文档库 最新最全的文档下载
当前位置:文档库 › 606-不确定关系

606-不确定关系

606-不确定关系
606-不确定关系

606--不确定关系

1. 选择题

1,不确定关系式 ≥???x p x 表示在x 方向上 (A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定. (C) 粒子位置和动量都不能准确确定.

(D) 粒子位置和动量不能同时准确确定.

[ ]

2,设粒子运动的波函数图线分别如图(A)、

(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?

[ ]

3,关于不确定关系 ≥??x p x ()2/(π=h ),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4).

(C) (3),(4). (D) (4),(1).

[ ]

2. 判断题

1,不确定关系不仅适用于电子和光子,也适用于其它粒子.

2,由不确定关系 ≥??x p x ()2/(π=h ),粒子的动量和坐标不可能同时准确地确定.

3,关于不确定关系 ≥??x p x ()2/(π=h )的理解是:粒子的动量、坐标不可能确定.

x

(A )

x (B )x

(C )

x

(D )

4,根据不确定关系 ≥??x p x ()2/(π=h ),粒子的动量不可能确定.

5,根据不确定关系 ≥??x p x ()2/(π=h ),粒子的坐标不可能确定.

6,不确定关系是微观粒子波粒二象性的必然结果。

7,不确定关系也叫“测不准关系”,即可理解为:借助仪器,测量位置的误差愈小,则测量动量的误差就愈大。

8,微观粒子的不确定关系仅存在于坐标和动量之间。

9,不确定关系与微观粒子的波粒二象性无关,仅决定于测量的准确与否。

10,不确定关系说明,微观粒子的位置的不确定量越小,动量的不确定量就越大,反之亦然。

3.填空题

1,如果电子被限制在边界x 与x +?x 之间,?x =0.5×10-10m ,则电子动量x 分量的不确定量近似地为________________kg ·m /s .

(不确定关系式?x ·?p ≥h ,普朗克常量h =6.63×10-34

J ·s)

2,在电子单缝衍射实验中,若缝宽为a = 0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量?p y =______________N ·s . (不确定关系式?y ·?p y ≥h ,普朗克常量h =6.63×10-34 J ·s)

3,设子弹的质量为0.01kg ,枪口的直径为0.5cm ,则由波粒二象性对射击的影响,估算子弹横向速度的不确定量=?x v m/s 。 (不确定关系2

≥??x p x ,普朗克常量h =6.63×10-34 J ·s )

4,电视显像管中电子的加速电压为10kV ,电子枪的枪口直径设为0.01cm ,则电子射出电子枪后的横向速度的不确定量 m/s 。

(不确定关系2

≥??x p x ,普朗克常量h =6.63×10-34 J ·s ,电子静止质量m =9.11×10-31

kg )

5,试求原子中电子速度的不确定量 m/s ,取原子的线度约10-10m 。 (不确定关系2

≥??x p x ,普朗克常量h =6.63×10-34 J ·s ,电子静止质量m =9.11×10-31

kg )

6,设电子在沿x 轴运动时,速率的不确定量s cm v /1=?,试估算其坐标的不确定量

=?x m.。(不确定关系2

??x p x ,普朗克常量h =6.63×10-34 J ·s ,电子质量

m =9.11×10-31

kg )

7,质量为10-13 kg 的布朗粒子在沿x 轴运动时,速率的不确定量s cm v /1=?,试估算其坐标的不确定量=?x m.。(不确定关系2

≥??x p x ,普朗克常量h =6.63×10-34

J ·s )

8,质量为10-4 kg 的小弹丸在沿x 轴运动时,速率的不确定量s cm v /1=?,试估算其坐标的不确定量=?x m.。(不确定关系2

??x p x ,普朗克常量h =6.63×10-34 J ·s )

概率波 不确定性关系

高中物理选修3-5同步练习试题解析 概率波 不确定性关系 1.有关光的本性的说法中正确的是( ) A .关于光的本性,牛顿提出了“微粒说”,惠更斯提出了“波动说”,爱因斯坦提出了“光子说”,它们都圆满地说明了光的本性 B .光具有波粒二象性是指:光既可以看成宏观概念上的波,也可以看成微观概念上的粒子 C .光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性 D .在光的双缝干涉实验中,如果光通过双缝时显示波动性,如果光只通过一个缝时显示粒子性 解析:牛顿主张的微粒说中的微粒与实物粒子一样,惠更斯主张的波动说中的波动与宏观机械波等同,这两种观点是相互对立的,都不能说明光的本性,所以A 、B 错,C 正确;在双缝干涉实验中,双缝干涉出现明暗均匀的条纹。当让光子一个一个地通过单缝时,曝光时间短时表现出粒子性,曝光时间长时表现出波动性,因此D 错误。 答案:C 2.关于物质波的认识,正确的是( ) A .电子的衍射证实了物质波的假设是正确的 B .物质波也是一种概率波 C .任何一个物体都有一种波和它对应,这就是物质波 D .物质波就是光波 解析:本题综合考查物质波概念,电子衍射图像的观测证明德布罗意关于物质波的假说是正确的,所以A 正确;只有运动的物质才有物质波与它对应,故C 错误;物质波与光波一样,也是一种概率波,即粒子在各点出现的概率遵循波动规律,但物质波不是光波,所以B 正确,D 错误;即正确选项是A 、B 。 答案:A 、B 3.以下说法正确的是( ) A .物体都具有波动性 B .抖动细绳一端,绳上的波就是物质波 C .通常情况下,质子比电子的波长长 D .核外电子绕核运动时,并没有确定的轨道 解析:任何物体都具有波动性,故A 对;对宏观物体而言,其波动性难以观测,我们 所看到的绳波是机械波,不是物质波,故B 错;电子的动量往往比质子的动量小,由λ=h p 知,电子的波长长,故C 错;核外电子绕核运动的规律是概率问题,无确定的轨道,故D 对。

