过使用位图跟踪内存使用情况,模拟和评价不同的内存分配算法;熟悉内存分配和回收。 实验内容及要求(详见实验讲义与实验指导书): 1)要求用你熟悉的程序设计语言编写和调试一个内存分配和回收模拟程序;要求在主函数中测试。 2)实验报告中必须包括:设计思想、数据定义(包括详细说明)、处理流程(详细算法描述和算法流程图)、源代码、运行结果、体会等部分。 3)必须模拟该4种内存分配算法:first fit,next fit,best fit和worst fit中的至少2种。 4)需显示出每次分配和回收后的空闲分区链的情况来以及内存占用情况图,并统计各种算法产生的碎片空闲区(小于3个单元(unit)的空闲区)数。 5)计算2个性能参数:碎片数、平均搜索空闲区次数 实验内容及关键步骤(流程图)

First fit next fit 实验内容及关键步骤(代码)Q3(15分) (1)First fit 代码运行结果#include struct not_empty//已分配分区表 { char process_id;//作业标志符,此处采用-255的整数 int address_of_start;//起始地址 int size_of_notempty;//作业请求的内存单元数 int delete_or_not; //进程是否被创建,是否 } Not_Empty[20]; void printnow(char ram[]){//输出内存分配情况 int i; for(i=1;i<=128;i++) { printf("%c",ram[i]); if(i%11==0) printf("\n"); } printf("\n"); } void printfree(char ram[]){//输出内存空闲区和内存空闲碎片 int i,flag=0,can_not_use=0; printf("空闲区间为:\n"); for(i=1;i<=128;i++){ if(flag==0)

操作系统实验动态分区分配算法

操作系统实验报告实验2 动态分区分配算法 报告日期:2016-6-15 姓名: 学号: 班级: 任课教师:

5k 10k 14k 26k 32k 512k 实验2 动态分区分配算法 一、实验内容 编写一个内存动态分区分配模拟程序,模拟内存的分配和回收的完整过程。 二、实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现与主存储器的管理方式有关的,通过本实验帮助学生理 解在可变分区管理方式下应怎样实现主存空间的分配和回收。 三、实验原理 模拟在可变分区管理方式下采用最先适应算法实现主存分配和回收。 (1)可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离,主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。例如: 为了说明哪些区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表,格式如下: 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区。

操作系统实验内存分配

精心整理西安邮电大学 (计算机学院) 课内实验报告 1. (1 (2 (3 原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。

3.实验过程: 创建进程: 删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式: wf最差匹配算法排列方式: 4.实验心得: 明 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include #include

#define PROCESS_NAME_LEN 32 //进程名长度 #define MIN_SLICE 10 //最小碎片的大小#define DEFAULT_MEM_SIZE 1024 //内存大小 #define DEFAULT_MEM_START 0 //起始位置 /*内存分配算法*/ #define MA_FF 1 #define MA_BF 2 #define MA_WF 3 /*描述每一个空闲块的数据结构*/ struct free_block_type { }; /* /* { }; /* /* void display_menu(); int set_mem_size(); void set_algorithm(); void rearrange(int algorithm); int rearrange_WF(); int rearrange_BF(); int rearrange_FF(); int new_process(); int allocate_mem(struct allocated_block *ab);

存储管理---动态分区分配算法的模拟

一、设计任务 完成存储器动态分区分配算法的模拟实现。 二、设计思想 在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法),实现分区存储管理的内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接,等等相关的内容。 三、预期目的 让我们了解操作系统的基本概念,理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。通过课程设计,我们可以进一步理解在计算机系统上运行的其它各类操作系统,并懂得在操作系统的支持下建立自己的应用系统。操作系统课程设计,对于训练学生掌握程序设计、熟悉上机操作和程序调试技术都有重要作用。重点培养学生的思维能力、设计能力、创新能力和排错能力。 四、设计方案 首先是对相关知识的掌握,例如数据结构,计算方法,组成原理以及操作系统等。在这些基本知识的基础上进行扩展,用语言的形式从函数,数据结构原代码,原程序等方面来达到自己想要的目的。该设计就是要达到对各个细节的问题的解决将各个数据块连接起来,最终达到存储器动态分区分配算法的模拟实现。 五、数据结构 1.设计合理的数据结构来描述存储空间: 1)对于未分配出去的部分,用空闲分区链表来描述。 struct freeList { int startAddress; /* 分区起始地址 */ int size; /* 分区大小 */ struct freeList *next; /* 分区链表指针 */ }

