文档库 最新最全的文档下载
当前位置:文档库 › 非晶硅、微晶硅薄膜太阳能电池

非晶硅、微晶硅薄膜太阳能电池

非晶硅、微晶硅薄膜太阳能电池
非晶硅、微晶硅薄膜太阳能电池

主要薄膜光伏电池(非微晶硅、CIGS)技术及制备工艺介绍

主要薄膜光伏电池(非/微晶硅、CIGS)技术及制备工艺介绍

第一章薄膜光伏电池技术及发展概况简述一、全球主要薄膜光伏电池技术简介

图:薄膜光伏电池结构 二、薄膜光伏电池发展概况 (一)非晶硅薄膜电池的大规模应用堪忧 中国有超过20 家非晶硅薄膜电池厂商,共约1.1GW 产能,其中800MW的转换效率为6%-7%,300MW 的转换效率高于8.5%,最高的转换效率可以达到9%-10%,生产成本为约0.8 美元/W。如果非晶硅薄膜电池的转换效率为10%,组件的价格低于晶体硅电池的75%,才有竞争力。 随着今年晶硅电池成本的下降和转换效率的稳步提升,2010 年7月,美国应用材料公司(Applied Materials)宣布,停止向新客户销售其SunFab 系列整套非晶硅薄膜技术。8 月,无锡尚德叫停旗下的非晶硅薄膜太阳能组件生产线的业务。非晶硅薄膜电池要继续扩张市场份额,还需要突破其转换率低和衰减性等问题,建立市场信心。 另外,非晶硅薄膜电池在半透明BIPV 玻璃幕领域具有相对优势,

但目前BIPV 仍面临透光度和转换效率的两难困境,大规模应用尚未推行,非晶硅薄膜电池前景堪忧。 (二)CdTe薄膜电池难以成为国内企业的发展重点 CdTd 薄膜电池方面,美国First Solar 一枝独秀。First Solar 组件效率已达11%,成本降低到0.76 美元/W,在所有太阳电池中成本最低。First Solar 今年产能约1.4GW,预计2011、2012 年分别达到2.1GW 、2.7GW。在电池制造技术和装备制造,市场份额和规模效应方面,FirstSolar 已经占据了绝对优势,国内企业难以有较大发展,目前国内介入CdTe 电池的企业仅三家,且均未实现大规模量产。 另一方面,碲属于稀有元素,在地壳里仅占1x10-6 。已探明储量14.9 万吨,该技术的未来发展空间受限。预计CdTe 技术不会成为我国企业发展薄膜电池的主要方向。 (三)CIGS技术前景诱人,成为投资亮点 虽然目前全球有上百家企业从事CIGS 技术的研发,但突破技术和设备瓶颈,能够生产大面积组件的企业不多。技术相对成熟,单机年产量超过10MW 的生产线更少,目前仅有如Johanna Solar(德国)、WurthSolar(德国)、Global Solar(美国)、Showa Shell(日本)、Honda Soltec(日本)等公司。 CIGS 的工艺和设备要求复杂,目前国际上尚未形成标准生产工艺和技术垄断企业。中国企业有望通过自主创新,引进设备或与国外设备企业合作开发等形式加快CIGS 薄膜电池的产业化。例如,孚日引进Johanna 的60MW 生产线,哈高科与美国普尼合作研发CIGS 的生

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

非晶硅薄膜太阳能电池的优点

非晶硅薄膜太阳能电池的优点: 2009-01-13 20:29 非晶硅太阳能电池之所以受到人们的关注和重视,是因为它具有如下诸多的优点: 1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um 的可见光波段,它的吸收系 数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右, 用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素. 2. 非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0 eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高. 3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右. 4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化. 5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多:

中国电子报:薄膜技术日趋成熟非晶硅电池主导市场 来源:中国电子报发稿时间: 2009-02-10 15:52 薄膜电池技术具有提供最低的每瓦组件成本的优势,将有望成为第一个达到电网等价点的太阳能技术。由于原材料短缺,在单晶硅和多晶硅太阳能电池的发展速度受到限制的情况下,新型薄膜太阳能电池发展尤为迅速。有资料显示,美国薄膜电池的产量已经超过了多晶硅和单晶硅电池的产量。薄膜技术会越来越成熟,在未来的市场份额中将大比例提升。据行业分析公司NanoMarkets预测,薄膜太阳能电池2015年的发电量将达到26GW,销售额将超过200亿美元,太阳能电池发电量的一半以上将来自薄膜太阳能电池。预计在未来薄膜电池市场中非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三种电池将分别占到薄膜光伏市场的60%、20%和20%。 非晶硅/微晶硅电池是产业化方向沉积设备至关重要

