文档库 最新最全的文档下载
当前位置:文档库 › 热阻及热导率的测量方法

热阻及热导率的测量方法

热阻及热导率的测量方法
热阻及热导率的测量方法

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。这样,只要测量低温侧

铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

实验二 食品中氮含量的测定

实验二食品中氮含量的测定 一、实验目的 1. 学习凯氏定氮法测定蛋白质的原理。 2. 掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。 二、实验原理 蛋白质是含氮的化合物,食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。 因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 三、仪器与试剂 (一)试剂 硫酸铜(CuSO4·5H20)、硫酸钾、硫酸(密度为1.8419g/L)、硼酸溶液(20g/L)、氢氧化钠溶液(400g/L)、0.01mol/L盐酸标准滴定溶液、混合指示试剂(0.1%甲基红乙溶液液1份,与0.1%溴甲酚绿乙醇溶液5份临用时混合)、大米。 (二)仪器微量定氮蒸馏装置:如图3- 所示。

四、实验步骤 1. 样品消化 称取黄豆粉约0.3 g (±0.001 g ),移入干燥的100 mL 凯氏烧瓶中,加入0.2 g 硫酸铜和6 g 硫酸钾,稍摇匀后瓶口放一小漏斗,加入20 mL 浓硫酸,将瓶以450角斜支于有小孔的石棉网上,使用万用电炉,在通风橱中加热消化,开始时用低温加热,待内容物全部炭化,泡沫停止后,再升高温度保持微沸,消化至液体呈蓝绿色澄清透明后,继续加热0.5 h ,取下放冷,小心加20 mL 水,放冷后,无损地转移到100 mL 容量瓶中,加水定容至刻度,混匀备用,即为消化液。 试剂空白实验:取与样品消化相同的硫酸铜、硫酸钾、浓硫酸,按以上同样方法进行消化,冷却,加水定容至100 mL ,得试剂空白消化液。 2. 碱化蒸馏 量取硼酸试剂20.00 mL 于三角瓶中,使冷凝管的下端插入硼酸液面下,准确吸取10.00 mL 样品消化液进入反应室,并以50 mL 蒸馏水洗涤进样口流入反应室,棒状玻塞塞紧。使10 mL 氢氧化钠溶液用玻璃漏斗注入反应室。通入蒸汽蒸腾15 min 后,移动接收瓶,液面离开凝管下端,再蒸馏2min 。然后用少量水冲洗冷凝管下端外部,取下三角瓶,准备滴定。 同时吸取10.00 mL 试剂空白消化液按上法蒸馏操作。 4. 样品滴定 以0.1 mol/L 盐酸标准溶液用自动电位滴定仪滴定样品和空白试样至pH 为5.0-5.2(国标中使用的甲基红-亚甲基蓝指示液的变色范围)。 5、数据记录 五、结果计算 10010100 0140.0)(21?????-=F m c V V X

建筑工程测量实验报告

江西理工大学建筑工程测量 实验报告 专业建筑学 年级13级 班级**** 学号**** 姓名**** 2015年月日

目录 第一部分实验项目内容及要求第二部分实验报告 第三部分实验心得体会和建议

第一部分实验项目内容及要求

第二部分实验报告 实验报告一 日期2015.10.10 班组第六组学号*号姓名**** ㈠完成下列填空 1.安置仪器后,转动三个脚螺旋使圆水准器气泡居中,转动 目镜对光螺旋看清十字丝,通过镜筒上方的缺口和准星瞄准水准尺,转动水平微动螺旋精确照准水准尺,转动物镜对光螺旋进行对光消除视差,转动微倾螺旋使符合水准器气泡居中,最后读数。 2.消除视差的步骤是转动目镜对光螺旋使十字丝清晰,再转动 物镜对光螺旋使水准尺的分划像清晰。 ㈡实验记录和计算 1.记录水准尺上读数填入表2-1-1中。

表2-1-1 2.计算(基于黑红面读数的平均值) ⑴A点比C点低0.199 m。 ⑵B点比D点高0.388 m。 ⑶C点比E点高0.154 m。 ⑷假设C点的高程H C=158.936 m,求A点、B点、C点、D点、E点的高程,即:A A= 158.737 m,H B= 159.070 m,H C= 158.936m,H D= 158.682 m,H E= 158.782 m,水准仪的视线高程 H I= 160.458 m。 ㈢出图2-1-1中水准仪各部件的名称