§16.2 物质波的波函数,玻恩的统计解释

§16.2 物质波的波函数,玻恩的统计解释 (一)物质波的波函数ψ(r ,t ) 在第三篇§10.1(四)已谈过,一个频率为ν、波长为λ,沿x 轴传播的平面简谐机械波,其中各个质点的振动位移函数y (x ,t )可表示如下: () -νπ=??????x t 2cos A )t ,x (y 机械波的位移函数单频率平面简谐 (16.2.1) 此式的y 表示:t 时刻、在x 位置的质点,离开平衡位置的位移.A 为质点的振幅.我们曾经用此式计算机械波的能量和干涉现象等. 在第三篇§11.1(一)描述电磁波时,将上式的y 改为电场强度E y 和磁场强度H z : ??????电磁波的表式单频率平面 ()() λ-νπ=λ-νπ=x t 2c o s H H x t 2c o s E E 0z z 0y y 利用复数的欧拉公式,可将上述余弦函数与指数函数联系起来?: 〔欧拉公式:〕 (16.2.4) 根据上式可把上述机械波和电磁波表式写成复数形式,例如: 〔单频率平面机械波的复数表式〕)/x t (2i Ae )t ,x (y λ-νπ-=(16.2.5) 表式(16.2.1)就是(16.2.5)复数表式的实数部分. 可以设想,物质波的波函数ψ(x ,t )也可仿照上式写出: ??????其物质波的波函数轴运动的自由粒子 沿,x (16.2.6) 这里所说自由粒子,指的是没受外力作用的微观粒子,它的总能 ε和动量p 都是不变量,与它缔合的物质波的频率ν和波长λ也是不变量.按波粒二象性的关系式(16.1.4)和(16.1.5),可用ε和p 代替(16.2.6)式中的ν和λ: ??????其物质波的波函数轴运动的自由粒子沿,x 16.2.7) 物质波的波函数要用复数表式,其原因请看(16.3.3)式后面的说明. 如果自由粒子在三维空间中运动,则上式的px 应改为p ·r ,波函数应写为ψ(x,y,z,t )或ψ(r ,t ): ??????自由粒子的波函数在三维空间中运动的 (16.2.8) ? 同济大学数学教研室主编《高等数学》下册223—224页,1978年版. (16.2.2) (16.2.3)

12-4 不确定关系

§12-4 不确定关系 经典力学的成功之处在于,若已知初始状态,既可以知道物体的运动规律。如已知t= 0时粒子坐标、动量,既可以求任意t时粒子坐标、动量和粒子的运动轨道。既经典力学给物体的运动状态给出了决定性的规律。 最初人们很自然地用描写宏观粒子的方法(坐标、动量)去描述微观粒子。但波动性使微观粒子的坐标和动量(或时间和能量) 不能同时取确定值。1927年海森伯首先提出了不确定关系,反映微观粒子的基本规律,是物理学中的重要关系。 一、坐标和动量的不确定的关系 1 导出 坐标和动量的不确定的关系可以由电子的单缝衍射实验简单导出。 电子沿向入射缝宽为a的狭缝,电子动量;当电子通过宽为a的单缝时,无法准确说出电子的坐标x是多少,只能说电子在Ox轴上的坐标的不确定度 Δx= a 缝前:P y = P,P x= 0 缝后:电子在屏上出现衍射图形,有一几率分布。出现了x向分动量; 若衍射角为θ的电子动量为 ΔP x=P sinθ 对于落在衍射第一极小处的电子 ΔP x≈P sinθ1 ① 由单缝衍射公式有 sin2 2 a k λ φ=± 1 sin a x λλ θ== ?

又有德布罗意公式 代入①式 考虑衍射图样的次级条纹, 大部分电子落在中央亮纹范围内,其x 方向动量在0 ~ h /a 范围内,例如,一维自由运动粒子,其动量确定,但其坐标完全不确定。 更一般的理论给出 引入布朗克常量 h = 上面公式写为 2 讨论 1)不确定关系使微观粒子运动失去了“轨道”概念。不确定关系说明微观粒子的坐标和动量不能同时确定,其根源在于二象性。微观粒子本应用几率概念描述,不确定关系指明经典力学概念在微观世界的适用程度 2)不确定关系中 h 的重要性 由于h ≠0 ,使得不确定关系在微观世界成为一个重要的规律; 但h 很小,使不确定关系在宏观世界不能得到直接体现。不确定关系在宏观世界的效果,好象是微观世界里当h →0时的效果,当h → 0时,量子物理→经典物理。 二、其他形式的不确定关系 1 时间与能量的不确定关系 h p λ = x x h p x x p h λ λ?= ???=sin k k k a x x λ λ λ θ==? ??x x h h p k x x x p h λ λ λ λ?= ? ????≥222 x y z h x p h y p h z p ??≥??≥??≥ 4x h x p π ??≥ 2h π

