文档库 最新最全的文档下载
当前位置:文档库 › 半导体

半导体

半导体
半导体

《电力电子技术》

姓名:唐之骅

班级:N机自10-4F

学号:24101900395

序号:15

半导体材料分类及应用

摘要:

二十一世纪,半导体材料及其应用已经成为衡量一个国家经济发展,科技进步和国防实力的重要标志,半导体产品广泛用于生活生产之中。本文对半导体材料的特性性能,分类应用,制备方法和发展方向作出简要解析。

关键词:半导体材料硅材料半导体半导体特性制备方法低维半导体材料化合物半导体材料

引言:

20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;70年代光纤通讯技术迅速发展并逐步形成高新技术产业,是人类进入信息时代;超晶格概念的提出及其半导体超晶格,量子阱材料的诞生,改变了光电器件的发展,纳米技术的发展与运用使得半导体进入纳米时代。然而半导体材料的价值仍在于它的光学,电学及其他各种特性,自硅出现在很长时间内,硅仍将是大规模集成电路的主要材料,如在军事领域中应用的抗辐射硅单体(NTD),高效太阳能电池用硅单体,红外CCD器件用硅单体的等。

随着半导体技术的发展和半导体材料的研究,微电子技术朝着高密度,高可靠性方向发展,各种各样新的半导体材料出现,而 GaAs和InP基材料等还是化合物半导体及器件的主要支柱材料。与此同时以硅材料为核心的当代微电子技术趋向于纳米级,到达这一尺寸后,一些列来自期间工作原理和工艺技术本身的物理限制以及制造成本大幅度提高等将成为难以克服的问题,为满足人类社会不断增长的对更大信息量的需求,近年来新的半导体材料制备方法出现,新的制备方法的研究与发展极有可能触发当前国际前沿研究热点,从而引起新的技术革命。中国半导体材料经过40多年的研究与发展,已具备了相当的基础,特别是在改革开放后,中国的半导体材料和半导体技术获得明显发展,除满足国内需求外,一些材料已经进入国际市场,然而综观中国半导体产业链的全局,上端的设计,制造业较弱,尤其凸显的瓶颈部位式设计与材料设备业,但是可以相信整个发展大路上市顺利的,中国半导体材料应该掌握自主知识产权,系统技术的开发人才,

规模化产业化生产,尽快在材料设备业发展。

1.半导体材料的概念与特性

当今,以半导体材料为芯片的各种产品已广泛进入人们的生活生产中,电视机,电子计算机,电子表等等,半导体材料为什么会拥有如此巨大的应用,我们需要从半导体材料的概念和特性开始了解。

半导体材料(semiconductormaterial)是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。在某些情况下,半导体具有导电的性质。首先,一般的半导体材料的电导率随温度的升高迅速增大,各种热敏电阻的开发就是利用了这个特性;其次,杂质掺入对半导体的性质起着决定性的作用,他们可使半导体的特性多样化,使得PN结形成,进而制作各种二极管和三极管;再次,半导体的电学性质回因光照引起变化,光敏电阻随之诞生;一些半导体具有较强的温差效应,可以利用它制作半导体制冷剂等;化合物半导体还具有超高速,低功耗,多功能,抗辐射等特性,在智能化,光纤通信等领域具有广泛运用;半导体基片可以实现原器件集中制作在一个芯片上,于是产生了各种规模的集成电路,正是由于半导体材料的各种各样的特性使得半导体材料拥有多种多样的用途,在科技发展和人们的生活中起到十分重要的作用。

2.半导体材料的分类与制备

2.1半导体材料的分类

半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。还包括固溶体半导体,超晶格半导体等,不同的分类方法有着不同的划分不同的半导体材料拥有着独自的特点,在他们使用的领域都起着重要的作用。

2.2半导体材料的几种制备技术

2.2.1分子束外延技术(MBE)

MBE技术实际上在超高真空条件下,对分支或原子数源和衬底温度加以精密控制的薄膜蒸发技术。MBE生长过程实际上是一个具有热力学和动力学同时并存,

相互关联的系统。只有在由分子数源产生的分子束不受碰撞地直接喷射到受热的洁净衬底表面,在表面上迁徙,吸附或通过反射或脱附过程离开表面,而在衬底表面与气态分子之间建立一个准平衡区,是晶体生长过程接近于热力学平衡条件,即使每一个结合到晶格中的原子能选择到一个自由能最低的格点位置,才能生长出高质量的材料。

2.2.2金属有机化学汽相淀积技术(MOCVD)

MOCVD使用氢气将金属有机化合物蒸汽和气态非金属氢化物经过开关网络送入反应式加热的衬底上,通过热分解反应而最终在其上生长出外延层的技术。

2.2.3半导体微结构材料生长和精细加工相结合的制备技术

利用MBE 或MOCVD等技术首先生长半导体微结构材料如AlGaAs/GaAs2DEG材料等,进而结合高空间分辨电子束曝光直写,湿法或干法刻蚀和聚焦离子束注入隔离制备纳米量子线和量子点,即常说的所谓自上而下的制备技术。

2.2.4应变自组装纳米量子点线结构生长技术

应变自组装纳米量子点线结构材料的制备是利用SK生长模式,它主要用于描述具有较大晶格失调而界面能较小的一支结构材料生长行为。

3.半导体材料的发展历程与应用

3.1半导体材料的一些研究前沿

近年来,基于低维半导体结构材料(即半导体量子结构材料)的量子力学效应(如量子尺寸效应,量子隧穿,量子干涉,库伦阻塞和非线性光学效应等)的纳米电子学,光电子学,量子计算和量子通信以及光计算,生物计算等。低维半导体包括二维晶格,量子阱材料,一维量子线和零维量子点材料。