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

非晶硅薄膜太阳能电池

非晶硅薄膜太阳能电池 全国仅有的几家太阳薄膜电池生产企业: /深圳市拓日新能源科技股份有限公司 /上海神舟新能源发展有限公司---上海航天汽车机电股份有限公司下属的全资子公司 / 河南昆仑太阳能有限公司 /交大南洋---上海交大泰阳绿色能源有限公司 /天威保变-- 保定天威薄膜光伏有限公司(是保定天威保变电气股份有限公司(沪市A股上市公司,股票代码600550)直属子公司) /金晶科技--金晶(集团)有限公司, /孚日光伏---孚日集团股份有限公司/风帆股份有限公司等。 简介非晶硅薄膜太阳能电池是一种以非晶硅化合物为基本组成的薄膜太阳能电池。按照材料的不同,当前硅太阳能电池可分为三类:单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 生产成本低 由于反应温度低,可在200℃左右的温度下制造,因此可以在玻璃、不锈钢板、陶瓷板、柔性塑料片上淀积薄膜,易于大面积化生产,成本较低。单节非晶硅薄膜太阳能电池的生产成本目前可降到1.2美元/Wp。叠层非晶硅薄膜电池的成本可降至1美元/Wp以下。 能量返回期短 转换效率为6%的非晶硅太阳能电池,其生产用电约1.9度电/瓦,由它发电后返回上述能量的时间仅为1.5-2年。 适于大批量生产

非晶硅材料是由气相淀积形成的,目前已被普遍采用的方法是等离子增强型化学气相淀积(PECVD)法。此种制作工艺可以连续在多个真空淀积室完成,从而实现大批量生产。采用玻璃基板的非晶硅太阳能电池,其主要工序(PECVD)与TFT-LCD阵列生产相似,生产方式均具有自动化程度高、生产效率高的特点。在制造方法方面有电子回旋共振法、光化学气相沉积法、直流辉光放电法、射频辉光放电法、溅谢法和热丝法等。特别是射频辉光放电法由于其低温过程(~200℃),易于实现大面积和大批量连续生产,现成为国际公认的成熟技术。 高温性能好 当太阳能电池工作温度高于标准测试温度25℃时,其最佳输出功率会有所下降;非晶硅太阳能电池受温度的影响比晶体硅太阳能电池要小得多。 弱光响应好,充电效率高 非晶硅材料的吸收系数在整个可见光范围内,在实际使用中对低光强光有较好的适应。上述独特的技术优势,令薄膜硅电池在民用领域具有广阔的应用前景,如光伏建筑一体化、大规模低成本发电站、太阳能照明光源。由于非晶硅薄膜电池的良好前景,包括Sharp、Q-Cells、无锡尚德等在内的诸多企业正大规模进入非晶硅薄膜太阳能电池领域,整个行业的统计数字不断翻新。 市场前景 在整个太阳能电池家族中,非晶硅薄膜太阳能电池因为其技术和应用方面的优势,正在获得爆发性增长。2007年行业增速约120%,预计未来3年内年均增速高达100%。业内之前曾对非晶硅薄膜太阳能电池持有疑虑,主要原因在于其电池转化效率较低(5%-9%),而且衰减特别快,使用寿命只有有限的2-3年。而随着技术的进步,目前主流的非晶硅薄膜电池使用寿命已在10年以上。这使得非晶硅薄膜电池成为目前最被看好的薄膜电池技术之一。目前国内市场当中,涉及非晶硅薄膜电池的上市公司主要包括:拓日新能、天威保变、综艺股份、赣能股份。由于非晶硅行业需求迅速扩充,纯粹靠购置设备并开展非晶硅薄膜电池的生产,当然也能够获得行业扩容带来的高成长,但长期来看,毕竟只能够分享到制造业的合理利润,目前国内如赣能股份的薄膜电池为OEM模式,获得的就是产业链中端的制造业利润。而一旦行业上了规模,行业的利润必然向行业的关键性瓶颈转移,有鉴于此,我们更看好掌握关键技术的配件生产商和设备提供商。[2] 非晶硅薄膜太阳能电池:面对投资热尚需冷静思考 | 2008-9-16 14:27:00 | | 特别推荐:

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池研究毕 业论文 Final approval draft on November 22, 2020

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物 体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n 区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。用户根据系统设计,可

薄膜硅太阳能电池陷光结构

薄膜硅太阳能电池的研究状况 摘要:薄膜硅太阳能电池具有广阔的前景,但是当前大规模产业化的非晶硅薄膜电池效率偏低,为了实现光伏发电平价上网,必须对薄膜硅太阳能电池进行持续的研究。本文主要总结了提高薄膜硅太阳能电池效率的主要技术与进展,如TCO技术、窗口层技术、叠层电池技术和中间层技术等,这些技术用在产业化中将会进一步提高薄膜硅太阳能电池的转换效率,进而降低薄膜硅电池的生产成本。 一引言 在全球气候变暖、人类生态环境恶化、常规能源短缺并造成环境污染的形势下,可持续发展战略普遍被世界各国接受。光伏能源以其具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿命以及免维护性等其它常规能源所不具备的优点,被认为是二十一世纪最重要的新能源。 当前基于单晶硅或者多晶硅硅片的晶体硅电池组件市场占有率高达90%,但是,晶体硅电池本身生产成本较高,组件价格居高不下,这为薄膜硅太阳能电池的发展创造了机遇。薄膜硅太阳能电池的厚度一般在几个微米,相对于厚度为200微米左右的晶体硅电池来说大大节省了原材料,而且薄膜硅太阳能电池的制程相对简单,成本较为低廉,因此在过去的几年里薄膜硅太阳能电池产业发展迅猛。 但是当前大规模产业化的薄膜硅太阳能电池转换效率只有5%-7%,是晶体硅太阳能电池组件的一半左右,这在一定程度上限制了它的应用范围,也增加了光伏系统的成本。为了最终实现光伏发电的平价上网,必须进一步降低薄膜硅太阳能电池的生产成本,因此必须对薄膜硅太阳能电池开展持续的研究,利用新的技术与工艺降低薄膜硅太阳能电池的成本。本文着重从提高薄膜硅太阳能电池的转换效率方面介绍当前薄膜硅太阳能电池的研究现状。 二、提高薄膜硅太阳能电池效率的措施 提高薄膜硅太阳能电池效率的途径包括:提高进入电池的入射光量;拓宽电池对太阳光谱的响应范围;提高电池的开压尤其是微晶硅薄膜太阳能电池(?c-Si)的开压;抑制非晶硅薄膜太阳能电池(a-Si)的光致衰退效应等。我们将从这几个方面介绍提高薄膜硅电池效率的方法。 (一)提高薄膜硅太阳能电池对光的吸收 对于单结薄膜硅太阳能电池,提高其对光的吸收将提高电池的电流密度,对电池效率将产生直接的影响。Berginski等人通过实验结合模拟给出了提高电池对光的吸收途径,如图1所示:可以看出薄膜硅电池的前电极对光的吸收、折射率的错误匹配、窗口层对光的吸收、背反电极吸收损失以及玻璃反射都会减少电池对光的吸收,因此提高电池的光吸收可从这几个方面着手。