图2-1-1 1)目镜对光螺旋;2)望远镜; 3)水准管;4)水平微动螺旋; 5)圆水准器;6)校正螺旋; 7)水平制动螺旋;8)准星; 9)脚螺旋;10)微倾螺旋; 11)水平微动螺旋;12)物镜对光螺旋; 13)缺口;14)三脚架。 实验报告二水准测量 日期2015.10.10 班组第六组学号*号姓名*** ㈠水准测量的外业记录及其高程计算 实验数据记入表2-2-1,进行高程的计算,并进行验算,以确保各项计算准确无误。 表2-2-1 水准测量的外业记录及其高程计算

动态法测定良导体的热导率

〖实验二十五〗 动态法测定良导体的热导率 实验时间2015年4月28日 报告时间2015年4月29日 1300011454 周二下午第2组3号 〖目的要求〗 1、测定良导体的热导率; 2、学习一种测定材料热导率的方法; 3、了解动态法测定良导体的特点和优越性; 4、认识热波,加强对波动理论的理解。 〖仪器用具〗 热导率动态测量仪,微机。

〖实验原理〗 1、热流方程 本实验采用非稳态法测定良导体的热导率。取棒状样品,假定热量仅沿一维传播。取一小段棒元,根据傅里叶导热定律,单位时间内在单位等温面上沿温度降低方向流过某垂直于传播方向的热流密度为: q T t t κ??=-?? 式中:κ为待测材料的热导率。由导热定律可推得热流方程: 22,T T t x c κααρ??==?? 式中:α称为热扩散率。 2、热波方程 热流方程的解将各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度围绕T 0按简谐规律变化,即: 0 sin m T T T t ω=+ 式中:T m 为热端的最高温度;ω为热端温度变化的角频率。 假设另一端无反射并保持恒定温度为T 0,则式热流方程的解也就是棒中各点的温度,即: 0 exp sin m T T kx T t ω??? =-+- ? ? ???

式中的T 0是直流成分;k 是线性成分的斜率。 从上式中可以看出: (1)当热端(x=0)温度按简谐方式变化时,这种变化将以衰减波的形式在棒内向冷端传播,称为热波,也就是温度波。 (2)热波波速 v =(3)热波波长 2λπ =因此在角频率。已知的情况下,只要测出波速或波长就可以计算出 α然后再由 c κ αρ= 计算出材料的热导率κ。由热波波速公式,可得: 222 424period c v v c T c f v κρρκρππω===? 式中:f ,T period 分别为热端温度按简谐变化的频率和周期。 从上述原理可知实现热导率测量的关键是: ①实现热量的一维传播; ②实现热端温度随时间按简谐形式变化的边界条件。 本实验采取的热波法,特点是当热量在样品中传播时,样品中各点的温度不像稳态法那样必须保持恒定,只要给定适当边界条件,可以做到样品上各点的温度均可随时间进行简谐变化,利用这种变化可以很容易测出热波波速,进而可计算出样品材料的热导率。

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

电压法LED结温及热阻测试原理分析

电压法LED结温及热阻测试原理分析 发布日期:2010-08-01 来源: 关键字: 近年来,由于功率型LED 光效提高和价格下降使LED 应用于照明领域数量迅猛增长,从各种景观照明、户外照明到普通家庭照明,应用日益广泛。LED 应用于照明除了节能外,长寿命也是其十分重要的优势。目前由于LED 热性能原因,LED 及其灯具不能达到理想的使用寿命;LED 在工作状态时的结温直接关系到其寿命和光效;热阻则直接影响LED 在同等使用条件下 LED 的结温;LED 灯具的导热系统设计是否合理也直接影响灯具的寿命。因此功率型 LED 及其灯具的热性能测试 ,对于 LED 的生产和应用研发都有十分直接的意义。以下将简述LED 及其灯具的主要热性能指标,电压温度系数K、结温和热阻的测试原理、测试设备、测试内容和测试方法,以供LED 研发、生产和应用企业参考。 一、电压法测量 LED 结温的原理 LED 热性能的测试首先要测试 LED 的结温,即工作状态下 LED 的芯片的温度。关于LED 芯片温度的测试,理论上有多种方法,如红外光谱法、波长分析法和电压法等等。目前实际使用的是电压法。1995 年 12 月电子工业联合会/电子工程设计发展联合会议发布的> 标准对于电压法测量半导体结温的原理、方法和要求等都作了详细规范。 电压法测量LED 结温的主要思想是:特定电流下 LED 的正向压降 Vf 与 LED 芯片的温度成线性关系,所以只要测试到两个以上温度点的Vf 值,就可以确定该 LED 电压与温度的关系斜率,即电压温度系数 K 值,单位是 mV/°C 。K 值可由公式K=ㄓVf/ㄓTj 求得。K 值有了,就可以通过测量实时的 Vf 值,计算出芯片的温度(结温)Tj 。为了减小电压测量带来的误差,> 标准规定测量系数 K 时,两个温度点温差应该大于等于50 度。对于用电压法测量结温的仪器有几个基本的要求:A、电压法测量结温的基础是特定的测试电流下的 Vf 测量,而 LED 芯片由于温度变化带来的电压变化是毫伏级的,所以要求测试仪器对电压测量的稳定度必须足够高,连续测量的波动幅度应小于 1mV 。 B、这个测试电流必须足够小,以免在测试过程中引起芯片温度变化;但是太小时会引起电压测量不稳定,有些LED 存在匝流体效应会影响 Vf 测试的稳定性,所以要求测试电流不小于 IV 曲线的拐点位置的电流值。