3.2半导体材料的简略发展历程

半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。

3.3几种半导体材料的应用

3.3.1元素半导体材料

硅在当前的应用相当广泛,他不仅是半导体集成电路,半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上与案件都离不开硅材料。锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中与制作各种二极管,三极管等。而以锗制作的其他钱江如探测器,也具有着许多的优点,广泛的应用于多个领域。

3.3.2有机半导体材料

有机半导体材料具有热激活电导率,如萘蒽,聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物,有机半导体材料可分为有机物,聚合物和给体受体络合物三类。有机半导体芯片等产品的生产能力差,但是拥有加工处理方便,结实耐用,成本低廉,耐磨耐用等特性。

3.3.3非晶半导体材料

非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸汽或溅射的方法制备。在工业上,非晶半导体材料主要用于制备像传感器,太阳能电池薄膜晶体管等非晶体半导体器件。

3.3.4化合物半导体材料

化合物半导体材料种类繁多,按元素在周期表族来分类,分为三五族,二六族,四四族等。如今化合物半导体材料已经在太阳能电池,光电器件,超高速器件,微波等领域占据重要位置,且不同种类具有不同的应用。

总之,半导体材料的发展迅速,应用广泛,随着时间的推移和技术的发展,半导体材料的应用将更加重要和关键,半导体技术和半导体材料的发展也将走向更高端的市场。

参考文献:

[1]周立军半导体材料的发展及现状半导体情报第38卷第1期 2001年2月

[2]葛生燕刘辉半导体材料的探析与运用科技向导 2010年第5期(上)

[3]靳晓宇半导体材料的应用与发展研究大众商务 2009年6月(总第102期)

[4]王占国半导体材料研究的新进展半导体技术第27卷第3期 2002年3月

[5]suki 发展国产半导体任重道远半导体技术第30卷第2期 2005年2月

[6] 王占国纳米半导体材料的制备技术微纳电子技术 2002年第1期 2002年2月

[7]郝斌温凯浅谈化合物半导体材料电脑知识与技术第6卷第5期 2010年2月

[8]彭杰浅析几种半导体材料的应用与发展硅谷 2008年第10期 2008年

[9]梁俊吾中国半导体的创新发展之路中国工程院化工、冶金与材料工程学部第五届学术会议会议论文 2005年

半导体技术期末复习

半导体技术期末复习集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1.20世纪上半叶对半导体产业发展做出贡献的4种不同产业。P2 答:真空管电子学、无线电通信、机械制表机、固体物理 2.列出5个集成时代,指出每个时代的时间段,并给出每个时代每个芯片上的元件数。P4 小规模集成电路 20世纪60年代前期 2-50个芯片 中规模集成电路 20世纪60年代到70年代前期 20-5000个芯片 大规模集成电路 20世纪70年代前期到70年代后期 5000-100000个芯片 超大规模集成电路20世纪70年代后期到80年代后期个芯片 甚大规模集成电路 20世纪90年代后期至今大于1000000个芯片 3.列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势。P8 1、提高芯片性能:提高速度和降低功耗。1)、器件做的越小,芯片上的器件就越多,芯片的速度就提高;2)、使用材料,通过芯片表面的电路和器件来提高电信号的传输。 2、提高芯片可靠性 3、降低芯片成本 原因:根本原因是得益于CD尺存的减小;半导体产品市场的大幅度增长。 4.什么是芯片的关键尺寸?这种尺寸为何重要?P9 芯片的物理尺寸特征被称为特征尺寸,最小的特征尺寸称为关键尺寸。

将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片上制造某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易生产。例如,如果芯片上的最小尺寸是0.18um,那么这个尺寸就是CD。半导体产业使用“技术节点”这一术语描述在硅片制造中使用的可应用CD . 5.什么是摩尔定律?它预测了什么?这个定律正确吗?P10 1964年摩尔预言在一块芯片上的晶体管数大约每隔一年翻一番(后来在1975年被修正为预计每18个月翻一番)。摩尔定律惊人的准确! 6.以B掺入Si中为例,说明什么是受主杂质、受主杂质电离过程和P型半导体。 在硅晶体中掺入硼,硼是Ⅲ族元素,硼替代原有硅原子位置,由于Ⅲ族元素最外层只有3个价电子,与周围硅原子产生共价键时,产生一个空穴,而本身接受一个电子称为带负电的离子,通常我们称这种杂质为受主杂质。这种半导体主要依靠受主提供的空穴导电,这种依靠空穴导电的半导体称为p型半导体。 7.以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和N 型半导体。 在As中掺入Ge , Ge 是V族元素杂质, Ge杂质会替代原来硅原子的位置,与周围的硅原子形成共价键,多余的一个电子便成了能够导电的自由电子,本身变成带正电的离子,通常我们称这种杂质为施主杂质。这种半导体依靠施主提供的电子导电,这种依靠电子导电的半导体称为n型半导体。