高中物理-概率波、不确定性关系练习

高中物理-概率波、不确定性关系练习 A组 1.物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光波的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点;如果曝光时间足够长,底片上就出现了规则的干涉条纹.对这个实验结果,下列认识正确的是() A.曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的波动性 B.单个光子通过双缝后的落点可以预测 C.只有大量光子的行为才能表现出光的粒子性 D.干涉条纹中明亮的部分是光子到达机会较多的地方 解析:曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的粒子性,选项A错误;单个光子通过双缝后的落点不可以预测,在某一位置出现的概率受波动规律支配,选项B错误;大量光子的行为才能表现出光的波动性,干涉条纹中明亮的部分是光子到达机会较多的地方,故选项C错误,D正确. 答案:D 2.以下说法正确的是() A.物体都具有波动性 B.抖动细绳一端,绳上的波就是物质波 C.通常情况下,质子比电子的波长长 D.核外电子绕核运动时,并没有确定的轨道 解析:任何物体都具有波动性,故A对;对宏观物体而言,其波动性难以观测,我们所看到的绳波是机械波,不是物质波,故B错;电子的动量往往比质子的动量小,由λ=知,电子的波长长,故C错;核外电子绕核运动的规律是概率问题,无确定的轨道,故D对. 答案:AD 3.电子的运动受波动性的支配,对于氢原子的核外电子,下列说法正确的是() A.氢原子的核外电子可以用确定的坐标描述它们在原子中的位置 B.电子绕核运动时,可以运用牛顿运动定律确定它的轨道 C.电子绕核运动的“轨道”其实是没有意义的 D.电子轨道只不过是电子出现的概率比较大的位置 解析:微观粒子的波动性是一种概率波,对于微观粒子的运动,牛顿运动定律已经不适用了,所以氢原子的核外电子不能用确定的坐标描述它们在原子中的位置,电子的“轨道”其实是没有意义的,电子轨道只不过是电子出现的概率比较大的位置,综上所述,选项C、D正确. 答案:CD 4.关于宏观物体和微观粒子的特性,下列说法正确的是() A.经典物理学中的粒子任意时刻有确定位置和速度以及时空中的确定轨道 B.在光的双缝干涉实验中,如果光通过双缝时显出波动性,那么光只通过一个缝时就显出粒子性 C.光学中某些现象表明光具有波动性,而某些现象又表明光具有粒子性,说明光有时是波,有时是粒子 D.经典物理的粒子模型和波动模型在微观世界变成了波粒二象性模型 解析:任意时刻的确定位置和速度以及时空中的确定轨道,这是经典物理学中粒子运动的基本特征,所以选项A正确;但经典的粒子模型和波动模型在微观世界变成了波粒二象性模型,选项D

基于狄拉克方程的边缘态理论与应用

基于狄拉克方程的边缘态理论与应用 在量子霍尔效应的启示下,科学家们曾预言自然界中可能存在一种新的无自发对称破缺的物质状态。近年来发现的拓扑绝缘体恰好验证 了该项理论。拓扑绝缘体是当前凝聚态物理领域的热点问题,这类材料 的典型特征是体内元激发存在能隙,但在边界上具有受能隙保护的无能 隙边缘激发。我们基于狄拉克方程的边缘态解,从理论上讨论了边缘态 形成的主要原因,即体系哈密顿量在时间反演对称下保持不变,导致体 系具有两支在禁带内交叉形成狄拉克锥的稳定结构。为了更加深刻的理 解边缘态的概念,我们还利用Bernevig-Hughes-Zhang模型,从细节上 研究了由连续模型到附加边缘效应的过程。此外,我们简单介绍了第一 个从实验上实现的拓扑绝缘材料HgTe/CdTe量子阱。 关键词拓扑绝缘体; 量子霍尔效应; 狄拉克方程 第一章绪论 在经典物理学中,人们常常根据朗道对称破缺理论对物质进行分类,大多数物质的简单相态或相变,都可以从对称性破缺的观点来了解。但近年来,凝聚态物理中发现的一种新的物理态——整数量子霍尔效应和分数量子霍尔效应——颠覆了这项理论。为了弄清楚它们的结构,人们把拓扑这个近代数学中的重要概念引进到了凝聚态物理中,拓扑绝缘体正是基于这项理论而发展起来的。 传统材料按照其导电特性可分为:导体,半导体,绝缘体三种。导体在费米能级附近存在一定密度的电子态,当加上足够小的电压时,电荷元就能够被激发,系统中就会出现电流(如图1a)。半导体和绝缘体的费米面存在于禁带之中,电荷激发成为自由电子需要克服一个有限大小的能隙,需要很大能量,因而一般不易导电(如图1b)。拓扑材料则是一种十分特殊的绝缘体,理论上讲,这种材料内部是典型的绝缘体结构,但在它的表面,

狄拉克方程

1928年英国物理学家狄拉克(Paul Adrien MauriceDirac)提出了一个电子运动的相对论性量子力学方程,即狄拉克方程。利用这个方程研究氢原子能级分布时,考虑有自旋角动量的电子作高速运动时的相对论性效应,给出了氢原子能级的精细结构,与实验符合得很好。从这个方程还可自动导出电子的自旋量子数应为1/2,以及电子自旋磁矩与自旋角动量之比的朗德g因子为轨道角动量情形时朗德g因子的2倍。电子的这些性质都是过去从分析实验结果中总结出来的,并没有理论的来源和解释。狄拉克方程却自动地导出这些重要基本性质,是理论上的重大进展。利用这个方程还可以讨论高速运动电子的许多性质,这些结果都与实验符合得很好。这些成就促使人们相信狄拉克方程是一个正确地描写电子运动的相对论性量子力学方程。 既然实验已充分验证了狄拉克方程的正确,人们自然期望利用狄拉克方程预言新的物理现象。按照狄拉克方程给出的结果,电子除了有能量取正值的状态外,还有能量取负值的状态,并且所有正能状态和负能状态的分布对能量为零的点是完全对称的。自由电子最低的正能态是一个静止电子的状态,其能量值是一个电子的静止能量,其他的正能态的能量比一个电子的静止能量要高,并且可以连续地增加到无穷。与此同时,自由电子最高的负能态的能量值是一个电子静止能量的负值,其他的负能态的能量比这个能量要低,并且可以连续地降低到负无穷。这个结果表明:如果有一个电子处于某个正能状态,则任意小的外来扰动都有可能促使它跳到某个负能状态而释放出能量。同时由于负能状态的分布包含延伸到负无穷的连续谱,这个释放能量的跃迁过程可以一直持续不断地继续下去,这样任何一个电子都可以不断地释放能量,成为永动机,这在物理上显然是完全不合理的。 针对这个矛盾,1930年狄拉克提出一个理论,被称为空穴理论。这个理论认为由于电子是费米子,满足泡利不相容原理,每一个状态最多只能容纳一个电子,物理上的真空状态实际上是所有负能态都已填满电子,同时正能态中没有电子的状态。因为这时任何一个电子都不可能找到能量更低的还没有填入电子的能量状态,也就不可能跳到更低的能量状态而释放出能量,也就是说不能输出任何信号,这正是真空所具有的物理性质。按照这个理论,如果把一个电子从某一个负能状态激发到一个正能状态上去,需要从外界输入至少两倍于电子静止能量的能量。这表现为可以看到一个正能状态的电子和一个负能状态的空穴。这个正能状态的电子带电荷-e,所具有的能量相当于或大于一个电子的静止能量。按照电荷守恒定律和能量守恒定律的要求,这个负能状态的空穴应该表现为一个带电荷为+e的粒子,这个粒子所具有的能量应当相当于或大于一个电子的静止能量。这个粒子的运动行为是一个带正电荷的“电子”,即正电子。狄拉克的理论预言了正电子的存在。 1932年美国物理学家安德森(Carl David Anderson)在宇宙线实验中观察到高能光子穿过重原子核附近时,可以转化为一个电子和一个质量与电子相同但带有的是单位正电荷的粒子,从而发现了正电子,狄拉克对正电子的这个预言得到了实验的证实。正电子的发现表明对于电子来说,正负电荷还是具有对称性的。狄拉克的空穴理论给出了反粒子的概念,正电子是电子的反粒