struct usedList { int startAddress; /* 分区起始地址 */ int jobID; /* 分区中存放作业ID */ struct usedList *next; /* 分区链表指针 */ } 3)将作业组织成链表。 struct jobList { int id; /* 作业ID */ int size; /* 作业大小(需要的存储空间大小)*/ int status; /* 作业状态 0 : new job ,1 : in the memory , 2 : finished . */ struct jobList *next; /* 作业链表指针 */ } 以上将存储空间分为空闲可占用两部分,在usedlist中设jobID而不设size,可以在不增加空间复杂度(与freelist相比)的同时更方便的实现可变分区存储管理(从后面的一些函数的实现上可以得出这个结论)。 尽管设置joblist增加了空间复杂度,但它的存在,使得该程序可以方便的直接利用D盘中的JOB文件。该文件可以认为是一个和其他进程共享的资源。通过这个文件,其他进程写入数据供读取。这中思想在操作系统设计中体现的很多。 2.实现分区存储管理的内存分配功能,选择适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法)。 基本原理分析: 1) Best fit :将空闲分区按大小从小到大排序,从头找到大小合适的分区。 2) Worst fit:将空闲分区按大小从大到小排序,从头找到大小合适的分区。 3) First fit :将空闲分区按起始地址大小从小到大排序,…… 4) Last fit :将空闲分区按起始地址大小从大到小排序,…… 由此,可将空闲分区先做合适的排序后用对应的适应算法给作业分配存储空间。排序函数 order(bySize为零则按分区大小排序,否则按分区起始地址;inc为零从小到大排序,否则从大到小排序;通过empty指针返回结果)。 void order(struct freeList **empty,int bySize,int inc) {

操作系统实验内存分配

西安邮电大学 (计算机学院) 课内实验报告 实验名称:内存管理 专业名称:软件工程 班级: 学生姓名: 学号(8位): 指导教师: 实验日期:

实验五:进程 1.实验目的 通过深入理解区管理的三种算法,定义相应的数据结构,编写具体代码。充分模拟三种算法的实现过程,并通过对比,分析三种算法的优劣。 (1)掌握内存分配FF,BF,WF策略及实现的思路; (2)掌握内存回收过程及实现思路; (3)参考给出的代码思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 3.实验过程: 创建进程:

删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式:

wf最差匹配算法排列方式: 4.实验心得: 这次实验实验时间比较长,而且实验指导书中对内存的管理讲的很详细,老师上课的时候也有讲的很详细,但是代码比较长,刚开始的时候也是不太懂,但是后面经过和同学一起商讨,明白几种算法的含义: ①首次适应算法。在采用空闲分区链作为数据结构时,该算法要求空闲分区链表以地址递增的次序链接。在进行内存分配时,从链首开始顺序查找,直至找到一个能满足进程大小要求的空闲分区为止。然后,再按照进程请求内存的大小,从该分区中划出一块内存空间分配给请求进程,余下的空闲分区仍留在空闲链中。 ②循环首次适应算法。该算法是由首次适应算法演变而形成的,在为进程分配内存空间时,从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,并从中划出一块与请求的大小相等的内存空间分配给进程。 ③最佳适应算法将空闲分区链表按分区大小由小到大排序,在链表中查找第一个满足要求的分区。 ④最差匹配算法将空闲分区链表按分区大小由大到小排序,在链表中找到第一个满足要求的空闲分区。 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include

最新c++动态分区分配算法模拟(操作系统课程设计)

c++动态分区分配算法模拟(操作系统课程 设计)