中国半导体产业在创新中跃升

中国电子报/2012年/10月/19日/第003版 十强半导体企业暨IC CHINA 十周年特刊 中国半导体产业在创新中跃升 中国半导体行业协会执行副理事长徐小田 集成电路产业作为国民经济和社会发展的战略性、基础性产业,在推动经济发展、社会进步和保障国家安全等方面日益发挥重要的核心基础作用,拥有强大的集成电路产业和技术,是迈向创新型国家的重要标志。 中国半导体行业协会主办的中国国际半导体博览会暨高峰论坛(IC China)自2003年起已经10年了,10年来中国半导体产业得到了快速发展。 产业迅猛增长 1.产业规模持续扩大 我国半导体产业规模从2002年的561.6亿元猛增到2011年的2814.31亿元,扩大4倍多,年均增长率达19.61%,远高于同期年均增长8.75%的世界水平;在全球半导体产业中的比重也从2002年的4.81%上升到2011年的14.5%;占国内半导体市场份额从2002年的27%上升到2011年的30.2%;半导体产业的产量从2002年的689.7亿只猛增到2011年的4303.9亿只,产量扩大5.24倍,年均增长率达22.56%。其中:分立器件产量规模从2002年的593.39亿只猛增到2011年的3584.3亿只,产量扩大5.04倍,年均增长率达22.12%。 集成电路产业规模从2002年的268.4亿元猛增到2011年的1572.2亿元,产业规模扩大4.86倍,年均增长率达21.70%,占国内集成电路市场份额从2002年的14.60%上升到2011年的19.49%。 集成电路产量从2002年的96.3亿只猛增到2011年的719.6亿只,产量扩大6.47倍,年均增长率达25.04%。 2.集成电路产业结构更加均衡合理 从2002年到2011年,我国集成电路产业结构不断进行调整,设计、制造、封装测试三业协调均衡合理发展。 设计业销售额从2002年的21.6亿元猛增到2011年的473.74亿元,扩大20.93倍,年均增长率达40.93%,占全行业份额也由8.05%上升为27.5%。我国集成电路设计业占全球集成电路设计业的比重提升至13.89%,已居世界第三位。 制造业销售额从2002年的33.5亿元猛增到2011年的486.9亿元,扩大13.51倍,年均增长率达34.61%,占全行业份额也由12.5%上升为30.97%。 封装测试业销售额从2002年的213.25亿元增长到2011年的611.56亿元,扩大1.87倍,年均增长率达12.42%,占全行业份额也由79.5%的一头独大状态调整为38.9%。 3.已成为世界最大半导体市场 2011年我国半导体市场规模达9238.8亿元,是2002年的4倍多,占国际市场份额从2002年的17.80%上升为47.75%,成为世界最大的半导体市场。集成电路市场规模从2002年的1840.5亿元猛增到2011年的8065.6亿元,扩大3.38倍,年均增长率为17.84%,占国际集成电路市场份额从2002年的18.4%上升到2011年的50.5%。 4.国际贸易迅速扩大 我国半导体进出口总额从2002年的357.40亿美元猛增到2011年的2537.7亿美元,贸易规模扩大6.10倍,年均增长率24.33%;进出口数量从2002年的357.40亿只猛增到2011年的9345.7亿只。 5.产业链各环节技术水平有很大提升

半导体基础知识

半导体基础知识(详细篇) 2.1.1概念 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。 1. 导体:容易导电的物体。如:铁、铜等 2. 绝缘体:几乎不导电的物体。如:橡胶等 3. 半导体:半导体是导电性能介于导体和半导体之间的物体。在一定条件下可 导电。 半导体的电阻率为10-3?109 cm 典型的半导体有硅 Si 和锗Ge 以 及砷化傢GaAs 等。 半导体特点: 1) 在外界能源的作用下,导电性能显著变化。光敏元件、热敏元件属于此 类。 2) 在纯净半导体内掺入杂质,导电性能显著增加。二极管、三极管属于此 类。 2.1.2本征半导体 1. 本征半导体一一化学成分纯净的半导体。制造半导体器件的半导体材料的纯度 要达到99.9999999%常称为“九个9”。它在物理结构上呈单晶体形态。电子 技术中用的最多的是硅和锗。 硅和锗都是4价元素,它们的外层电子都是4个。其简化原子结构模型如下 图: 外层电子受原子核的束缚力最 小, 成为价电子。物质的性质是由价 电子决 定的。 2. 本征半导体的共价键结构 本征晶体中各原子之间靠得很近, 相邻原子的吸引,分别与周围的四个原子 的价电子形成共价键。 外层电子受原子核的束缚力最小, 的。 使原分属于各原子的四个价电子同时受到 共价键中的价电

3.共价键 共价键上的两个电子是由相邻原子各用 一个电子组成的,这两个电子被成为束缚电子。 束缚电子同时受两个原子的约束,如果没有足 够的能量,不易脱离轨道。因此,在绝对温度 T=0° K (-273° C )时,由于共价键中的电子 被束缚着,本征半导体中没有自由电子,不导 电。只有在激发下,本征半导体才能导电 4. 电子与空穴 当导体处于热力学温度0°K 时,导体中没有自由电子。当温度升高或受到 光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电, 成为自由电子。这一现象称为本征激发,也称热激发。 自由电子产生的同时,在其原来的共价键中就出现了一个空位, 原子的电中 性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性 的这个空位为空穴。 电子与空穴的复合 可见因热激发而出现的自由电子和空穴是同时成对出现的, 称为电子空穴对。 游离的部分自由电子也可能回到空穴中去, 称为复合,如图所示。本征激发和复 合在一定温并为它们所束缚,在空间形成排列有序的晶体。如下图所 硅晶体的空间排列与共价键结构平面示意图 空A * 电 子为这些原子所共有,

半导体封装制程简介

(Die Saw) 晶片切割之目的乃是要將前製程加工完成的晶圓上一顆顆之芯片(Die)切割分離。首先要在晶圓背面貼上蓝膜(blue tape)並置於鋼 製的圆环上,此一動作叫晶圓粘片(wafer mount),如圖一,而後再 送至晶片切割機上進行切割。切割完後,一顆顆之芯片井然有序的排 列在膠帶上,如圖二、三,同時由於框架之支撐可避免蓝膜皺摺而使 芯片互相碰撞,而圆环撐住膠帶以便於搬運。 圖一 圖二

(Die Bond) 粘晶(装片)的目的乃是將一顆顆分離的芯片放置在导线框架(lead frame)上並用銀浆(epoxy )粘着固定。引线框架是提供芯片一個粘着的位置+ (芯片座die pad),並預設有可延伸IC芯片電路的延伸腳(分為內 引腳及外引腳inner lead/outer lead)一個引线框架上依不同的設計可以有 數個芯片座,這數個芯片座通常排成一列,亦有成矩陣式的多列排法 。引线框架經傳輸至定位後,首先要在芯片座預定粘着芯片的位置上点