非晶硅薄膜太阳电池的研究进展及发展方向

第33卷增刊2012年12月 太阳能学报 ACTA ENERGIAE SOLARIS SINICA Vol.33Suppl Dec., 2012收稿日期:2012-07-24基金项目:国家高技术研究发展(863)计划(2011AA050518);国家重点基础研究发展(973)计划(2012CB934302);上海市科委项目 (11DZ2290303) 通讯作者:李海华(1974—),女,博士、副教授,主要从事微纳电子学与器件制造方面的研究。lihaihua@sjtu.edu.cn 文章编号:0254- 0096(2012)增刊-0001-06非晶硅薄膜太阳电池的研究进展及发展方向 李海华,王庆康 (上海交通大学微纳科学技术研究院,“薄膜与微细技术”教育部重点实验室、“微米纳米加工技术”国家级重点实验室,上海200240) 摘要:介绍了非晶硅薄膜太阳电池的最新研究进展,微纳光学结构和金属表面等离子体特性引入到非晶硅薄膜 太阳电池可大大降低薄膜厚度和提高光电转换效率。叠层串联的非晶硅太阳电池及非晶硅和多晶硅、单晶硅组成的异质结结构可增加宽带太阳光谱吸收范围,提高光电转换效率,是非晶硅薄膜电池的发展方向。关键词:非晶硅;太阳电池;叠层;微纳结构;异质结中图分类号:TM615 文献标识码:A 0引言 太阳能是可再生能源领域中最具发展前景的资 源。作为太阳能利用的重要组成部分,光伏发电是一种清洁的、用之不竭的可再生绿色新能源。利用太阳电池可以无任何材料损耗地将太阳能转换为人 类可利用能量的最高级形式— ——电能。太阳电池的应用可解决人类社会发展的能源需求方面的3个问 题:开发宇宙空间时, 利用太阳能提供持续可用地即时转化电能;解决目前地面能源面临的矿物燃料资 源减少与环境污染的问题;日益发展的消费电子产品随时随地的供电问题等。特别是太阳电池在发电 过程中不会给人们带来任何噪声、 辐射和污染,与其他形式的可再生能源(如风力发电)相比,由于不存 在任何可动的部分,所以系统稳定性高,维护成本相对较低;在使用中不释放包括CO 2在内的任何气 体, 这些对满足能源需求、保护生态环境、防止地球温室效应具有重大意义。 制作太阳电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电转换反应,根据所用材料的不同,太阳电池可分为:1)硅太阳电池;2)以无机盐如砷化镓Ⅲ-Ⅴ化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3)功能高分子材料制备的太阳电池;4)纳米晶太阳电池等。不论以何种材料来制作电池,对太阳电池材料的一般要求有:半导体材料的禁带不能太宽;要有较高的 光电转换效率;材料本身对环境不造成污染;材料便 于工业化生产且材料性能稳定。 基于以上几个方面考虑,硅是最理想的太阳电池材料,这也是太阳电池以硅材料为主的主要原因。目前,硅基薄膜太阳电池因其成本低、质量轻、转换 效率较高、 便于大规模生产,而具有较大的优势,从而成为国际上研究最多,发展最快的薄膜电池,也是 目前唯一实现大规模生产的薄膜电池。本文简要地综述了非晶硅太阳电池的国内外现状和最新研究进展,并讨论了非晶硅太阳电池的发展及趋势。 1国内外产业现状 非晶硅(a-Si )薄膜太阳电池虽然早已出现[1],但由于光电转换效率低、衰减率(光致衰退率)较高等问题,一直制约其发展。随着其技术的不断进步, 光电转换效率得到迅速提高[2] 。传统的晶硅太阳电池利用纯硅锭切割而成的硅片将光转换为电流。因为晶硅价高且晶片脆,因此太阳电池模块的加工生产过程需要特殊处理。且该种电池需要封装和其他组件,使得晶硅模块价格昂贵,但其工作寿命达20 25a ,能效为14% 23%。非晶硅薄膜太阳电池为第二代产品,有望实现更低的成本,大多采用连 续性卷对卷生产工艺[3] ,而晶硅电池采用分批生产工艺。虽然仍与晶体硅电池相比存在差距,但其用料少、工艺简单、能耗低,成本有一定优势;尤其因为其沉积分解温度低,可在玻璃、不锈钢板、陶瓷板、柔

非晶硅薄膜太阳能电池及制造工艺

非晶硅薄膜太阳能电池及制造工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 ①单室,多片玻璃衬底制造技术。主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技。主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺)。主要以美国Uni-Solar 公司为代表。 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N 三层非晶硅的沉积方法。 作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如:?1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。 ?1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积760mm×1520mm。 ?本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。 ?国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。 二、非晶硅太阳能电池制造工艺 1、内部结构及生产制造工艺流程 下图是美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图:图1、内联式单结非晶硅电池内部结构示意图

硅基薄膜太阳能电池基础知识

非晶硅薄膜太阳能电池及制造工艺 内容提纲 一、非晶硅薄膜太阳能电池结构、制造技术简介 二、非晶硅太阳能电池制造工艺 三、非晶硅电池封装工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 三种类型: ①单室,多片玻璃衬底制造技术 该技术主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技 该技术主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺) 该技术主要以美国Uni-Solar公司为代表 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N三层非晶硅的沉积方法。作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻

璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如: ?1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。 ?1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积 760mm×1520mm。 ?本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。 ?国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。 二、非晶硅太阳能电池制造工艺 1、内部结构及生产制造工艺流程 下图是以美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图: 图1、内联式单结非晶硅电池内部结构示意图