食品中蛋白质的测定方法

食品中蛋白质的测定方法 蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸 液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。 一凯氏定氮法 我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。 (一) 、常量凯氏定氮法 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l6 %,即1份氮素相当于6.25 分蛋白质,以此为换算系数6.25 ,不同类的食物其蛋白质的换算系数不同. 如玉米、高梁、荞麦, 肉与肉制品取6.25 ,大米取 5.95 、小麦粉取 5.7, 乳制品取 6.38 、大豆及其制品取5.17 ,动物胶 5.55 。 测定原理: 食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。 ⑴消化反应:有机物(含C、N、H、0、P、S等元素)+H2S04 -T(NH4)2SO4+CO0 +S02f +S03+H3PO4+C02 (2) 蒸馏反应:(NH4)2SO4+2NAOH—2NH3T +2H2O+NA2SO4 2NH3+4H3B04 (NH4)2B4O7+5H2O (3) 滴定反应:(NH4)2B4O7+2HCH+5H2O T2NH4CH+4H3BC或(NH4)2B407+H2S04+5H20- (NH4)9SO4+4H2BO2 试剂与仪器: 1、硫酸钾; 2、硫酸铜;

良导体热导率的动态法测量

西安交通大学 大学物理仿真实验报告 姓名:李宗阳 班级:能动28 学号:2120301210

实验名称:良导体热导率的动态法测量 一.实验目的 1.通过实验学会一种测量热导率的方法。 2.解动态法的特点和优越性。 3.认识热波,加强对拨动理论的理解。 二.实验原理 实验采用热波法测量铜、铝等良导体的热导率。简化问题,令热量沿一维传播,周边隔热,如图1所示。根据热传导定律,单位时间内流过某垂直于传播方向上面积A 的热量,即热流为 x T KA t q ??-=?? (1) 其中K 为待测材料的热导率,A 为截面积, 文中x T ??是温度对坐标x 的梯度,负号表示热量流动方向与温度变化方向相反.dt 时间 内通过面积A 流入的热量 dxdt x T KA dt t q t q dq dx x x 22??=?? ??????? ????-??? ????=+ 图1 棒 元 若没有其他热量来源或损耗,据能量守恒定律,dt 时间内流入面积A 的热量等 于温度升高需要的热量dt t T Adx c dq ?? ? ????=ρ,其中C ,ρ分别为材料的比热容与密度。所以任一时刻棒元热平衡方程为

dx x T K t T dx C 22??=??ρ (2) 由此可得热流方程 22x T D t T ??=?? (3) 其中ρC K D =,称为热扩散系数. 式(3)的解将把各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度按简谐变化,即 t T T T m ωsin 0+= (4) 其中T m 是热端最高温度,为热端温度变化的角频率。另一端用冷水冷却, 保持恒定低温o T ,则式(3)的解也就是棒中各点的温度为 )sin(202x t e T x T T D x m D ωωαω-?+-=- (5) 其中T 0是直流成分,α是线性成分的斜率,从式(5)中可以看出: 1) 热端(x=0)处温度按简谐方式变化时,这种变化将以衰减波的形式在棒内向冷端传播,称为热波. 2) 热波波速:ωD V 2= (6) 3) 热波波长:ωπλD 22= (7) 因此在热端温度变化的角频率已知的情况下,只要测出波速或波长就可以计算出 D .然后再由ρ C K D =计算出材料的热导率K .本实验采用.式(6)可得 ωρC K V 22= 则T C V f C V K πρπρ4422== (8) 其中,f 、T 分别为热端温度按简谐变化的频率和周期.实现上述测量的关键是: 1) 热量在样品中一维传播.2) 热端温度按简谐变化.