上銀浆(此一動作稱為点浆),然後移至下一位置將芯片置放其上。 而經過切割的晶圓上的芯片則由焊臂一顆一顆地置放在已点浆的晶 粒座上。装片完後的引线框架再由传输设备送至料盒(magazine) 。装片后的成品如圖所示。 引线框架装片成品 胶的烧结 烧结的目的是让芯片与引线框晶粒座很好的结合固定,胶可分为银浆(导电胶)和绝缘胶两种,根据不同芯片的性能要求使用不同的胶,通常导电胶在200度烤箱烘烤两小时;绝缘胶在150度烤箱烘烤两个半小时。 (Wire Bond) 焊线的目的是將芯片上的焊点以极细的金或铜线(18~50um)連接到引线框架上的內引腳,藉而將IC芯片的電路訊號傳輸到外界。當

半导体战略信息产业的未来发展趋势(精)

半导体战略信息产业的未来发展趋势 未来中国半导体产业将处于重大战略机遇期。全球半导体产业正在进行产业转移,发达国家在向高端产业链转移的同时,开始将芯片制造业向新兴国家转移。目前,中国半导体产业已经基本具备了迎接全球半导体产业转移的客观条件,总体看来我国半导体产业未来的发展趋势和主要创新板块依然集中在太阳能光伏产业、节能LED照明产业、半导体集成电路产业和光通信芯片产业等几大行业,具体分析如下。 一、太阳能光伏产业 中国太阳能电池产业近年来高速发展,承担了全球近一半的产能,产品主要销往欧洲国家。2009年世界太阳电池总产量为9340MW,中国太阳能电池产量为4382MW,占全球产量的46.92%,居世界第一,但95%以上产品出口国外。太阳能光伏整体产业链各个环节表现都较为突出。2009年,全国的多晶硅产量已达到1.8万~2万吨,2009年,中国太阳能光伏组件产量为2500MW左右,占全球的3成左右。2009年,太阳能光伏发电安装量为160MW,超过过去几十年累计安装量的总和。2008年之前,太阳能上游的多晶硅产业的提纯核心技术主要掌握在国外七大厂商手中。美国的Hemlock、挪威的REC、美国的MEMC、德国的Wacker,以及日本的Tokuyama、Mitsubishi鄄Material和SumitomoTitanium,他们垄断了全球的多晶硅料供应,获得了太阳能产业链中最丰厚的利润。 中国《新兴能源产业发展规划》2011~2020年指出,中国将对能源产业累计直接增加投资5万亿元。根据其具体细分,除核电和水电之外,可再生能源投资将达到2万~3万亿元,其中风电将占约1.5万亿元,太阳能投资则达到2000亿~3000亿元。《新兴能源产业发展规划》初步计划到2020年中国的水电装机容量达到3.8亿千瓦,风电装机1.5亿千瓦,核电装机大约7000~8000万千瓦,生物质发电3000万千瓦,太阳能发电装机容量达到约2000万千瓦。相比2007年颁布

半导体基本知识

一、半导体基本知识 太阳电池是用半导体材料硅做成的。容易导电的是导体,不易导电的是绝缘体,即不像导体那样容易导电又不像绝缘体那样不容易导电的物体叫半导体,譬如:锗、硅、砷化缘等。 世界上的物体都是由原子构成的,从原子排列的形式来看,可以把物体分成2大类,晶体和非晶体。晶体通常都有特殊的外形,它内部的原子按照一定的规律整齐地排列着;非晶体内部原子排列乱七八糟,没有规则;大多数半导体都是晶体。半导体材料硅是原子共价晶体,在晶体中,相邻原子之间是以共用电子结合起来的。硅是第四族元素,硅原子的电子层结构为2、8、4,它的最外层的四个电子是价电子。因此每个硅原子又分别与相邻的四个原子形成四个共价键,每个共价键都是相邻的两个原子分别提供一个价电子所组成的。 如果硅晶体纯度很高,不含别的杂质元素,而且晶体结构很完美,没有缺陷,这种半导体叫本征半导体,而且是单晶体。而多晶体是由许多小晶粒聚合起来组成的,每一晶体又由许多原子构成。原子在每一晶粒中作有规则的整齐排列,各个晶粒中原子的排列方式都是相同的。但在一块晶体中,各个晶粒的取向(方向)彼此不同,晶粒与晶粒之间并没有按照一定的规则排列,所以总的来看,原子的排列是杂乱无章的,这样的晶体,我们叫它多晶体。 半导体有很特别的性质:导电能力在不同的情况下会有非常大的差别。光照、温度变化、适当掺杂都会使半导体的导电能力显著增强,尤其利用掺杂的方法可以制造出五花八门的半导体器件。但掺杂是有选择的,只有加入一定种类和数量的杂质才能符合我们的要求。 我们重点看一下硼和磷这两种杂质元素。硼是第三族主族元素,硼原子的电子层结构为2、3,由于硼原子的最外电子层只有三个电子,比硅原子缺少一个最外层电子,因此当硼原子的三个最外层价电子与周围最邻近的三个硅原子的价电子结合成共价键时,在与第四个最邻近的硅原子方向留下一个空位。这个空位叫空穴,它可以接受从邻近硅原子上跳来的电子,形成电子的流动,参与导电。硼原子在硅晶体中起着接受电子的作用,所以叫硼原子为受主型杂质。掺有受主型杂质的半导体,其导电率主要是由空穴决定的,这种半导体又叫空穴型或P型半导体。 磷是周期表中第五族元素,磷原子的电子层结构为2、8、5,它的最外层的五个电子是价电子。由于磷原子比硅原子多一个最外层电子,因此当磷原子的四个价电子与周围最邻近的四个硅原子的价电子形成共价键后,还剩余一个价电子。这个价电子很容易成为晶体中的自由电子参与导电。磷原子在硅晶体中起施放电子的作用,所以叫磷原子为施主型杂质。掺有施主型杂质的半导体,其导电率主要是由电子决定的,这种半导体又叫电子型半导体或n型半导体。 二、扩散基本知识 我们知道,太阳能电池的心脏是一个PN结。我们需要强调指出,PN结是不能简单地用两