三、非晶硅太阳能电池

三、非晶硅太阳能电池

尽管单晶硅和多晶硅太阳能电池经过多年的努力已取得很大进展,特别是转换效率已超过20%,这些高效率太阳能电池在空间技术中发挥了巨大的作用。但在地面应用方面,由于价格问题的影响,长久以来一直受到限制。 太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。因而它在整个半导体太阳能电池领域中的地位正在不断上升。从其诞生到现在,全世界以电力换算计太阳能电池的总生产量的约有1/3是非晶硅系太阳能电池,在民用方面其几乎占据了全部份额。

1、非晶态半导体 与晶态半导体材料相比,非晶态半导体材料的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布的。由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,可以看到与晶体非常相似的结构特征。所以,一般将非晶态材料的结构描述为:“长程无序,短程有序”。

晶硅的结构模型很多,左面给出了其中的一种,即连续无规网络模型的示意图。可以看出,在任一原子周围,仍有四个原子与其键合,只是键角和键长发生了变化,因此在较大范围内,非晶硅就不存在原子的周期性排 列。

在非晶硅材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所,所以,一般说,非晶硅是不适于做电子器件的。

1975年,研究人员通过辉光放电技术分解 硅烷,得到的非晶硅薄膜中含有一定量的氢,使得许多悬挂键被 氢化,大大降低了材料的缺陷态密度,并且成功 地实现了对非晶硅材料的p型和n 型掺杂。

非晶硅薄膜太阳能电池发展趋势

非晶硅薄膜太阳能电池:投资力度加大2008/9/17/08:42 来源:中国电源门户网 非晶硅薄膜太阳能电池由于其成本优势而具有很大的市场潜力,因此受到投资者青睐。通过仿真模型对项目的成本及效益进行分析,可以为投资者的决策提供参考数据,以规避投资风险。 薄膜太阳能电池作为一种新型太阳能电池,由于其原材料来源广泛、生产成本低、便于大规模生产,因而具有广阔的市场前景。近年来,以玻璃为基板的非晶硅薄膜太阳能电池凭借其成本低廉、工艺成熟、应用范围广等优势,逐渐从各种类型的薄膜太阳能电池中脱颖而出,在全球范围内掀起了一波投资热潮。大尺寸玻璃基板薄膜太阳能电池投入市场,必将极大地加速光伏建筑一体化、屋顶并网发电系统以及光伏电站等的推广和普及。 非晶硅薄膜太阳能电池优势渐显 由于晶体硅太阳能电池的成本随着硅材料价格的连年上涨而不断提高,各类薄膜太阳能电池成为全球新型太阳能电池研究的重点和热点。 薄膜太阳能电池中最具发展潜力的是非晶硅薄膜太阳能电池,非晶硅材料是由气相淀积形成的,目前已被普遍采用的方法是等离子增强型化学气相淀积(PECVD)法。此种制作工艺可以连续在多个真空淀积室完成,从而实现大批量生产。由于反应温度低,可在200℃左右的温度下制造,因此可以在玻璃、不锈钢板、陶瓷板、柔性塑料片上淀积薄膜,易于大面积化生产,成本较低。 与晶体硅太阳电池比较,非晶硅薄膜太阳电池具有弱光响应好,充电效率高的特性。非晶硅材料的吸收系数在整个可见光范围内,几乎都比单晶硅大一个数量级,使得非晶硅太阳电池无论在理论上和实际使用中都对低光强有较好的适应。越来越多的实践数据也表明,当峰值功率相同时,在晴天直射强光和阴雨天弱散射光环境下,非晶硅太阳能电池板的比功率发电量均大于单晶硅、非晶硅薄膜太阳电池。更有数据表明,在相同环境条件下,非晶硅太阳电池的每千瓦年发电量要比单晶硅高8%,比多晶硅高13%。 薄膜太阳能电池最重要的优势是成本优势。据多家企业和机构的测算,即使在5MW的生产规模下,非晶硅薄膜太阳电池组件的生产成本也在2美元/瓦以下,而单线产能达到40MW-60MW甚至更高的全自动化生产线,其产品生产成本则更低。而相对于平均3.5美元/瓦的国际市场销售价格而言,其利润空间可想而知。 影响非晶硅薄膜太阳能电池应用的最主要问题是效率低、稳定性差。与晶体硅电池相比,每瓦的电池面积会增加约一倍,在安装空间和光照面积有限的情况下限制了它的应用。而其不稳定性则集中体现在其能量转换效率随辐照时间的延长而变化,直到数百或数千小时后才稳定,这个问题在一定程度上影响了这种低成本太阳能电池的应用。

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

相关文档
相关文档 最新文档