课程设计 课程设计名称:操作系统课程设计 专业班级: 学生姓名: 学号: 指导教师: 课程设计时间:6月13日-——6月17日

计算机科学专业课程设计任务书 说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

1:需求分析 (1)用C语言实现采用首次适应算法的动态分区分配过程alloc()和回收过程free()。其中,空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间。 (2)假设初始状态下,可用的内存空间为640KB,并有下列的请求序列:作业1申请130KB;作业2申请60KB;作业3申请100KB;作业2释放60KB;作业4申请200 KB;作业3释放100 KB;作业1释放 130 KB;作业5申请140 KB;作业6申请60 KB;作业7申请 50KB;作业6释放60 KB。采用首次适应算法进行内存块的分配和回 收,同时显示内存块分配和回收后空闲内存分区链的情况。 2:概要设计 (1)数据结构:作业队列数据结构,用于存储待处理作业;阻塞作业队列数据结构,用于存储阻塞的作业。已分配内存块的双向链表,记录当前系 统已分配的各个内存块;未分配内存块的双向链表,记录系统中剩余的 各个内存块;系统内存分配总情况的结点对象,记录系统中阻塞的作业 总数,已分配的内存块数,剩余的内存块数。 (2)主函数:对作业队列、阻塞队列、已分配内存块链表、未分配内存块链表、系统总内存分配情况结点对象进行初始化,调用分配函数或回收函 数,循环处理11个作业步。 (3)分配函数alloc():首次适应算法检索未分配的内存块链表,若找到合适的内存块,则加以判断,空闲内存块大小减去作业去请求内存块大小小于

Java 内存释放

Java 内存释放 (问题一:什么叫垃圾回收机制?)垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能。当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用,以免造成内存泄露。 (问题二:java的垃圾回收有什么特点?)JAVA语言不允许程序员直接控制内存空间的使用。内存空间的分配和回收都是由JRE负责在后台自动进行的,尤其是无用内存空间的回收操作(garbagecollection,也称垃圾回收),只能由运行环境提供的一个超级线程进行监测和控制。 (问题三:垃圾回收器什么时候会运行?)一般是在CPU空闲或空间不足时 自动进行垃圾回收,而程序员无法精确控制垃圾回收的时机和顺序等。 (问题四:什么样的对象符合垃圾回收条件?)当没有任何获得线程能访问一个对象时,该对象就符合垃圾回收条件。 (问题五:垃圾回收器是怎样工作的?)垃圾回收器如发现一个对象不能被任何活线程访问时,他将认为该对象符合删除条件,就将其加入回收队列,但不是立即销毁对象,何时销毁并释放内存是无法预知的。垃圾回收不能强制执行,然 而Java提供了一些方法(如:System.gc()方法),允许你请求JVM执行垃圾回收,而不是要求,虚拟机会尽其所能满足请求,但是不能保证JVM从内存中删除所有不用的对象。 (问题六:一个java程序能够耗尽内存吗?)可以。垃圾收集系统尝试在对 象不被使用时把他们从内存中删除。然而,如果保持太多活的对象,系统则可能会耗尽内存。垃圾回收器不能保证有足够的内存,只能保证可用内存尽可能的得到高效的管理。 (问题七:如何显示的使对象符合垃圾回收条件?) (1)空引用:当对象没有对他可到达引用时,他就符合垃圾回收的条件。也就是说如果没有对他的引用,删除对象的引用就可以达到目的,因此我们可以把引用变量设置为null,来符合垃圾回收的条件。 Java代码 1.StringBuffer sb = new StringBuffer("hello");

操作系统内存动态分配模拟算法

实验四存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include using namespace std; //定义存的大小 const int SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //存块结构体,保存存块信息 struct Block{

首次适应算法 内存分配

操 作 系 统 实 验 报 告 课程名称:操作系统 实验题目:首次适应算法 姓名: **** 专业班级: *********** 学号: ************* 指导老师: *****

一、实验目的 在计算机系统中,为了提高内存区的利用率,必须给电脑内存区进行合理的分配。本实验通过对内存区分配方法首次适应算法的使用,来了解内存分配的模式。 二、实验要求 1.内存大小初始化 2.可以对内存区进行动态分配,采用首次适应算法来实现 3.可以对已分配的内存块进行回收,并合并相邻的空闲内存块。 三、实验内容 把一个作业装入内存,按照首次适应算法对内存区进行分配,作业结束,回收已分配给该作业的内存块,并合并相邻的空闲内存块。 四、实验结果 运行效果: 1.初始化内存区大小,并添加作业,选择1添加作业 2. 当作业大小超过存储块大小时,分配失败。 3.选择3,可查看内存分配情况 4.选择2回收内存 5.添加新作业 6.回收C作业,相邻的空闲内存块合并。 五、实验总结