半导体封装简介(精)

半导体封装简介: 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋和成型(Trim&Form)、电镀(Plating)以及打印等工艺。典型的封装工艺流程为:划片装片键合塑封去飞边电镀打印切筋和成型外观检查成品测试包装出货。 各种半导体封装形式的特点和优点: 一、DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP 结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

国际半导体技术发展路线图

国际半导体技术发展路线图 为了回答如何保持半导体产业按照摩尔定律继续发展的问题,国际上主要的半导体协会共同组织制定了国际半导体技术发展路线图 ITRS《International technology roadmap for semiconductors》它为半导体产业界提供了被工业界广泛认同的;对未来十年内研发需求的最佳预测以及可能的解决方案,它对整个半导体茶叶需要开发什么样的技术起到了一个导向作用。 国际半导体技术发展路线图 一、半导体产业生态环境 半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。 到了80年代,系统规范牢牢地掌握在系统集成商手中。存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。 在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成

电路(IC)制造商中。他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。 21世纪的前十年,半导体行业全新的生态环境已经形成: 一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。 二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计。 三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。在此条件下,系统集成商再次控制了系统设计和产品集成。 四是互联网应用和移动智能终端的崛起,带动了光纤电缆的广泛部署和多种无线技术的发展,实现前所未有的全球移动互联。这个生态系统创造了“物联网”这一新兴的市场,而创新的产品制造商、电信公司、数据和信息分销商以及内容提供商正在争夺该市场的主导权。

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

信息技术电子与微电子技术

题目: 领域及技术类别: 是否公开:公开不公开 注:技术介绍(技术背景、技术现状、技术对比)、考量指标(预期效益、实现预期效益的可能性、研发内容特点与可能性、研发基础和条件)等方面进行论述,要求5000 字以内。 技术介绍(技术背景、技术现状、技术比对) 考量指标(预期效益、实现预期效益的可能性、研发内容特点与可能性、研发基础和条件)关键词:(5个) 注:最多上传3个图片,每个图片不能大于80kb。 领域及技术类别 信息技术:电子与微电子技术 通信技术 计算机科学与技术 信息安全技术 其他信息技术 生物和医药技术:功能基因与生物芯片技术 生物信息技术 纳米生物技术 工业生物技术 医药生物技术 现代医学技术 医疗器械与设备技术 化学药技术 中医与中药技术 生物资源与安全技术 生物孵化器技术 其它生物和医药技术 材料技术:金属材料技术 无机非金属材料技术 高分子与化工材料技术 复合材料技术

特种功能材料技术 纳米材料技术 光电信息功能材料技术 微电子材料技术 其它材料技术 先进制造技术:设计技术 制造工艺技术 测量技术 控制技术 集成技术 企业管理技术 制造业服务技术 其它先进制造技术 能源技术:煤炭技术 电力技术 太阳能技术 风能技术 生物质能技术 海洋能技术 地热能技术 氢能技术 核能技术 节能技术 其它能源技术 资源环境技术:矿产资源勘探开发利用技术 油气勘探开发利用技术 水资源综合开发利用技术 环境污染防治技术 环境监测及评价技术 生态系统恢复与保护技术 清洁生产与循环经济技术 其它资源环境技术 海洋技术:海洋环境监测技术 海洋资源探查技术 海洋资源开发技术 船舶与海洋工程技术 海洋环境保护技术 其它海洋技术 现代农业技术:农业生物技术 农业信息技术 农业先进装备技术 农业资源节约技术 现代食品加工技术 现代海水养殖技术

先进半导体设备制造技术及趋势_图文(精)

先进半导体设备制造技术及趋势 张云王志越 中国电子科技集团公司第四十五研究所 摘要:本文首先介绍了国内外半导体设备市场,认为市场虽有起伏,但前景良好。从晶圆处理和封装的典型设备入手介绍了当前最先进半导体设备技术,之后总结出半导体设备技术发展的四大趋势

。 1国内外半导体设备市场 根据SEMI的研究,2006年全球半导体设备市场为388.1亿美元,较2005年增长18%,主要原因是各地区投资皆有一定程度的成长,少则20%(日本),多则229%(中国大陆),整体设备订单成长率则较2005年成长51%,比2005年底预测值多出28.4亿美元。 SEMI在SEMICONJapan展会上发布了年终版半导体资本设备共识预测(SEMICapitalEquipmentCon-sensusForecast),预计2007年全球半导体制造设备市场销售增长减缓为3%,达到416.8亿美元;2008年全球半导体设备市场将出现衰退,下滑1.5%;而到2009年及2010年恢 长6%达到306.1亿美元,封装设备领域增长11%至27.2亿美元,而测试设备领域预计将出现15%下滑 了12.4%。表二为按地区划分的市场销售额,包括往年的实际销售额和未来的预测。

虽然半导体设备市场有一定的起伏,但是很明显,市场的前景非常好,总体一直是稳中有升。中国大陆2006年半导体设备销售额超过23亿美元,比2005年增长了74.4%,中国大陆的市场销售额一直呈上升趋势,国内半导体设备具有非常诱人的市场前景。这和中国半导体产业的快速发展有着直接关系,中国的市场也越来越引起国际半导体设备厂商的重视,投资的力度会越来越大,对我们国内半 复增长,预计实现高个位数增速,至54.7亿美元。表一为按设备类型2010年销售额达到479.9亿美元。 SEMI总裁兼CEOStanleyT.Myers表示,2007年半导体制造、封 划分的市场销售额,包括往年的实际销售额和未来的预测。 从区域市场分析,北美、日本及 下降装及测试设备销售情况略高于去年,欧洲半导体设备市场出现下滑,成为业界历史上销售额第二高的一年。SEMI成员将继续推进半导体制造设备的强势增长,预计到2010年市场销售额达到480亿美元。 从设备类型分析,占有最大份额的晶圆处理设备领域2007年将增 幅度分别为8.9%、3.1%及11.7%;而台湾和中国大陆销售增长幅度最大,分别为28.9%和23.8%,台湾地区销售额达到94.2亿美元,有史以来第二次超过日本;南韩市场略微增长5.2%,其余地区市场也下降 40半导体行业