非良导体热导率的测量带实验数据处理

本科实验报告 (阅) 实验名称:非良导体热导率的测量 实验11 非良导体热导率的测量 【实验目的和要求】 1.学习热学实验的基本知识和技能。 2.学习测量非良导体热导率的基本原理的方法。 3.通过做物体冷却曲线和求平衡温度下物体的冷却速度,加深对数据图事法的理解。 【实验原理】 热可以从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分,这种现象叫做热传递。热传递的方式有三种:传导,对流和辐射。 设有一厚度为l、底面积为S?的薄圆板,上下两底面的温度T ,T 不相等,且T1>T2,则有热量自上底面传乡下底面(见图1),其热量可以表示为 (1)

图1 测量样品 式中,为热流量,代表单位时间里流过薄圆板的热量;为薄圆板内热流方向上的温度梯度,式中的负号表示热流方向与温度梯度的方向相反;为待 测薄圆板的热导率。 如果能保持上下两底面的温度不变(稳恒态)和传热面均匀,则,于是 (2) 得到 关键1.使待测薄圆板中的热传导过程保持为稳恒态。 2.测出稳恒态时的。 1.建立稳恒态 为了实现稳恒态,在试验中将待测薄圆板B置于两个直径与B相同的铝圆柱A,C 之间,且紧密接触,(见图2)。 图二测量装置 C内有加热用的电阻丝和用作温度传感器的热敏电阻,前者被用来做热源。首先,

可由EH-3数字化热学实验仪将C内的电阻丝加热,并将其温度稳定在设定的数值上。B的热导率尽管很小,但并不为零,固有热量通过B传递给A,使A的温度T A逐渐升高。当T A高于周围空气的温度时,A将向四周空气中散发热量。由于C的温度恒定,随着A的温度升高,一方面通过C通过B流向A的热流速率不断减小,另一方面A向周围空气中散热的速率则不断增加。当单位时间内A 从B 获得的热量等于它向周围空气中散发的热量时,A的温度就稳定不变了。 2.测量稳恒态时的 因为流过B的热流速率就是A从B获的热量的速率,而稳恒态时流入A的热流速率与它散发的热流速率相等,所以,可以通过测A在稳恒态时散热的热流速率来测。当A单独存在时,它在稳恒温度下向周围空气中散热的速率为 (3) 式中,为A的比热容;为A的质量;n=T=T2成为在稳恒温度T2时的冷却速度。 A的冷却速度可通过做冷却曲线的方法求得。具体测法是:当A、C已达稳恒态后,记下他们各自的稳恒温度T2,T1后,再断电并将B移开。使A,C接触数秒钟,将A 的温度上升到比T2高至某一个温度,再移开C,任A自然冷却,当TA降到比T2约高To(℃)时开始计时读数。以后每隔一分钟测一次TA,直到TA 低于T2约To(℃)时止。测的数据后,以时间t为横坐标,以TA为纵坐标做A 的冷却曲线,过曲线上纵坐标为T2的点做此曲线的切线,则斜率就是A在TA 的自然冷却速度,即 (4) 于是有(5) 但要注意,A自然冷却时所测出的与试验中稳恒态时A散热是的热流速率是不同的。因为A在自然冷却时,它的所有外表面都暴漏在空气中,都可以 散热,而在实验中的稳恒态时,A的上表面是与B接触的,故上表面是不散热的。由传热定律:物体因空气对流而散热的热流速率与物体暴露空气中的表面积成正比。设A的上下底面直径为d,高为h,则有 (6)

食品中蛋白质的测定方法

实验二食品中蛋白质的测定方法 Method for determination of protein in foods (一)目的 掌握凯氏定氮法测定食品中蛋白质的原理、步骤,了解蛋白质系数在蛋白质含量计算中的应用。 (二)原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。其反应式如下: 2NH2((CH2)2COOH+13H2SO4→(NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH→2NH3+Na2SO4+2H2O 2NH3+4H3BO3→(NH4)2B4O7+5H2O (NH4)2B4O7+2HCl+5H2O→2NH4Cl+4H3BO3 (三)仪器与试剂 所用试剂均用不含氨的蒸馏水配制。 1.硫酸铜。 2.硫酸钾。 3.硫酸。 4.2%硼酸溶液。 5.混合指示液:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶液与1份0.1%次甲基蓝乙醇溶液临用时混合。 6.40%氢氧化钠溶液。 7.硫酸标准滴定溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准滴定溶液[c(HCl)=0.0500mol/L]。 8. 仪器 定氮蒸馏装置(如图1-2),微量滴定管。 铰肉机:篦孔径不超过4nm。 组织捣碎机。

粉碎机。 图1常量蒸馏装置 1—电炉;2—蒸汽发生瓶;3—大气夹;4—螺旋夹;5—加碱漏斗;6—凯氏 烧瓶; 7—氮素球;8—冷凝管;9—接收瓶;10—塑料管 图2微量蒸馏装置 1—电炉;2—蒸汽发生器;3—大气夹;4—螺旋夹;5—小玻璃杯;