首次适应算法要求空闲分区链以地址递增的次序链接。在分配内存时,从链首开始查找,直到找到一个大小能满足要求的空闲分区为止;然后按照作业大小,从该分区中划出一块内存空间分配给请求者,余下的空闲区仍留在空闲链中。若从链首到链尾都不能找到一个能满足要求的分区,则此次分配失败。这里,我采用数组的方式,模拟内存分配首次适应算法,动态的为作业分配内存块。可以根据作业名称回收已分配的内存块,当空闲内存块相邻时,则合并。 通过此次的实验,让我对内存分配中首次适应算法更加熟悉,在此基础上,我也测试最佳适应算法(best_fit)和最坏适应算法(worst_fit),并对其进行了比较分析,从比较中我发现,针对同一个问题,解决的方法不止一种,而且不同的方法所要消耗的资源和时间也不相同,根据不同的要求,方法的优劣也不同,可以说方法是解决问题的一种模式,随环境不同而体现出优越性。 六、实验附录 程序源代码: #include #include #include int neicun=200;//内存块默认大小 int fqNum=1;//已使用分区数目,进程数目=fqNum-1 #define number 100//进程数量 struct fqinfo//分区信息 { int start;//开始位置 int end;//结束位置 char name;//进程名称 int capactity;//进程大小或者分区块大小 int flag;//分区使用标记,0:未使用 1:已使用 2:回收或者合并的分区 3:尾部 }fqlist[number]; int init_neicun();//初始化内存大小 int first_fit(char name,int size);//首次适应算法 int fenpei();//为进程存储区 int showit();//显示进程 int menu();//功能菜单 int Memory_recovery();//内存回收 int exit();//退出系统