浅析不确定性原理的哲学内涵

浅析不确定性原理的哲学内涵 摘要:不确定性原理作为量子力学中的基本原理之一,主要描述了对两个力学量算符在任一时刻其几率分布宽度的的关系。本文先介绍了何为不确定性原理,再重点阐释了对不确定性原理的哲学审视,最后在借鉴先哲们精粹思想的同时也对不确定性原理提出了一些浅显的看法。 关键词:不确定性原理变量哲学 1、引言 海森堡提出的不确定性原理以其特殊的性质给科学和哲学解释提出了挑战。不确定性原理,告诉我们微观客体的任何一对互为共轭的不确定变量都不可能同时确定出确定值,使人们放弃了经典的轨道概念。这表明,几率性、随机性、偶然性,并非是由于人类认识能力不足所导致的,而是自然界客观事物的本性。科学的发展要求从哲学层次来认识不确定性原理在科学理论中的作用和地位,分析它的本体论及认识论内涵,总结其基本特征,进而为不确定性原理的科学研究提供富有启示意义的哲学观念和方法论原则。 2、不确定性原理 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出,它反映了微观粒子运动的基本规律。 在云室(一种观察微观粒子运动径迹仪器)中观察到的电子径迹的解释上,海森堡的想法是如何用已知的数学形式去描述云室中的电子径迹。云室中的径迹并不是能反映粒子明确位置和速度的一条无限细的线,在云室中看到的电子径迹的宽度要比电子本身的线度大得多,这可能代表了电子的位置具有某种不确定性。通过推算,得到了一种不确定性原理,它表明:同时严格确定两个共轭变量(如位置和速度,时间和能量等)的数值是不可能的,它们的数值准确度有个下限。这是一条自然定律,它说明,在微观粒子层次上,同时得到一个粒子运动的位置和速度的严格准确的测量值在原则上是不可能的。用这个理论去解释试验中所观察到的电子轨迹,经过重新的分析整理,最终确定:云室中电子径迹并不是一条连续的线,实质上它是一系列离散而模糊的斑点,它们近似排列成线,并非真正的电子“径迹”,也就是说电子的位置是不确定的。 海森堡进一步验证此不确定性满足新的量子力学,得到了标准的量子条件:Pq-qP=h/2π (P为动量,q为与动量对应的位置,h为普朗克常量s)。 由上式出发,海森堡导出了位置和与速度相关的p的不确定关系式:ΔpΔq≥h。 3、不确定性原理的哲学思考 不确定性原理告诉人们:经典的轨道概念已不再适用,像经典物理学精确把握宏观物体那样将微观粒子的信息精确测出也是不可能的。更重要的是,波函数的统计诠释与不确定性原理两者可共存于一个理论体系,不确定性原理可以由量子力学基本公设推导,而且推导结果也没有超出量子力学的几率诠释。我们需要将二者结合起来,看看它们究竟告诉了我们什么。 有一些社会科学工作者,由于望文生义或不太理解量子力学理论,认为不确定性原理之不确定,几率诠释之几率。深入的思考者则认为,几率诠释告诉我们微观粒子之状态我们不能百分百把握,而不确定性原理则干脆将“不确定”确定下来,告诉我们不确定不是我们的仪器有什么问题,而是客观世界正是如此,不仅

不确定关系(测不准关系)的表述和含义

不确定关系(测不准关系)的表述和含义 摘要:介绍了测不准关系的一些不同的表述和证明方法,对其中关于这一原理的认同和有争议的问题进行了比较与分析。 关键词:测不准关系;不确定度;量子理论;统计解释 引言 测不准关系是由量子力学基茌原理导出的一个重要推论,它是量子力学的一个基本原理,表明一个微观粒子的某些成对的物理量不可能同时具有确定的数值,例如位置与动量、时间和能量。它反映了自然界的客观规律, 反映了微观粒子的波粒二象性的基本属性它在量子力学中占有重要的地位。量子力学诞生至今约有80年了,作为一门基础理论已经相当成熟,在指导人类文明进步和学科发展方面发挥着重要的作用;但是,对量子力学基本理论的解释却一直存在着不同意见的争论,关于测不准关系的理解问题是争论的焦点之一。本文对其中一些主要的有争议问题进行简要的介绍,并加以讨论。 1 几种主要的表述和证明方法 测不准关系是海森堡在1927年提出的,他设想一种使用波长很短的γ射线的显微镜来最大限度地精确测定电子的位置,这种测量,依靠的是光子被电子的散射[康普顿(compt)散射。海森堡在题为“关于最子理论的动力学和力学的直观内容”的论文中说[1]:“当测定…电子?位置的瞬间,也正是光产被电子散射的瞬问,电子的动量产生一个不连续的改变。当所用的光的波长越小,即位置测定得越精确,这一改变就越大。因此,在知道电子位置的瞬间,它的动量只能了解到对应于那一不连续改变的大小的程度。于是,位置测定得越精确,动量就知道得越不精确,反之亦然。在这种情况下,我们看到方程 pq—qp=-ih的一种直接的物理解释。这就是在文献中第一次出现的关于测不准关系的表述。 1929年,罗伯逊(Robertson)[2]在一篇短文中首次证明:两个厄密算符的标准偏差之积绝不会小于它们的对易子的平均的绝对值之半。证明如下:设A和B是任意的两个厄密算符,C是它们的对易子,令A1=A一,B1=B 一,A和B的标准偏差分别为△A=1/2和△B=1/2。定义 D=A1+iλB1,其中λ为一实数,可得: O≤=λ2(△B)2一λ+(△A)2 由于这个关于△的二次多项式的判别式不能大于零,因而有 △A△B≥l1/2

