文档库 最新最全的文档下载
当前位置:文档库 › 基于实验模态的结构振动噪声辐射模型研究

基于实验模态的结构振动噪声辐射模型研究

V ol 33No.S1Nov.2013

噪声与振动控制NOISE AND VIBRATION CONTROL 第33卷第S1期2013年11月文章编号:1006-1355(2013)S1-0267-04

基于实验模态的结构振动噪声辐射模型研究

彬1,冯

涛1,刘斌1,詹福良2,朱

强3

(1.北京工商大学噪声与振动实验室,北京100048;

2.LMS (北京)技术有限公司,北京100101;

3.西安标准工业股份有限公司技术开发部,西安710068)

摘要:以实验模态数据为基础求解机械结构的表面振动,进而计算结构的噪声辐射。建立数值仿真模型和实验系统。以某型工业平缝机为研究对象,应用LMS https://www.wendangku.net/doc/a53811367.html,b ,实现单点激振多点拾振的模态实验,确定机械结构的模态参数;应用LMS Motion 完成激振力的计算,将实验模态数据和不平衡激振力导入LMS https://www.wendangku.net/doc/a53811367.html,b ,实现工业平缝机的噪声预估。

关键词:振动与波;实验模态;噪声辐射;工业平缝机;中图分类号:TH212;TH213.3

文献标识码:A

DOI 编码:10.3969/j.issn.1006-1335.2013.S1.063

Structure Vibration Noise Radiation Model Research Based on the

Experimental Modal

SU Bin 1,FENG Tao 1,LIU Bin 1,ZHAN Fu-liang 2,ZHU Qiang 1

(https://www.wendangku.net/doc/a53811367.html,boratory of Noise and Vibration,Beijing Technology and Business University,

Beijing 100048,China;

2.LMS Simulation China,Beijing 100101,China;

3.Xi ’an Standard Industrial Company Ltd.,Technology Development Department,

Xi ’an 710068,China )

Abstract :In this paper,the surface vibration of the mechanical structure is solved based on the experimental modal,the noise radiation of the structure is calculated.Numerical simulation model and experimental system is established.Making a certain industrial flat sewing machine as the object of study,apply LMS Test .Lab to pick up the modal experiment to determine the mechanical structure of the modal parameters through the method of single point exciting vibration and multipoint collecting signal.The vibration force is calculated by LMS Motion software.The experimental modal data and unbalance vibration force is imported to LMS Virtual Lab to achieve the industrial lockstitch sewing machine noise estimate.

Key words :vibration and wave ;experimental modal ;noise radiation ;industrial flat sewing machine

随着服装加工行业对于纺织机械设备生产效率

收稿日期:2013-09-24

项目基金:国家科技支撑计划项目“典型高效节能缝制设备

的研发”:(2011BAF12B02);

LMS https://www.wendangku.net/doc/a53811367.html,b 三维仿真平台高校奖学金;北京市教委科技发展面上项目:(KM201210011007);

北京市属高等学校人才强教计划资助项目:(PHR20110887)

作者简介:苏

彬(1989-),男,北京人,在读硕士研究生,研究方向为噪声与振动控制。E-mail:xiaotiancooper@https://www.wendangku.net/doc/a53811367.html,

日益提高,工业平缝机的工作速度也随之日益提高,目前已达到4500~6000r/min 。工业平缝机在高速运转的情况下,由于刺布挑线机构运转过程中产生的不平衡力所导致机构产生较大振动及辐射噪声,危害工人的身体健康并减少机械设备使用寿命。优化机构动不平衡可有效控制工业平缝机的振动及噪声辐射,刘安心[1]通过在连架杆上附加平衡配重,使优化目标函数的梯度方程组变为线性方程组进而求解。张杜民、蔡书平[2]采用添加配重,抵消惯性力的方法,以构件的配重质量为设计变量,以减小机构振动响应为目的的振动力与振动力矩的综合优化平衡方法进一步加深了动平衡实际应用性。王秋晓[3]对