java垃圾回收机制

上次讲到引用类型和基本类型由于内存分配上的差异导致的性能问题。那么今天就来聊一下和内存释放(主要是gc)有关的话题。 事先声明一下:虽说sun公司已经被oracle吞并了,但是出于习惯,同时也为了偷懒节省打字,以下仍然称之为sun公司。 ★jvm的内存 在java虚拟机规范中(具体章节请看“这里”),提及了如下几种类型的内存空间: ◇栈内存(stack):每个线程私有的。 ◇堆内存(heap):所有线程公用的。 ◇方法区(method area):有点像以前常说的“进程代码段”,这里面存放了每个加载类的反射信息、类函数的代码、编译时常量等信息。 ◇原生方法栈(native method stack):主要用于jni中的原生代码,平时很少涉及。 关于栈内存(stack)和堆内存(heap),已经在上次的帖子中扫盲过了,大伙儿应该有点印象。由于今天咱们要讨论的“垃圾回收”话题,主要是和堆内存(heap)有关。其它的几个玩意儿不是今天讨论的重点。等以后有空了,或许可以单独聊一下。 ★垃圾回收机制简介 其实java虚拟机规范中并未规定垃圾回收的相关细节。垃圾回收具体该怎么搞,完全取决于各个jvm的设计者。所以,不同的jvm之间,gc的行为可能会有一定的差异。下面咱拿sun官方的jvm来简单介绍一下gc的机制。 ◇啥时候进行垃圾回收? 一般情况下,当jvm发现堆内存比较紧张、不太够用时,它就会着手进行垃圾回收工作。但是大伙儿要认清这样一个残酷的事实:jvm进行gc的时间点是无法准确预知的。因为gc启动的时刻会受到各种运行环境因素的影响,随机性太大。 虽说咱们无法准确预知,但如果你想知道每次垃圾回收执行的情况,还是蛮方便的。可以通过jvm的命令行参数“-xx:+printgc”把相关信息打印出来。 另外,调用system.gc()只是建议jvm进行gc。至于jvm到底会不会做,那就不好说啦。通常不建议自己手动调用system.gc(),还是让jvm自行决定比较好。另外,使用jvm命令行参数“-xx:+disableexplicitgc”可以让system.gc()不起作用。 ◇谁来负责垃圾回收? 一般情况下,jvm会有一个或多个专门的垃圾回收线程,由它们负责清理回收垃圾内存。 ◇如何发现垃圾对象? 垃圾回收线程会从“根集(root set)”开始进行对象引用的遍历。所谓的“根集”,就是正在运行的线程中,可以访问的引用变量的集合(比如所有线程当前函数的参数和局部变量、当前类的成员变量等等)。垃圾回收线程先找出被根集直接引用的所有对象(不妨叫集合1),然后再找出被集合1直接引用的所有对象(不妨叫集合2),然后再找出被集合2直接引用的所有对象......如此循环往复,直到把能遍历到的对象都遍历完。 凡是从根集通过上述遍历可以到达的对象,都称为可达对象或有效对象;反之,则是不可达对象或失效对象(也就是垃圾)。 ◇如何清理/回收垃圾? 通过上述阶段,就把垃圾对象都找出来。然后垃圾回收线程会进行相应的清理和回收工作,包括:把垃圾内存重新变为可用内存、进行内存的整理以消除内存碎片、等等。这个过程会涉及到若干算法,有兴趣的同学可以参见“这里”。限于篇幅,咱就不深入聊了。 ◇分代 早期的jvm是不采用分代技术的,所有被gc管理的对象都存放在同一个堆里面。这么做的缺点比较明显:每次进行gc都要遍历所有对象,开销很大。其实大部分的对象生命周期都很短(短命对象),只有少数对象比较长寿;在这些短命对象中,又只有少数对象占用的内存空间大;其它大量的短命对象都属于小对象(很符合二八原理)。 有鉴于此,从jdk 1.2之后,jvm开始使用分代的垃圾回收(generational garbage collection)。jvm把gc相关的内存分为年老代(tenured)和年轻代(nursery)、持久代(permanent,对应于jvm规范的方法区)。大部分对象在刚创建时,都位于年轻代。如果某对象经历了几轮gc还活着(大龄对象),就把它移到年老代。另外,如果某个对象在创建时比较大,可能就直接被丢到年老代。经过这种策略,使得年轻代总是保存那些短命的小对象。在空间尺寸上,年轻代相对较小,而年老代相对较大。 因为有了分代技术,jvm的gc也相应分为两种:主要收集(major collection)和次要收集(minor collection)。主要收集同时清理年老代和年轻代,因此开销很大,不常进行;次要收集仅仅清理年轻代,开销很小,经常进行。 ★gc对性能会有啥影响? 刚才介绍了gc的大致原理,那gc对性能会造成哪些影响捏?主要有如下几个方面: ◇造成当前运行线程的停顿 早期的gc比较弱智。在它工作期间,所有其它的线程都被暂停(以免影响垃圾回收工作)。等到gc干完活,其它线程再继续运行。所以,早期jdk的gc一旦开始工作,整个程序就会陷入假死状态,失去各种响应。

内存分配,首次适应算法

一、实验名称:内存分配与回收 二、实验内容:用首次适应算法实现存储空间的分配,回收作业所占用的存储空间。 三、实验目的: 一个好的计算机系统不仅要有足够的存储容量,较高的存取速度和稳定可靠的存储器,而且能够合理的分配和使用这些主存空间。当用户提出申请主存空间的要求时,存储管理能够按照一定的策略分析主存的使用情况,找出足够的空间分配给申请者;当作业运行完毕,存储管理要回收作业占用的主存空间。本实验实现在可变分区存储管理方式下,采用最先适应算法对主存空间进行分配和回收,以加深了解操作系统的存储管理功能。 四、实验过程: a)基本思想 空闲分区链以地址递增的次序连接。在分配内存时,从链首开始顺序查找,直至找到一个大小能够满足要求的空闲分区为止;然后再按照作 业大小,从该分区中划出一块内存空间分配给请求者,余下的空闲分区 仍然留在空闲链中。若从链首直至链尾都不能找到一个能满足要求的分 区,则此次内存分配失败。 b)主要数据结构 typedef struct FreeLink{

#include <> #include <> using namespace std; typedef struct FreeLink{配内存"<>choice; }while(choice!='1'&&choice!='2'&&choice!='3'); switch(choice){ case '1':allocate(p);print();break; case '2':huishou(p);print();break; case '3':clear();return 0;break; } } } int main(){//主函数 ptr free=(FreeLink *)malloc(sizeof(FreeLink));

可变分区存储管理方式的内存分配和回收实验报告(最优算法)