(完整word版)分立器件热阻测试方法

分立器件热阻测试方法 一、瞬态热阻 瞬态热阻是指器件在脉冲工作状态下的热阻。脉冲作用下的瞬态热阻定义为最大结温升与耗散功率脉冲幅值之比。对功率晶体管通常以壳温作为温度参考点,其表达式为: θjC = ΔTj / PH = ( Tj - TC) / PH (1) 其中Tj为芯片结温;TC为壳温; PH 为施加的脉冲功率。瞬态热阻测量归结为对脉冲功耗PH、壳温TC及结温Tj的测量。显然,双极晶体管的结温Tj无法进行直接测量。为此,电学法利用发射结的正向压降VBE 与结温Tj 在相当宽的范围内(0~200 ℃)呈线性关系,通过对VBE 的测量间接地测量结温Tj。关系式为: ΔVBE (Tj) = M×ΔTj =VBE (Ta)-VBE(Tj) (2) 式中 M 为温敏系数,是与温度T 基本无关的负常数;VBE ( Ta ),VBE (Tj) 分别为加脉冲功率前、后的温敏参数值。由(1) 和(2) 式得到瞬态热阻与温敏参数ΔVBE关系表达式: θjC =ΔVBE (Tj)/PH (3) 公式(3) 为电学法测量瞬态热阻的基本原理:在一定条件下,器件从结到外壳的热阻θjC 和ΔVBE 成正比关系。图1 所示为单脉冲测量双极晶体管瞬态热阻时序。图中tH 为加热功率持续时间; tms 为温敏参数的测试时间;td 为加热脉冲切断后测量VBE ( Tj )的延迟时间。

图1 单脉冲测量瞬态热阻时序 二、晶体管热阻的测试电路原理 根据瞬态热阻测试原理,图2所示为国标和军标中关于分立器件热阻的测试电路原理图。每次测试的大致情况是:(1) 首先,开关S1和S2置于2,用于加热前被测器件DUT温敏参数(源漏SD之间)的电压VSD测量; (2) 然后,开关S1和S2置于1,对被测器件施加功率(功率设置为VDS×ID);(3)最后,断开功率(开关S1 和S2断开1置于2)后,在很短的延迟后,快速对温敏参数VSD进行测量。

建筑工程混凝土实验实验报告

姓名: 院校学号: 学习中心: _______________ 层次:专升本 专业:土木工程 实验一:混凝土实验 一、实验目的:1、熟悉混凝土的技术性质和成型养护方法;2、掌握砼拌合物工作性的测定和评定方法;3、通过检验砼的立方体抗压强度,掌握有关强度的评定方法。 二、配合比信息: 1 .基本设计指标 (1)设计强度等级C30 (2)设计砼坍落度30-50mm 2.原材料 (1)水泥:种类复合硅酸盐水泥强度等级C32.5 (2)砂子:种类河砂细度模数 2.6 (3)石子:种类碎石粒级5-31.5mm

(4)水:洁净的淡水或蒸馏水

3.配合比:(kg/m3) 三、实验内容: 第1部分:混凝土拌合物工作性的测定和评价 1、实验仪器、设备:电子秤、量筒、坍落度筒、拌铲、小铲、捣棒(直径16mm、长600mm, 端部呈半球形的捣棒)、拌合板、金属底板等。 2、实验数据及结果

第2部分:混凝土力学性能检验 1、实验仪器、设备:标准试模:150mm X 150mm X 150 mm 、振动台、压力试验机(测量精度为土1%,时间破坏荷载应大于压力机全量程的20%;且小于压力机全量程的80%。、压力试验机控制面板、标准养护室(温度20C±2C,相对湿度不低于95%。 2、实验数据及结果 四、实验结果分析与判定: (1、混凝土拌合物工作性是否满足设计要求,是如何判定的? 答:满足设计要求。实验要求混凝土拌合物的塌落度30—50mm,而此次实验结果中塌落度 为40mm, 符合要求;捣棒在已塌落的拌合物锥体侧面轻轻敲打,锥体逐渐下沉表示粘聚 性良好;塌落度筒提起后仅有少量稀浆从底部析出表示保水性良好。

热波法测热导率

热波法测热导率 实验仪器:(注明规格和型号) 本实验使用RB-1型热导率动态测量仪,包括主机、控制单元、记录单元三大部分。 1. 主机:棒状样品及热电偶阵列,脉动热源,冷却装置 2. 控制单元 3. 记录系统 实验目的: 1. 学习一种测量热导率的方法 2. 了解动态法测量热导率的特点和优点 3. 认识热波,加强对波动理论的认识