概率波 5 不确定性关系

4 概率波 5 不确定性关系 [先填空] 1.经典的粒子和经典的波 (1)经典的粒子 ①含义:粒子有一定的空间大小,有一定的质量,有的还带有电荷. ②运动的基本特征:遵从牛顿运动定律,任意时刻有确定的位置和速度,在时空中有确定的轨道. (2)经典的波 ①含义:在空间是弥散开来的. ②特征:具有频率和波长,即具有时空的周期性. 2.概率波 (1)光波是一种概率波:光的波动性不是光子之间的相互作用引起的,而是光子自身固定的性质,光子在空间出现的概率可以通过波动的规律确定,所以,

光波是一种概率波. (2)物质波也是概率波:对于电子和其他微观粒子,单个粒子的位置是不确定的,但在某点附近出现的概率的大小可以由波动的规律确定.对于大量粒子,这种概率分布导致确定的宏观结果,所以物质波也是概率波. [再判断] 1.经典粒子的运动适用牛顿第二定律.(√) 2.经典的波在空间传播具有周期性.(√) 3.经典的粒子和经典的波研究对象相同.(×) 4.光子通过狭缝后落在屏上明纹处的概率大些.(√) 5.电子通过狭缝后运动的轨迹是确定的.(×) [后思考] 1.对于经典的粒子,如果知道其初始位置和初速度,能否确定其任意时刻的位置和速度? 【提示】能.经典粒子的运动规律符合牛顿运动定律,其运动轨迹也是可以确定的,因此,某时刻的位置和速度也可以确定. 2.是否可以认为光子之间的相互作用使它表现出波动性? 【提示】不可以.实验说明:如果狭缝只能让一个光子通过,曝光时间足够长,仍然能得到规则的干涉条纹,说明光的波动性不是光子之间相互作用引起的,是光子本身的一种属性. [合作探讨] 在光的双缝干涉实验中,设法控制入射光的强度,使光子一个一个地通过狭缝,经过不同的时间相继得出如图17-4-1光子在胶片上的分布图片. 图17-4-1 探讨1:图甲说明什么问题?

石墨烯电子的能带和狄拉克方程(三)

石墨烯电子结构之态密度 (2019年9月28日) 北京东之星应用物理研究所 (Estarlabs, Beijing ) 伍 勇 引言 有关石墨烯电子结构的前两篇文档在百度网发表以后,电子结构没有态密度(The density of states (DOS))的内容我总感觉有些缺失,现在我已完成两篇拓扑半金属的文档,在空余间隙里,把石墨烯电子态密度的图补上。 根据文献[1], 石墨烯电子态密度原始公式如下 ))k (E E () (k d )E (N -=?δπ2222 积分位于蜂房晶格的布里渊区,因子2考虑了自旋简并。对于小能量0→E ,积分贡献仅来自K 和 'K 点附近,并且)q (E E =线性依赖于一阶近似波矢的大小。于是 dq /dE )E (q ))q (E E ()(dq q )E (N πδπ22220 =-??=?∞ 对于电子和空穴 : vq E h ,e ±=,,得到态密度随能量的线性变化关系 2v E )E (N π= (K 和 'K 点附近,0→E ) (1) 而一般自由电子能谱m q E 22 2 =的D 2固态系统能态密度是常数: dE m E dE m mE )qdq dz 22222 ππππ==??=(21 22 , 2 πm dE dz )E (N == (2) 在写本文档前两篇内容时,见到文献[2]包含四段区间的椭圆积分态密度的完全表达式,那时,我还不知道,怎么在整个布里渊区画出这个复杂的态密度图形。感谢文献[3],帮助我完成了这个作业,文献[3]给出一种更紧凑的石墨烯DOS 形式。

))()((K Re )()() t /()(D εεε εεπεε-+-+=3116314332 30<<ε 函数)x (K 是第一类椭圆积分。下面是在软件Mathematica 我输入的指令。 Plot[(4Abs[x]/(3.88*\[Pi]))/Sqrt[(Abs[x]+1)^3*(3-Abs[x])]*Re[EllipticK[Sqrt[(16Abs[x])/((Abs[x]+1)^3*(3-Abs[x]))]]],{x,-3.1,3.1},PlotStyle->{Blue,Thickness[0.005]},PlotRange->{{2.7,-2.7},{0,1.25}},Frame->True,FrameTicks->{{{0,0.2,0.4,0.6,0.8,1.0,1.2},None},{{-3,-2,-1,0,1,2,3},None}},FrameStyle->{{Directive[Thick,12],Directive[Thick,12]},Directive[Thick,12]}] 可以对照文献[1]提供的DOS 图: 在石墨烯电子能带M 处存在鞍点,也是态密度的范霍夫奇点:M E E ln )E (N --∝δ 对应图中在1±=ε点对数发散是态密度的范霍夫奇异性。 参考文献: [1] M. Katsnelson, GRAPHENE Carbon in Two Dimensions,2012 0.40.2 ε ) (D ε