一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 三.实验背景材料 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #define n 10 //假定系统允许的最大作业数量为n struct { float address; //已分分区起始地址 float length; //已分分区长度、单位为字节 int flag; //已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n]; //已分分区表 “空闲区表”的结构定义 #define m 10 //假定系统允许的空闲区最大为m struct { float address; //空闲区起始地址 float length; //空闲区长度、单位为字节 int flag; //空闲区表登记栏标志,“0”表示空栏目,“1”表示未分配 }used_table[n]; //空闲区表 第二,在设计的数据表格基础上设计内存分配。 装入一个作业时,从空闲区表中查找满足作业长度的未分配区,如大于作业,空闲区划分成两个分区,一个给作业,一个成为小空闲分区。 实验中内存分配的算法采用“最优适应”算法,即选择一个能满足要求的最小空闲分区。 第三,在设计的数据表格基础上设计内存回收问题。内存回收时若相邻有空闲分区则合并空闲区,修改空闲区表。 四、参考程序 #define n 10 //假定系统允许的最大作业数量为n

JVM内存分配(栈堆)与JVM回收机制

Java 中的堆和栈 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。 引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。 具体的说: 栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。 Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。 栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义: int a = 3; int b = 3; 编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b 的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。 String是一个特殊的包装类数据。可以用: String str = new String("abc"); String str = "abc"; 两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。 而第二种是先在栈中创建一个对String类的对象引用变量str,然后查找栈中有没有存放"abc",如果没有,则将"abc"存放进栈,并令str指向”abc”,如果已经有”abc”则直接令 str指向“abc”。 比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。 String str1 = "abc"; String str2 = "abc"; System.out.println(str1==str2); //true

java垃圾回收机制是怎样的

java垃圾回收机制是怎样的 手动管理内存 在介绍现代版的垃圾回收之前,我们先来简单地回顾下需要手 动地显式分配及释放内存的那些日子。如果你忘了去释放内存,那么这块内存就无法重用了。这块内存被占有了却没被使用。这种场景被称之为内存泄露。 下面是用C写的一个手动管理内存的简单例子: intsend_request() { size_tn=read_size(); int*elements=malloc(n*sizeof(int)); if(read_elements(n,elements)

11intsend_request(){size_tn=read_size();stared_ptrelements= make_shared();if(read_elements(n,elements)

计算机操作系统内存分配实验报告

一、实验目的 熟悉主存的分配与回收。理解在不同的存储管理方式下.如何实现主存空间的分配与回收。掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。 二、实验内容和要求 主存的分配和回收的实现是与主存储器的管理方式有关的。所谓分配.就是解决多道作业或多进程如何共享主存空间的问题。所谓回收.就是当作业运行完成时将作业或进程所占的主存空间归还给系统。 可变分区管理是指在处理作业过程中建立分区.使分区大小正好适合作业的需求.并且分区个数是可以调整的。当要装入一个作业时.根据作业需要的主存量查看是否有足够的空闲空间.若有.则按需要量分割一个分区分配给该作业;若无.则作业不能装入.作业等待。随着作业的装入、完成.主存空间被分成许多大大小小的分区.有的分区被作业占用.而有的分区是空闲的。 实验要求使用可变分区存储管理方式.分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行.分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。同时.要求设计一个实用友好的用户界面.并显示分配与回收的过程。同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。 三、实验主要仪器设备和材料 实验环境 硬件环境:PC或兼容机 软件环境:VC++ 6.0 四、实验原理及设计分析 某系统采用可变分区存储管理.在系统运行当然开始.假设初始状态下.可用的内存空间为640KB.存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。 (作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放 60KB 、作业4 申请 200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB) 当作业1进入内存后.分给作业1(130KB).随着作业1、2、3的进入.分别分配60KB、100KB.经过一段时间的运行后.作业2运行完毕.释放所占内存。此时.作业4进入系统.要求分配200KB内存。作业3、1运行完毕.释放所占内存。此时又有作业5申请140KB.作业6申请60KB.作业7申请50KB。为它们进行主存分配和回收。 1、采用可变分区存储管理.使用空闲分区链实现主存分配和回收。 空闲分区链:使用链指针把所有的空闲分区链成一条链.为了实现对空闲分区的分配和链接.在每个分区的起始部分设置状态位、分区的大小和链接各个分区的前向指针.由状态位指示该分区是否分配出去了;同时.在分区尾部还设置有一后向指针.用来链接后面的分区;分区中间部分是用来存放作业的空闲内存空间.当该分区分配出去后.状态位就由“0”置为“1”。 设置一个内存空闲分区链.内存空间分区通过空闲分区链来管理.在进行内存分配时.系统优先使用空闲低端的空间。 设计一个空闲分区说明链.设计一个某时刻主存空间占用情况表.作为主存当前使用基础。初始化空间区和已分配区说明链的值.设计作业申请队列以及作业完成后释放顺序.实现主存的分配和回收。要求每次分配和回收后显示出空闲内存分区链的情况。把空闲区说明链的变化情况以及各作业的申请、释放情况显示打印出来。