实验原理简述: 1. 导热微分方程的建立 热传导是指发生在固体内部或静止流体内部的热量交换过程 为使问题简化, 假设样品为棒状, 热量沿一维传播; 在棒上取微元 x→x+dx, 如图中所示. 根据Fourrier导热定律, 单位时间内流过某垂 直于热流方向, 面积为A的热量, 即热流为: 其中q为热流, 表示等温面上沿温度降低方向单位时间内传递的热 量; K为热导率, 表示单位时间内在单位长度上温度降低1K时, 单位 面积上通过的热量; 而在Δt时间内通过截面A流入小体积元dV=Adx的热量为: ,而小体积元升高温度ΔT所需要的热量为: 在无外界条件变化的情况下,以上两式应当相等,联立以上两 式,可以得到: ,并可以由此推知热流方程: 其中D=K/cρ为热扩散率。 该热流方程的解将给出材料上各点温度随时间的变化,解的具 体形式还将取决于边界条件

2. 方程求解 若使热端的温度围绕T0作简谐变化:T=T0+Tm*sinωt,而另一端无反射并且保持恒定温度T0,则可以得到原微分方程的解为并且由上式可以得到热波的波长,热波在棒中的传播速度为因而,在被测样品棒热端温度的周期变化角频率ω已知的情况下,只要测出热波的波速或波长,就可以计算出热扩散率D,进而计算出热导率K。

食品中氨基态氮的测定总结

任务三:食品中氨基态氮的测定(测定方法比较、样品原料比较) 【任务描述】 本任务主要为用两种方法(PH 计法、双指示剂甲醛法)同时测定实验室所提供的酱油样品中氨基态氮的含量。整个任务过程主要包含pH 计的较正、维护;然后分别用PH 计法、双指示剂甲醛法测定酱油氨基态氮的含量,并通过实验过程现象和结果来比较两种方法的优缺点。在本任务过程中还包含了果汁总酸的测定作为样品不同的对比,比较样品色泽对检测过程及方法选择的影响。 【本任务应掌握知识点及技能】 【任务相关参考资料的查阅(请按参考文献的标准方法记录)】 查阅文献 马富九,郑慧,汪雄鹰.对酱油中氨基酸态氮测定方法的探[J]. 宁波化工, 1999 ,2:40-42 指出目前习惯采用的甲醛法测定的不足之处,结果测定出来的是包括样品中可能存在的铵盐。作者建议把样品中本身存在的铵盐减去才是氨基酸态氮的准确值。 酱油中氨基氮测定方法的探讨[J],中国调味品.2000,6. 本文提出活性炭吸附酱油中色素 ,用百里酚蓝—酚酞混合指示剂指示终点 ,终点颜色变化敏锐、易于用肉眼判断终点 ,方法简便 ,重现性好 ,标准偏差 0 18,相对标准偏差 0 0 1,回收率高 ,平均回收率为98 4% 相关知识点 重点掌握技能 食品总酸的概念 氨基态氮的概念 氨基酸的两性性质 甲醛溶液在此反应中的作用 甲醛溶液的酸性 测定酱油中氨基态氮的意义 PH=7.0 PH=8.2 PH=9.2对应了食品中哪部分的酸 掌握pH 计的正确使用及维护方法 掌握控制PH 计手动档中液滴的大小所方法 掌握相关重要实验现象的记录方法 掌握如何使用已知的计算公式 掌握如何自己来书写计算公式 掌握指示剂的配制方法 掌握如何比较两种测定方法优缺点

建筑工程测量实验报告

建筑工程测量实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

江西理工大学 建筑工程测量 实验报告 专业建筑学 年级13级 班级 **** 学号 **** 姓名 **** 2015年月日 目录 第一部分实验项目内容及要求 第二部分实验报告 第三部分实验心得体会和建议

实验报告一 日期班组第六组学号 *号姓名**** ㈠完成下列填空 1.安置仪器后,转动三个脚螺旋使圆水准器气泡居中,转动 目镜对光螺旋看清十字丝,通过镜筒上方的缺口和准星瞄准水准尺,转动水平微动螺旋精确照准水准尺,转动物镜对光螺旋进行对光消除视差,转动微倾螺旋使符合水准器气泡居中,最后读数。 2.消除视差的步骤是转动目镜对光螺旋使十字丝清晰,再转动 物镜对光螺旋使水准尺的分划像清晰。 ㈡实验记录和计算 1.记录水准尺上读数填入表2-1-1中。 表2-1-1