粒子的波动性 概率波 不确定性关系

粒子的波动性 概率波 不确定性关系 一、光是什么? 1、光是一种电磁波,有波长和频率 c =νλ 2、不同颜色的光在真空中传播速度都相同,等于c 3、不同颜色的光频率不同。光的颜色(频率)由光源来决定,在不同介质中传播时波速会变,但频率不变。 4、不同颜色的光在同一种介质中传播速度不相同,频率大的速度小。 二、光电效应 1、光电效应:当光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。逸出的电子称为光电子。 光电子定向移动形成的电流叫光电流. 2、光电效应实验规律 (1)存在饱和电流:光照不变,增大U AK ,G 表中电流达到某一值后 不再增大,即达到饱和值。 因为光照条件一定时,K 发射的电子数目一定。 实验表明:入射光越强,饱和电流越大,单位时间内发射的光电子数越 多。 (2)存在遏止电压和截止频率 存在遏止电压U C :使光电流减小到零的反向电压,若速度最大的是 v c ,则c 22 1eU v m c e = 实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电 压是一样的。光的频率改变,遏止电压也会改变。 存在截止频率c ν:经研究后发现,对于每种金属,都有相应确定的 截止频率c ν(极限频率)。 当入射光频率ν>c ν时,电子才能逸出金属表面; 当入射光频率ν< c ν时,无论光强多大也无电子逸出金属表面。 (3)具有瞬时性 实验结果:即使入射光的强度非常微弱,只要入射光频率大于被照金属的截止频率,电流表指针也几乎是随着入射光照射就立即偏转。 更精确的研究推知,光电子发射所经过的时间不超过10 -9秒(这个现象一般称作“光电子的瞬 时发射”)。

石墨烯电子的能带和狄拉克方程

石墨烯电子能带之数理演绎 (2015年2月20日) (为苦研物理学理论的探路者提供数理基础的参考) 作者: 北京东之星应用物理研究所 伍 勇 , 贺 宁(计算机软件工程师) 1. 石墨烯晶格的基矢和倒格子基矢 晶格原胞与基矢图?1 布里渊区与倒格子基图?2 图1中 )0,3,3(2)0,3,3(221a a a a -===这里a =1.42 A 是。 由正格子基矢(12 2(30,3,1(32)0,3,1(3221a a b a b -==ππ 由此计算图2第一布里渊区的两个狄拉克(Dirac)点K ,' K 的坐标是:

下面能带计算表明只有第一布里渊区的六个顶点在费米面上,称费米点,又称Dirac 点或K (' K )点 2. 石墨电子紧束缚近似二次量子化形式的哈密顿量 ∑∑> <+ +++-+=j i j i i i i i i pz c h b a t b b a a H ,2).()(ε 上式还可表为矩阵形式: ??? ? ?????? ??--=??? ? ?????? ??--+??? ? ??∑∑∑> <+ +><++++ j j j i ij pz ij pz i i j j j i i i i i i i i pz b a t t b a b a t t b a b a b a ,22,2)(00)()(δεδεε 模型不考虑电子自旋,表示只对最近邻格点的电子跃迁求和,pz 2ε是单电子2pz 轨道能量 石墨晶格是由两类几何环境彼此不等价的碳原子A ,B 构成,任意选定一个格点位矢是i R 的A 原子为参考原子,环绕它的是三个最近邻B 类原子1j R ,2j R 和3j R ,如图3. + i a (j b )是位于i R (j R )的电子的产生(消灭)算符, (4)中的对算符+i a j b 表示的物理过程描述被j b 在j R 处消灭一个电子后又在i R 由+ i a 产生一 3 2,3.j j ji i R R R R 和的三个最近邻参考原子图

高中物理-概率波、不确定性关系课后测试

高中物理-概率波、不确定性关系课后测试 基础达标 1.在日常生活中,我们不会注意到光是由光子构成的,这是因为普朗克常量很小,每个光子的能量很小,而我们观察到的光学现象中涉及大量的光子.试估计60 W 的白炽灯泡1 s 内发出的光子数. 解析:可设白炽灯发出的光子频率为6×1014 Hz ,每个光子的能量大约为 E=hν=6.63×10-34×6×1014 J=4.0×10-19 J.60 W 的白炽灯泡在 1 s 内发出的光子数 1910 0.4160-??=n =1.5×1020(个). 答案:1.5×1020个 2.一颗质量为10 g 的子弹,具有200 m/s 的速率,动量的不确定量为0.01%,我们确定该子弹的位置时,有多大的不确定量? 解析:子弹动量的不确定量为Δp=0.01%×mv=0.02 kg·m/s,根据ΔxΔp≥π 4h ,得位置的不确定量为 Δx≥m p h 02 .014.341063.6434 ???=?-π=2.64×10-31 m. 答案:2.64×10-31 m 综合运用 3.一电子具有200 m·s -1的速率,动量的不确定范围为0.01%,我们确定该电子的位置时, 有多大的不确定范围?(电子质量为9.1×10-31 kg) 解析:电子动量的不确定量为Δp=0.01%×mv=1.82×10-30 kg ·m/s,根据ΔxΔp≥π 4h ,得位置的不确定量为Δx≥m p h 3034 10 82.114.341063.64--????=?π=2.9×10-3 m. 答案:2.9×10-3 m 4.氦氖激光器所发红光波长为λ=6 238,谱线宽度Δλ=10-8.求当这种光子沿x 方向传播时, 它的x 坐标的不确定量多大? 解析:红光光子动量的不确定量为Δp=λ?h ,根据ΔxΔp≥π 4h ,得位置的不确定量为Δx≥m p h 14 .3410104410 8??=?=?--πλπ=7.96×10-20 m. 答案:7.96×10-20 m 拓展探究 5.原子大小的数量级为10-10 m ,电子在原子中运动位置的不确定量至少为原子大小的十分之 一,即Δx=10-11 m ,试求电子速率的不确定量. 解析:根据ΔxΔp≥π 4h ,得电子速率的不确定量为 Δv≥s m xm h /10 1.91014.341063.64311134 ---?????=?π=5.8×106 m/s.