Php引用计时器和垃圾回收机制

php引用计数器和垃圾回收机制谈到引用计数器和垃圾回收机制,必须得从php变量说起。总所周知,php 是一种弱类型,但具体表现在哪里,程序里面又是怎么表现的呢?php里面又是怎样实现引用计数器的,程序如何区分变量引用和复制?php是如何对已用完的变量进行回收,不同的php版本的不同的垃圾回收机制又是如何实现的? 1.引用计数器 讲到引用计数器,不得不先说一下变量的c语言实现。如下,几个变量的结构体和联合体: zvalue_value联合体: typedef union _zvalue_value { long lval; /* long value */ double dval; /* double value */ struct { char *val; int len; } str; H as hTable *ht; /* hash table value */ zend_object_value obj; } zvalue_value; zval的结构: struct _zval_struct { /* Variable information */ zvalue_value value; /* value */ zend_uint refcount__gc; zend_uchar type; /* active type */ zend_uchar is_ref__gc; }; zval可以看成一个容器,zvalue_value是该容器存储变量值的联合体,refcount__gc 是引用计数,记录引用数,is_ref__gc是标志这个容器是否真正的引用,type表示这个变量的类型。

内存最佳分配实验报告

一.实验名称 模拟实现动态分区存储管理 二.实验要求 编写程序实现动态分区存储管理方式的主存分配与回收。具体内容包括:先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配与回收;最后编写主函数对所做工作进行测试。 三.解决方案 实现动态分区的分配与回收,主要考虑两个问题:第一,设计记录主存使用情况的数据结构,用来记录空闲区和作业占用的区域;第二,在该数据结构基础上设计主存分配算法和主存回收算法。 由于动态分区的大小是由作业需求量决定的,故分区的长度预先不能固定,且分区的个数也随主存分配和回收变动。总之,所有分区的情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在主存中的起始地址和长度。由于分配时,空闲区有时会变成两个分区(空闲区和已分配区),回收主存分区时,可能会合并空闲区,这样如果整个主存采用一张表格记录已分配区和空闲区,就会使表格操作繁琐。主存分配时查找空闲区进行分配,然后填写已分配区表,主要操作在空闲区。由此可见,主存的分配与回收主要是对空闲区的操作。这样为了便于对主存空间的分配与回收,可建立两张分区表记录主存使用情况:“已分配区表”记录作业占用分区,“空闲区表”记录空闲区。 然后在数据结构上进行主存的分配,其主存分配算法采用最优适应算法,即按祖业要求挑选一个能满足作业要求的最小空闲区分配。具体实现时,把空闲区按长度以某种方式(递增方式)登记在“空闲区表”中,分配时顺序查找“空闲区表”,查到的第一个空闲区就是满足作业要求的最小分区。在实现回收时,先在“已分配区表”中找到将作业归还的区域,且变为空,检查“空闲区”表中未分配区域,查找是否有相邻空闲区,最后合并空闲区,修改“空闲区表”。设计程序时可选择进行主存分配或主存回收,所需参数为:若是主存分配。输入作业名和所需主存空间大小;若是回收,输入回收作业的作业名,以循环进行主存分配和回收。 四.实验代码 #include #include #define n 10 /*定义系统允许的最大作业数*/ #define m 10 /*定义系统允许的空闲区表最大值*/ #define minisize 100 struct /*已分配区表的定义*/ { float address; float length; int flag; }used_table[n]; struct {float address; float length; int flag; }free_table[m];

相关文档
相关文档 最新文档