安森美半导体创新PFC控制方案

安森美半导体创新PFC控制方案 如今,电源设计人员面临着诸多挑战,既要达到更高的能效目标,又 要满足加快产品上市的要求。就实现更高能效目标而言,电源设计不仅要顾及 满载能效,而且需要评估10%、20%、50%及75%负载等条件下的能效。电源 设计人员还要面对其它不少挑战如新电源可能更易于滋生可听噪声、须增强可 靠性及安全性及加快上市进程并缩短安全认证时间等。 应对高能效挑战的安森美半导体创新PFC 方案 安森美半导体身为全球领先的高性能、高能效硅方案供应商,持续开发 创新技术及产品,为市场提供丰富的电源半导体方案,其中就包括强大的PFC 产品阵容及后续产品(图1),使电源设计人员能够不断地开发高能效的电源方案。 其中,安森美半导体最新推出的NCP1611 PFC 控制器采用创新的电流控制频 率反走(Current Controlled Frequency Foldback,CCFF)方法驱动PFC 升压级,功率因数接近1,高驱动能力为-500 mA / +800 mA,Vcc 范围从9.5 V 到35 V, 具有非闭锁和过压保护、电压检测、软起动和过流限制等功能。 图1:安森美半导体的PFC 产品阵容。NCP1611 有源功率因数校正(PFC)控制器适用于AC-DC 适配器、平板电视及照明镇流器及其它中功率离线应用的 升压预转换器。该控制器采用正待批专利的CCFF 架构。在这种模式下,当电 感电流超过可编程值时,电路运行在CrM 模式下。当电流低于这个预设水平, 电流为零(null)时,NCP1611 可线性降低频率至大约20 kHz。CCFF 可最大限度 提高额定负载和轻负载效率。特别是,可将待机损耗减少到最低限度。该控制 器具有一系列强大的保护功能,可妥善处理各种电源工作和故障条件。 NCP1611 拓展了传统CrM PFC 控制器的优势。图2 是NCP1611 典型应用电路图。

半导体封装形式介绍

捷伦电源,赢取iPad2Samtec连接器完整的信号来源每天新产品时刻新体验完整的15A开关模式电源 摘要:半导体器件有许多封装型式,从DIP、SOP QFP PGA BGA到CSP再到SIP,技术 指标一代比一代先进,这些都是前人根据当时的组装技术和市场需求而研制的。总体说来,它大概有三次重大的革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装, 极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩正封装的出现, 它不但满足了市场高引脚的需求,而且大大地改善了半导体器件的性能;晶片级封装、系统 封装、芯片级封装是现在第三次革新的产物,其目的就是将封装减到最小。每一种封装都有 其独特的地方,即其优点和不足之处,而所用的封装材料,封装设备,封装技术根据其需要 而有所不同。驱动半导体封装形式不断发展的动力是其价格和性能。 关键词:半导体;芯片级封装;系统封装;晶片级封装 中图分类号:TN305. 94文献标识码:C文章编号:1004-4507(2005)05-0014-08 1半导体器件封装概述 电子产品是由半导体器件(集成电路和分立器件)、印刷线路板、导线、整机框架、外壳及显示等部分组成,其中集成电路是用来处理和控制信号,分立器件通常是信号放大,印刷线路 板和导线是用来连接信号,整机框架外壳是起支撑和保护作用,显示部分是作为与人沟通的 接口。所以说半导体器件是电子产品的主要和重要组成部分,在电子工业有“工业之米”的 美称。 我国在上世纪60年代自行研制和生产了第一台计算机,其占用面积大约为100 m2以上,现 在的便携式计算机只有书包大小,而将来的计算机可能只与钢笔一样大小或更小。计算机体 积的这种迅速缩小而其功能越来越强大就是半导体科技发展的一个很好的佐证,其功劳主要 归结于:⑴半导体芯片集成度的大幅度提高和晶圆制造(Wafer fabrication) 中光刻精度的 提高,使得芯片的功能日益强大而尺寸反而更小;(2)半导体封装技术的提高从而大大地提 高了印刷线路板上集成电路的密集度,使得电子产品的体积大幅度地降低。 半导体组装技术(Assembly technology )的提高主要体现在它的圭寸装型式(Package)不断发展。通常所指的组装(Assembly)可定义为:利用膜技术及微细连接技术将半导体芯片(Chip) 和框架(LeadFrame)或基板(Sulbstrate) 或塑料薄片(Film)或印刷线路板中的导体部分连接 以便引出接线引脚,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。它具