2.计算(基于黑红面读数的平均值) ⑴ A点比C点低 m。 ⑵ B点比D点高 m。 ⑶ C点比E点高 m。 ⑷假设C点的高程H C= m,求A点、B点、C点、D点、E点的高程,即: A A= m,H B= m,H C= ,H D= m,H E= m,水准仪的视线高程 H I= m。 ㈢出图2-1-1中水准仪各部件的名称 图2-1-1 1)目镜对光螺旋; 2)望远镜; 3)水准管; 4)水平微动螺旋; 5)圆水准器; 6)校正螺旋; 7)水平制动螺旋; 8)准星; 9)脚螺旋; 10)微倾螺旋; 11)水平微动螺旋; 12)物镜对光螺旋; 13)缺口; 14)三脚架。 实验报告二水准测量 日期班组第六组学号 *号姓名 *** ㈠水准测量的外业记录及其高程计算 实验数据记入表2-2-1,进行高程的计算,并进行验算,以确保各项计算准确无误。

食品中蛋白质的含量测定

蛋白质的测定方法 测定食品中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2 份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml 或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。

社会实践实习报告:建筑工程测量实训报告

( 实习报告 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 社会实践实习报告:建筑工程测 量实训报告 Social practice practice report: construction engineering survey training report

社会实践实习报告:建筑工程测量实训报 告 社会实践实习报告:建筑工程测量实训报告 进入大学的第一次测量实训终于在大家的期盼中来了,因为大家都想抓紧实训的时间好好休息一下,可是,现实是如此的残酷! 开始老师让我们先从理论下手,介绍了水准仪和经纬仪的构成以及它的使用方法,我们都很认真的记载着老师所讲的重点,在学习中,我知道了测量人员是工程建设的开路先锋,是确保工程质量的“千里眼”,我为能成为测量人而感到自豪!老师还说了,让我们好好保护仪器!我们知道了:人在仪器在,人亡仪器也不能亡!可是让人疑惑的是老师总让我们做好“军训”的打算,有那么辛苦吗? 很快我就见到了传说中的水准仪,它长得真的很不咋的,可是在老师的介绍下,我知道了它是一个很有内涵的仪器!千万不能小

看它!但是还好的就是它的螺栓比较少,所以我还能接受!可是调节经纬仪的过程就比较复杂了,螺旋比较多,测量时仪器不停的转动,脑袋就晕了,对准后就不知螺旋在哪了,只能瞎摸。但有句话叫“熟能生巧”,这句话一点不假,在实训中,这个成语就得到验证,尽管开始是有点生疏,但经过一圈测量,想不熟也挺难的,而且速度也不断的提高。 下面就来谈谈具体的!我是第一批在校内测量经纬仪的!它的螺栓比水准仪多多了!弄得我头晕眼花的!没办法!我必须要坚持下去!第一个下午,我们全组组员就遇到大麻烦了!因为经纬仪的调整要三个地方全部调好,可是我们老是没办法让它们全都统一,老是这儿调好了,那儿的气泡又跑了!我们组是第八组,组员有6个,而别的组是5个人,所以我们要比别的组要更抓紧时间,可是当第九组已经测六个点时,我们组还压根没挪窝,可是越急越不知道该怎么办!后来在别的组来了一个同学,我们连忙请教他! 1.先要让三脚架的中心大约和地面的点进行对齐。 2.调节气泡让它处于圆水准器的中间部分。

建筑测量实训心得

建筑测量实训心得 This model paper was revised by the Standardization Office on December 10, 2020

实训心得 一周的测量实训结束了,风风雨雨中我们小组圆满的完成了本次实训这次实习的内容是对工程测量知识的实践化,实习的要求是让每个同学都对工程测量的实际操作能够达到基本掌握的程度。这次实习与以前的课堂实习相比,时间更加集中、内容更加广泛、程序更加系统,完全从控制测量生产实际出发,加深对书本知识的进一步理解、掌握与综合应用,是培养我们理论联系实际、独立工作能力、综合分析问题和解决问题的能力、组织管理能力等方面素质。也是一次具体的、生动的、全面的技术实践活动 通过这次为期一周的测量实训,我学会了更熟练的使用水准仪、经纬仪。很好的巩固理论教学知识,提高了实际操作技能,实训是我们教学中一个与理论相结合的桥梁,使得我们与所学专业相联系,增强我们对本专业的感性认识,收集处理信息的能力,获取新知识的能力,发现问题,分析问题和解决问题的能力,为以后到工作岗位上打下坚实的基础。 这次的实训目的主要是1.巩固课堂教学知识,加深对控制测量学的基本理论的理解,能够用有关理论指导作业实践,做到理论与实践相统一,提高分析问题、解决问题的能力,从而对控制测量学的基本内容得到一次实际应用,使所学知识进一步巩固、深化。2.通过实习,熟悉并掌握三、四等控制测量的作业程序及施测方法。3.掌握用测量平差理论处理控制测量成果的基本技能。4.通过完成控制测量实际任务的锻炼,提高独立从事测绘工作的计划、组织与管理能力,培养良好的咱也品质和职业道德。5.熟