不确定关系

不确定关系 【教学目标】 (一)知识与技能 1.了解不确定关系的概念和相关计算 2.了解物理模型与物理现象的联系与区别 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 能大概了解自然界的奇妙与和谐,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。本节内容是在上一节基础上进一步深化的,通过微观粒子(光子)的单缝衍射实验,具体分析了不确定性的关系,给出了量子力学中一个著名的关系式——不确定关系:π 4h p x ≥?? 。通过介绍经典物理学中和微观物理学中物理模型的巨大差异,为学生用新的观点认识微观世界提供了空间。 【教学重难点】 不确定关系概念 【教学方法】 学生阅读-教师讲解-归纳总结 【教学思路】 通过单缝光的衍射实验,扩展到微观粒子的衍射实验上,加深对不确定性的理解。 【教学器材】 硬币,图片等 【课时安排】 1 课时 【教学过程】 (一) 引入新课: 提问:对光的本性的认识? 学生思考、回答:光具有波动性和粒子性,是一种概率波。 设疑:既然光是粒子,那么它的运动还遵守牛顿运动定律吗?还能用质点的位置和动量来描述它的运动吗? 点评:引发学生的好奇心,激发学习的兴趣。 教师:回答是否定的。光子的运动具有不确定性。对于其它微观粒子如电子等,同样也有这样的特点。这节课我们就来学习有关知识 (二)进行新课 (1)光的单缝衍射 在这之前,我们知道,光子、电子以及一切微观粒子,具有波动性和粒子性,也就是物质具有波粒二象性。 我们又知道,在光的衍射试验中,它到屏上的位置会超过单缝投影的范围,并且屏上呈现明暗相间的条纹: 从波的角度来解释,越亮的地方表示光强越大,越暗的地方表示光强越小。 从粒子性的解释,在屏幕越亮的地方,表示到达那里的光子个数越多,或者说光子的

波函数及其统计诠释

§15-1波函数及其统计诠释 在经典物理学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用它的位置矢量和动量来描述的。但是,对于微观粒子,由于它具有波动性,根据不确定关系,其位置和动量是不可能同时准确确定的, 所以我们也就不可能仍然用位置、动量以及轨道这样一些经典概念来描述它的运动状态了。微观粒子的运动状态称为量子态,是用波函数ψ(r, t)来描述的,这个波函数所反映的微观粒子波动性,就是德布罗意波。 在经典物理学中,我们曾经用波函数y(x, t) = a cos(ωt-kx)表示在t时刻、在空间x处的弹性介质质点离开平衡位置的位移,用波函数e(r, t) = e0 cos(k?r-ω t)和b(r, t) = b0 cos (k?r-ω t)分别表示在t时刻、在空间r处的电场强度和磁场强度。那么在量子力学中描述微观粒子的波函数ψ(r, t)究竟表示什么呢? 为了解释微观粒子的波动性,历史上曾经有人认为,微观粒子本身就是粒子,只是它的运动路径像波;也有人认为,波就是粒子的某种实际结构,即物质波包,波包的大小就是粒子的大小,波包的速度(称为群速)就是粒子的运动速度;还有人认为,波动性是由于大量微观粒子分布于空间而形成的疏密波。实验证明,这些见解都与事实相违背,因而都是错误的。 1926年玻恩(m.born, 1882-1970)指出,德布罗意波或波函数ψ(r, t)不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。对波函数的这种统计诠释将量子概念下的波和粒子统一起来了。微观粒子既不是经典概念中的粒子,也不是经典概念中的波;或者说,微观粒子既是量子概念中的粒子,也是量子概念中的波。其量子概念中的粒子性表示它们是具有一定能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿运动定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。

狄拉克与相对论量子力学

狄拉克与相对论量子力学 物理与工程V o1.17No.62007 狄拉克与相对论量子力学 王长荣桂金莲 (浙江科技学院理学院,浙江杭州31OO23) (广东技术师范学院基础部,广东广州510075) (收稿日期:2007—03—19) 摘要以2O世纪2O年代物理学发展所遇到的困难为科学背景,从3个方面阐述了狄拉克相 对论量子力学形成的过程及其深刻的物理内涵;作为完全相对论量子理论中的一种单 粒子理论,狄拉克方程的建立又进一步推动了量子电动力学和量子场论等新理论的建 立与发展. 关键词狄拉克;相对论量子力学;科学含义DIRACANDRELATIVEQUANTUMMECHANICS WangChangrongGuiJinlian (ZheiiangUniversityofScienceandTechnology.Hangzhou,Zheiiang,310023) (GuangdongPolytechnicNormalUniversity.Guangzhou,Guangdong,510075) AbstractThepaperexpatiatedonthebirthprocessofDirac'Srelativequantummechanics andrevealedtheinherentphysicalmeaningfromthreeaspects,basingonthedifficultiesofthe developmentofphysicsin1920s.Asamonparticletheoryofthecompleterelativequantum mechanics,Dirac'Sequationboostedtheestablishmentanddevelopmentofquantumelectro — dynamicsandquantumfieldtheory. KeyWordsDirac;relativequantummechanics;scientificmeaning 1科学背景

不确定关系

§17.5 不确定关系 【教学目标】 (一)知识与技能 1.了解不确定关系的概念和相关计算. 2.了解物理模型与物理现象 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 能领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探 索自然规律的艰辛与喜悦。 【重点难点】 1、重点:不确定关系的概念 2、难点:对不确定关系的定量应用 【授课内容】 (一)引入新课 提问:对光的本性的认识? 学生思考、回答:光具有波动性和粒子性,是一种概率波。 设疑:既然光是粒子,那么它的运动还遵守牛顿运动定律吗?还能用质点的位置和动量来描述它的运动吗? 点评:引发学生的好奇心,激发学习的兴趣。 教师:回答是否定的。光子的运动具有不确定性。这节课我们就来学习有关知识。 (二)进行新课 1.不确定性关系(uncertainty relatoin) 经典力学:运动物体有完全确定的位置、动量、能量等。 微观粒子:位置、动量等具有不确定量(概率)。 (1)电子衍射中的不确定度 展示演示文稿资料: 如图所示,一束电子以速度v 沿oy 轴射向狭缝。 电子在中央主极大区域出现的几率最大。 讲述:在经典力学中,粒子(质点)的运动状态用位置坐标和动量来描述,而且这两个量都可以同时准确地予以测定。然而,对于具有二象性的微观粒子来说,是否也能用确定的坐标和确定的动量来描述呢? 下面我们以电子通过单缝衍射为例来进行讨论。设有一束电子沿oy轴射向屏AB上缝宽为a的狭缝,于是,在照相底片CD上,可以观察到如下图所示的衍射图样。如果我们仍用坐标x和动量p来