对半导体技术、微电子技术、集成电路技术三者的浅略认识

对半导体技术、微电子技术、集成电路技术三者的浅略认识 一、半导体技术、微电子技术、集成电路技术三者的联系与区别 我们首先从三者的概念或定义上来分别了解一下这三种技术。 半导体技术就是以半导体为材料,制作成组件及集成电路的技术。在电子信息方面,绝大多数的电子组件都是以硅为基材做成的,因此电子产业又称为半导体产业。半导体技术最大的应用便是集成电路,它们被用来发挥各式各样的控制功能,犹如人体中的大脑与神经。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术,是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术,为微电子学中的各项工艺技术的总和。 集成电路技术,在电子学中是一种把电路小型化的技术。采用一定的工艺,把一个电路中所需的各种电子元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。(以上三者概念均来源于网络)这般看来,三者概念上互相交叉,却也略有区别。依我这个初次接触这三个名词、对电子信息几乎一窍不通的大一新生来看,半导体技术是其他二者技术的基础,因为半导体是承载整个电子信息的基石,不管是微电子还是集成电路,便是以半导体为材料才可以建造、发展。而微电子技术,个人感觉比较广泛,甚至集成电路技术可以包含在微电子技术里。除此之外,诸如小型元件,如纳米级电子元件制造技术,都可以归为微电子技术。而集成电路技术概念上比较狭窄,单单只把电路小型化、集成化技术,上面列举的小型元件制造,便不能归为集成电路技术,但可以归为微电子技术。以上便是鄙人对三者概念上、应用上联系与区别的区区之见,如有错误之处还望谅解。 二、对集成电路技术的详细介绍 首先我们了解一下什么是集成电路。 集成电路是一种微型电子器件或部件。人们采用一定的工艺,把一个电路中所需的各种元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。当今半导体工业大多数应用的是基于硅的集成电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。 而简单来说,集成电路技术便是制造集成电路的技术方法。它涉及半导体器件物理、微电子学、电子学、无线电、光学以及信息学等学科领域的知识。 从产业分工角度,集成电路技术可以分为集成电路加工技术、集成电路测试封装技术以及集成电路设计技术等几方面。 1. 集成电路加工技术 集成电路加工技术主要是通过物理或化学手段在硅材料上生成半导体器件(比如场效应管)以及器件之间的物理互连。这些器件以及器件之间的互连构成的电路功能要符合系统设计要求。集成电路加工技术涉及的知识包括半导体器件物理、精密仪器、光学等领域,具体应用在工艺流程中,包括注入、掺杂、器件模型、工艺偏差模型、成品率分析以及工艺过程设计等。在近十几年的时间里,集成电路加工工艺水平一直按照摩尔(Moore)定律在快速发展。 2.集成电路测试、封装技术 集成电路测试包括完成在硅基上产生符合功能要求的电路后对裸片硅的功能和性能的

应用材料推出8款半导体制造创新产品

应用材料推出8款半导体制造创新产品 近日,在美国旧金山举行的2011年semicon west半导体设备暨材料展上,应用材料公司展示了其用于生产未来几世代微芯片的技术创新成果。在过去的几周内,应用材料公司已经推出八款产品,致力于帮助客户在芯片设计日趋复杂的新世代解决来自芯片制造方面的主要挑战。 应用材料公司推出的八款新产品旨在挖掘这些高性能器件从互连布线到最先进的晶体管栅极结构的所有潜能。这些产品分别是:Reflexion? GT W CMP、Vantage? Vulcan? RTP、Centura? DPN HD、Endura? Versa XLR? W PVD、Endura HAR Cobalt PVD、Centura Integrated Gate Stack?、Producer? Black Diamond? 3和Producer Nanocure? 3。 Applied Centura? Integrated Gate Stack?系统用于制造22纳米技术节点逻辑芯片的关键栅极介质结构,是唯一能够在单一真空环境中处理整个高介电常数多层叠膜的系统,可保护其关键薄膜界面的完整性。对于最先进的微处理器和图形芯片而言,这种能力对于最大限度提高晶体管速度、减少耗电量至关重要。 随着逻辑芯片逐步走向22纳米及以下技术节点,晶体管的核心栅极介 质薄膜叠层正日益变薄,使其必须采用原子级制造技术制造。为了应对这一挑战,Integrated Gate Stack系统采用了应用材料公司先进的原子层沉积(ALD)技术,制造厚度小于2纳米(约为人类头发宽度的十万分之一)的超薄铪基介质层每次沉积单层薄膜的一部分,从而获得整片硅片无与伦比的一致性。 更重要的是,随着这些薄膜日益变薄,相邻介质层之间的界面也变得更加重要。全新的Integrated Gate Stack系统可以完全在真空条件下制造整个栅极介质叠层通常涉及4个工艺步骤。这一独特的方法可防止界面因接触外界空气

你该知道的微电子技术知识

你该知道的微电子技术知识 二大爷公司笨笨收集 微电子技术是十九世纪末,二十世纪初开始发展起来的以半导体集成电路为核心的高新电子技术,它在二十世纪迅速发展,成为近代科技的一门重要学科。微电子技术作为电子信息产业的基础和心脏,对航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的发展产生直接而深远的影响。尤其是微电子技术是军用高技术的核心和基础。军用高技术的迅猛发展,武器装备的巨大变革,在某种意义来说就是微电子技术迅猛发展和广泛应用的结果。微电子技术的渗透性最强,对国民经济和现代科学技术发展起着巨大的推动作用,其发展水平和发展规模已成为衡量一个国家军事、经济实力和技术进步的重要标志。正因为如此、世界各国都把微电子技术作为最要害的技术列在高技术的首位,使其成为争夺技术优势的最重要的领域。 一、基本概念 简介:微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。它包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,是微电子学中的各项工艺技术的总和。微电子技术是在电子电路和系统的超小型化和微型化过程中逐渐形成和发展起来的,其核心是集成电路,即通过一定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互联,采用微细加工工艺,集成在一块半导体单晶片(如硅和砷化镓)上,并封装在一个外壳内,执行特定电路或系统功能。与传统电子技术相比,其主要特征是器件和电路的微小型化。它把电路系统设计和制造工艺精密结合起来,适合进行大规模的批量生产,因而成本低,可靠性高。