Z25-动态法良导体热导率的测量zzz

119 实验二十五 动态法良导热体热导率的测量 物体热导率的稳态测量方法很多,动态法测量在国际上也很普遍,方法有多种。本实验采用的动态法测热导率,其特点是当热量在样品中传播时,给定适当边界条件,做到样品上各点温度均可随时间作简谐变化,而不需象稳态法那样必须保持恒定。利用这种简谐变化便可计算出样品材料的热导率。传热过程中产生的温度波也称热波其特性与机械波、电磁波一样。我们即可用波动理论进行分析研究,这种方法称为热波法。将难于测量的热学量转变为各点温度波形的相位差测量,从而可显著降低测量误差。 【实验目的】 1、认识热波、加深对波动理论的理解。 2、了解动态法的特点和优越性。 3、学习一种测量热导率的方法。 【实验原理】 设热量沿一维方向传播,若对于棒状样品,将其周边隔热, 取一小段样品进行分析如图1。根据热传导定律,单位时间内流过某垂直于传播方向面积A 的热量,即热流为 dx dT KA Q -= (1) 其中K 为待测材料的热导率,dx dT 是温度对坐标x 的梯度.将(1)式两边对坐标取微分有 dx dx T d KA dQ 22-= 根据能量守恒定律,任一时刻棒元的热平衡方程为 dx dx T d KA dQ dt dT Adx C 22-==ρ (2) 其中C ,ρ 分别为材料的比热容与密度,由此可得热流方程 22dx T d D dt dT = (3) 其中ρ C K D = , 称为热扩散系数。 式(3)的解将把各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度按简谐变化,即 t T T T m ωsin 0+= (4) 图1 棒元

织物热阻的测量方法

织物热阻的测量方法 热阻的物理意义是试样两面温差与垂直通过试样单位面积的热流量之比,这与电流通过导体的电阻相类似。热阻值越大代表织物的保暖性好。除了热阻之外,织物的传热指标还有导热系数和传热系数。与导热系数相比,热阻的测量受织物厚度的影响比较小。而且织物热阻的测量使得织物的热阻值可以参与热环境的热损耗等计算,因为热阻串联后其总热阻等于各部分热阻之和,若干热阻并联后的总热阻的倒数等于各部分热阻倒数之和。 一、热阻主要测量标准: 热阻的测量标准有很多:GB/T18398一2001,FZ/T01029一1993,GB/T24254一2009,GB/T11048一2008,15015831,ASTMF1291等等。根据中华人民共和国国家标准,服装热阻的测试方法—暖体假人法,其标准是GB/T18398一2001。此标准规定了测试服装热阻用的暖体假人系统的基本技术要求和暖体假人测定服装热阻的方法。 二、热阻现有测量方法: 1.管式织物保温仪法: 依据国标GB11048一89方法B,纺织品的热阻也可以使用管式织物保温仪来测定〔29〕。测试的时候将试样包覆在试样架上,盖上外罩,待加温管升温一段时间后定时降温散热。测试的过程采用了计算机控制和数据处理,测定后就能直接得出保温率、传热系数等各项指标。 有些保暖试验仪还有低温箱,这是为了模拟冬天寒冷的天气,低温箱的温度可以控制在一30℃左右,恒温箱的温度可达40℃,这个温度差能是热量迅速透过织物。要计算织物热传递性的指标首先要测量恒温箱保持一定温度是消耗的热量。 2.平板式织物保温仪法: 用平板仪来测量织物的热阻是国标GB11048一89的方法A所规定的方法。平板式保温仪由试验板,保护板,底板,有机玻璃罩,温度传感器和可开启的门组成一个恒定温差的环境。温度恒定在36℃,用隔热材料与周围环境隔离开来,用相同的隔离材料隔离开试验板和保护板,试验台三板之间没有温差,以通断电的方式保持恒温,保证热量只能向上传递而不会逆向传递。温度传感器是用来测定机箱的温度,一般维持标准大气温度即20℃左右。实验时将试样放置在试验板上,测试单位时间内维持试验板恒定温度所需的外界补充的热量。此热量也就是通过织物散失出去的热量,再由此计算出织物试样的保温率、传热系数和热阻。平板式保温仪如下图所示:其中热阻的计算公式如下: R=d/k 式中:R—热阻; d—材料厚度(m);

相关文档