不确定关系教案

不确定性关系 ★新课标要求 (一)知识与技能 1.了解不确定关系的概念和相关计算. 2.了解物理模型与物理现象 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 能领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 ★教学重点不确定关系的概念 ★教学难点对不确定关系的定量应用 ★教学方法教师启发、引导,学生讨论、交流。 ★教学用具:投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 提问:对光的本性的认识? 学生思考、回答:光具有波动性和粒子性,是一种概率波。 设疑:既然光是粒子,那么它的运动还遵守牛顿运动定律吗?还能用质点的位置和动量来描述它的运动吗? 点评:引发学生的好奇心,激发学习的兴趣。 教师:回答是否定的。光子的运动具有不确定性。这节课我们就来学习有关知识。 (二)进行新课 1.德布罗意波的统计解释 1926年,德国物理学玻恩(Born,1882--1972)提出了概率波,认为个别微观粒子在何处出现有一定的偶然性,但是大量粒子在空间何处出现的空间分布却服从一定的统计规律。 展示演示文稿资料:玻恩 点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。2.经典波动与

德布罗意波(物质波)的区别讲述:经典的波动(如机械波、电磁波等)是可以测出的、实际存在于空间的一种波动。而德布罗意波(物质波)是一种概率波。简单的说,是为了描述微观粒子的波动性而引入的一种方法。 3.不确定性关系(uncertainty relatoin )经典力学:运动物体有完全确定的位置、动量、能量等。 微观粒子:位置、动量等具有不确定量(概率)。 (1)电子衍射中的不确定度 展示演示文稿资料: 如图所示,一束电子以速度 v 沿 oy 轴射向狭缝。 电子在中央主极大区域出现的几率最大。 讲述:在经典力学中,粒子(质点)的运动状态用位置坐 标和动量来描述,而且这两个量都可以同时准确地予以测定。 然而,对于具有二象性的微观粒子来说,是否也能用确定的坐标和确定的动量来描述呢? 下面我们以电子通过单缝衍射为例来进行讨论。设 有一束电子沿oy 轴射向屏AB 上缝宽为a 的狭缝,于是, 在照相底片CD 上,可以观察到如下图所示的衍射图样。 如果我们仍用坐标x 和动量p 来描述这一电子的运动状 态,那么,我们不禁要问:一个电子通过狭缝的瞬时, 它是从缝上哪一点通过的呢?也就是说,电子通过狭缝的 瞬时,其坐标x 为多少?显然,这一问题,我们无法准确 地回答,因为此时该电子究竟在缝上哪一点通过是无法 确定的,即我们不能准确地确定该电子通过狭缝时的坐标。研究表明:对于第一衍射极小,a λ θ=1sin 式中λ为电子的德布罗意波长。电子的位置和动量分别用x 和p 来表示。电子通过狭缝的瞬间,其位置在 x 方向上的不确定量为a x =? 同一时刻,由于衍射效应,粒子的速度方向有了改变,缝越小,动量的分量 p x 变化越大。 分析计算可得: π 4h p x ≥?? 式中h 为普朗克常量。这就是著名的不确定性关系,简称不确定关系。上式表明: ①许多相同粒子在相同条件下实验,粒子在同一时刻并不处在同一位置。 ②用单个粒子重复,粒子也不在同一位置出现。 例题解析:

低维带参非线性狄拉克方程

低维带参非线性狄拉克方程 本文介绍了如何用由雅可比椭圆函数法演变而来的F展开法处理非线性狄拉克方程。量子场论如今作为描述微观现象的基本物理学理论已经广泛地应用于近代物理的各个分支,并且粒子物理学的发展不断为场论的研究引进新的问题,诸如对称自发破缺场论、复合粒子场论、真空理论和非阿贝尔规范场论等相互联系着的新发展理论。其中通过对Thirring模型的参数化非线性的研究中得到了一维非线性狄拉克方程。利用F-展开法的一般思想,来处理非线性狄拉克方程,然后查询所得到的F函数与雅可比椭圆方程系数之间的关系表,最终解出方程的精确解。通过分析得到的结果,发现Thirring模型下的带参低维非线性狄拉克方程的解具有亮孤子的特点。同时研究表明F-展开法在处理广义非线性狄拉克方程时依旧具有着突出的简洁性和实用性。 关键词:非线性;狄拉克;F-展开法

Abstract In this paper, we will introduce how to use F-expansion which derives from Jacobi elliptic function to deal with low-dimensional nonlinear Dirac equation with parameters. The quantum field theory as a basic physics theory describes the microscopic phenomena has been widely applied in various branches of modern physics and the development of particle physics has been introducing many new subjects. Through the research of parametric nonlinear Thirring model, we can get the one–dimensional nonlinear Dirac equation.by using the F-expansion method, to deal with the nonlinear Dirac equation, and by querying the relationship between the F-function and Jacobi elliptic equation coefficient, we will finally get the exact solution of the equation. Through the analysis of the result obtained, we found the solution with parameter of low dimensional nonlinear Dirac equation under the Thirring model has the characteristics of bright solation. At the same time, studies show that the F- method in the treatment of generalized nonlinear Dirac equation still has outstanding simplicity and practicality. Key word:Nonlinear; Dirac; F-expansion;

相关文档