图1 微电子技术中元器件发展演变 特点:微电子技术当前发展的一个鲜明特点就是:系统级芯片(System On Chip,简称SOC)概念的出现。在集成电路(IC)发展初期,电路都从器件的物理版图设计入手,后来出现了IC单元库,使用IC设计从器件级进入到逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与IC设计,极大的推动了IC产业的发展。由于IC设计与工艺技术水平不断提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个IC芯片上的系统级芯片的概念。其进一步发展,可以将各种物理的、化学的和生物的敏感器(执行信息获取功能)和执行器与信息处理系统集成在一起,从而完成从信息获取、处理、存储、传输到执行的系统功能,这是一个更广义上的系统集成芯片。很多研究表明,与由IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。微电子技术从IC 向SOC转变不仅是一种概念上的突破,同时也是信息技术发展的必然结果。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。 微电子技术的另一个显着特点就是其强大的生命力,它源于可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其他学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点。作为与微电子技术成功结合的典型例子便是MEMS(微电子机械系统或称微机电系统)技术和生物芯片等。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。 应用领域:

微电子技术的进展与挑战

微电子技术的进展与挑战3 教授、博导 林鸿溢 (北京理工大学电子工程系,北京100081) 教 授 李映雪 (北京大学微电子研究所,北京100871) 摘 要:微电子技术自巴丁、布拉顿和肖克莱发明晶体管至今,经历了半个世纪的发展,已经取得巨大进步,成为人类社会众多领域的关键技术,从而有力地推动,并将继续推动着人类社会全面进入信息时代。 关键词: 微电子技术 集成电路 纳米电子学 微机电系统 单芯片系统 一项伟大的发明诞生在1947年12月23日。这一天Bell实验室科学家J.Bardeen和W.Brattanin在实验中观测到点接触型锗晶体管功率放大现象,标志着人类首次成功地发明了一种新型的固体电子器件。仅仅一个月后,1948年1月,该研究组组长W.Schokley就提出了结型晶体管理论—PN结理论。1951年锗结型晶体管研制成功。从此拉开了人类社会步入电子时代的序幕,从而开创了微电子技术发展进步的历程。为表彰三位科学家的重大贡献,他们共同获得1956年诺贝尔物理学奖。今天,事实雄辩地表明,微电子技术的加速发展对人类的生产方式和生活模式产生了并将继续产生深刻的影响。微电子技术所引起的世界性的技术革命比历史上任何一次技术革命对社会经济、政治、国防、文化等领域产生的冲击都更为巨大。据预计,2000年信息技术产品市场将达到9000亿美元,电子信息产业将成为世界第一大产业,人类社会将进入信息化世纪。微电子技术是信息社会的核心技术,正以其巨大的动力推动人类社会的更大进步。 1 微电子技术的重大技术突破与 集成度的提高 1.1 重大技术突破 50年来,微电子技术迅速发展的历程中,实现了几次重大的技术突破,从而加速了微电子技术的高速发展。 1.1.1 从真空到固体 20世纪初(1905年)世界上第一个真空电子管的发明,标志着人类社会进入了电子化时代,电子技术实现了第一次重大技术突破。这是控制电子在真空中的运动规律和特性而产生的技术成果。从此产生了无线电通信,雷达,导航,广播,电视和各种真空管电子仪器及系统。经过第二次世界大战后,人们发现真空管还存在许多问题,如仪器设备的体积大,重量大,耗电大,可靠性和寿命受限制等。因此,研究新型电子管的迫切需求被提出来了。1947年美国贝尔实验室两位科学家J.Bardeen和W.Brattain在作锗表面实验过程中发明了世界上第一个点接触型锗晶体管。一个月后被誉为电子时代先驱的科学家W.Schokley发表了晶体管的理论基础—PN理论。此后,结型晶体管研制成功,晶体管进入实用阶段。晶体管的发明为微电子技术揭开了序幕,也是电子技术的第二次重大技术突破。为表彰三位科学家的重大贡献,他们共同获得1956年诺贝尔物理学奖。 1.1.2 从锗到硅 晶体管发展初期是利用锗单晶材料进行研制的。实验发现,用锗单晶制作的晶体管漏电流大,工作电压低,表面性能不稳定,随温度的升高,性能下降,可靠性和寿命不佳。科学的道路是没有尽头的,科学家通过大量的实验分析,发现半导体硅比锗有更多的优点。在锗晶体管中所表现出来的缺点,利用硅单晶材料将会产生不同程度的改进,硅晶体管的性能有大的提高。特别是硅表面可以形成稳定性好,结构致密,电学性能好的二氧化硅保护层。这不仅使硅晶体管比锗晶体管更加稳定,性能更加好,而且更重要的是在技术上大大前进一步,即发明了晶体管平面工艺,为50年代末集成电路的问世准备了可靠的基础,这正是微电子技术的第二次重大技术突破,也是电子技术的第三次重大技术突破。 1.1.3 从小规模到大规模 微电子技术发展过程中最令人惊奇的是从1958年到1987年20年间集成电路的集成度从10个元件的数量级提高到10万个元件,是微电子技术的第三次重大技术突破,也是电子技术的第四次重大技术突破。今天,集成度已进一步 3 国防预研和国家自然科学基金项目。

半导体技术对人类社会的影响

物理学与人类文明 任课老师:戴长建 班级:材化一班 姓名:余伟 学号:20114203

半导体技术对人类社会的影响 材化一班余伟20114203 半导体材料对20世纪的人类文明所起的巨大影响最令人惊讶。20世纪是科学技术突飞猛进的100年,原子能、半导体、激光和电子计算机被称为20世纪的四大发明,后三大发明是紧密相关的。 半导体,指常温下导电性能介于导体与绝缘体之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。 半导体电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质称为半导体:室温时电阻率约在1mΩ·cm~1GΩ·cm之间,温度升高时电阻率则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、

模拟数字混成及功能进行分类的方法。 半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。 ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 半导体材料的制造 为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位、双晶面,或是堆栈错误都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程。这种制程将一个单晶的晶种放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。 最早的实用“半导体”是「电晶体(Transistor)/ 二极体(Diode)」。 一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。 二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、

相关文档