模态振型固有频率基本理论

模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰……等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。 模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。感谢欧阳中华教授的指点,我现在觉得自己当初确实对模态振型概念不清楚。模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。振型是个很重要的固有特征,正如楼上所说用于验证固有频率。 我觉得振型在判别你计算固有频率正确性是非常有用的,比如,通过有限元计算得到了模型的前十阶固有频率,试验模态分析也得到了低阶的固有频率,假设计算的某阶固有频率与试验的某阶固有频率非常接近,但是并不能马上说明他们是同一阶的,需要通过振型来判断。 其他的不知道,但是之所以引入模态的概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来。从能量角度说,这样各个振型之间就没有能量的交换。 从数学上看,对响应函数级数展开后,其中的各项构成各阶模态,而级数展开形

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

噪音与振动控制方案

施工现场噪音与振动控制方案 为认真贯彻落实《建设工程文明施工管理规定》和《扬尘污染防治管理办法》以及重大工程建设的有关文明施工管理规定,实现文明施工现场达到相关标准,特编制本施工噪声与振动控制专项方案。 一、编制依据 1、《中华人民共和国环境噪声污染防治法》; 2、《建筑施工场界噪声限值》GB 12523-90 3、《江苏省环境保护条例》; 4、《江苏省建设工程文明施工管理规定》; 5、《江苏省重大工程文明施工管理考核办法(试行)》 二、工程概况 丹徒新城恒顺大道改造工程位于宜城大道以东,G312以西区域,整体呈东西向。路线起于与宜城大道交叉,向东南方向延伸,下穿S86镇江支线后,往东止于园区二路(盛园路)交叉,路线全长3328.911m。道路等级为城市次干路,规划红线宽度50m,设计速度为50km/h。 1.责任人: (1)项目经理负责噪声控制管理工作的领导,全面管理项目的噪声预防和控制。(2)项目工程师、施工员和班组长负责实施施工过程中的噪声控制。 (3)项目技术员负责噪声控制情况的检查和噪声的监控与监测工作。 三、组织保证措施 一般噪声源:土方阶段:挖掘机、装载机、推土机、运输车辆、破碎钻等。结构阶段:汽车泵、振捣器、混凝土罐车、支拆模板与修理、支拆脚手架、钢筋加工、电刨、电锯、人为喊叫、哨工吹哨、搅拌机、水电加工等。装修阶段:拆除脚手架、石材切割机、砂浆搅拌机、空压机、电锯、电刨、电钻、磨光机等。 1.施工时间应安排在 6:00—22:00 进行,因生产工艺上要求必须连续施工或特殊需要夜间施工的,必须在施工前到工程所在地的区、县建设行政主管部门提出申请经批准后,并在环保部门备案后方可施工。项目部要协助建设单位做好周边居民工作。 2.施工场地的强噪声设备宜设置在远离居民区的一侧。尽量选用环保型低噪声振捣器,振捣器使用完毕后及时清理与保养。振捣混凝土时禁止接触模板与钢筋,并做到

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

噪声与振动复习题及答案

噪声与振动复习题及参考答案(40题) 参考资料 1、杜功焕等,声学基础,第一版(1981),上海科学技术出版社。 2、环境监测技术规范(噪声部分),1986年,国家环境保护局。 3、马大猷等,声学手册,第一版(1984),科学技术出版社。 4、噪声监测与控制原理(1990),中国环境科学出版社。 一、填空题 1.在常温空气中,频率为500Hz的声音其波长为。 答:0.68米(波长=声速/频率) 2.测量噪声时,要求风力。 答:小于5.5米/秒(或小于4级) 3.从物理学观点噪声是由;从环境保护的观点,噪声是 指。 答:频率上和统计上完全无规的振动人们所不需要的声音 4.噪声污染属于污染,污染特点是其具有、、。 答:能量可感受性瞬时性局部性 5.环境噪声是指,城市环境噪声按来源可分 为、、、、。 答:户外各种噪声的总称交通噪声工业噪声施工噪声社会生活噪声 其它噪声 6.声压级常用公式Lp= 表示,单位。 答: Lp=20 LgP/P° dB(分贝) 7.声级计按其精度可分为四种类型:O型声级计,是;Ⅰ型声级计为;Ⅱ型声级计为;Ⅲ型声级计为,一般 用于环境噪声监测。 答:作为实验室用的标准声级计精密声级计普通声级计调查声级计不得 8.用A声级与C声级一起对照,可以粗略判别噪声信号的频谱特性:若A声级比C声级小得多时,噪声呈性;若A声级与C声级接近,噪声呈性;如果A声级比C声级还高出1-2分贝,则说明该噪声信号在 Hz 范围内必定有峰值。 答:低频性高频性 2000-5000 9.倍频程的每个频带的上限频率与下限频率之比为。1/3倍频程的每个频带的上限频率与下限频率之比 为;工程频谱测量常用的八个倍频程段是 Hz。 答:2 2-1/3 63,125,250,500,1K,2K,4K,8K 10.由于噪声的存在,通常会降低人耳对其它声音的,并使听阈,这种现象称为掩蔽。 答:听觉灵敏度推移 11.声级计校准方式分为校准和校准两种;当两种校准方式校准结果不吻合时,以校准结果为准。 答:电声声 12.我国规定的环境噪声常规监测项目为、和;选测项目有、和。 答:昼间区域环境噪声昼间道路交通噪声功能区噪声夜间区域环境噪声 夜间道路交通噪声高空噪声 13.扰民噪声监测点应设在。 答:受影响的居民户外1米处

ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析 弹性平面问题、振动模态分析 1、弹性平面问题 1、1.题目一:(见图一所示) 图1 已知条件: 1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =; 1、1.1解题的总体思路 由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示) 图2 并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。荷载分别为均布荷载和一个集中力荷载。 1、1.2运行结果 此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。 1、各个节点的位移和扭矩 主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的

节点的位移和扭矩。 只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm 2、受力后与受力前变形图(放大)【见图3所示】 图3 3、X方向的变形图【见图4所示】 图4 4、Y方向的变形图【见图5所示】

图5 5、内力图【见图6所示】 图6 结论: 节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。 1、1.3命令流 /PREP7 N,1,0,0!确定第一个节点 N,31,300,0!确定第31个节点 FILL,1,31!在1到31节点中插入节点 NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10 ET,1,PLANE42!常量的设置 MP,EX,1,200E9 MP,NUXY,1,0.3 E,1,2,33,32 !创建第一个单元 EGEN,30,1,1 !复制1到31个单元的建立 EGEN,14,31,1,30 !所有的单元创建 EDELE,151,165 !下面都是挖去中间的面 EDELE,181,195 EDELE,211,225 EDELE,241,255

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

《城市轨道交通噪声与振动控制技术政策》(征求意见稿)

附件2 城市轨道交通噪声与振动控制技术政策 (征求意见稿) 一、总则 (一)为贯彻《中华人民共和国环境保护法》、《中华人民共和国环境噪声污染防治法》等法律法规,防治环境污染,保证人们正常生活、工作和学习的声与振动环境质量,保护既有文物古迹,保障影响区域内的精密仪器的正常使用,促进城市轨道交通噪声与振动污染防治技术进步,制定本技术政策。 (二)本技术政策为指导性文件,供各有关单位在环境保护工作中参照采用;本技术政策提出了防治城市轨道交通噪声与振动污染可采取的技术路线和技术方法,包括合理规划、优化设计、源头控制、传播过程消减、敏感目标防护等方面的内容。 (三)本技术政策中的城市轨道交通设施是指以钢轮钢轨为导向的轨道交通设施,不包括其他形式的城市轨道交通设施。 (四)城市轨道交通噪声与振动污染防治应遵循以下原则: 1.坚持合理规划、预防为主的原则。科学预估拟建轨道交通设施的潜在环境噪声与振动污染影响及可控程度,通过合理规划和采用有效的防控措施,避免或降低轨道交通噪声与振动对敏感目标的影响。 2.坚持源头控制与综合治理相结合的原则。对已开通运行的城市轨道交通设施,应采取源头控制为主,传播途径消减和建筑物防护

为辅的控制措施,确保城市轨道交通噪声与振动符合周围环境要求。 3.坚持安全可靠,技术适用,经济合理的原则。重视措施的安全性和可靠性,优先考虑与控制需求相匹配的技术,同时兼顾经济成本、使用寿命、维护成本、次生影响等因素。 二、合理规划 (五)城市轨道交通线网规划应与城市发展总体规划相协调,鼓励将城市轨道交通噪声与振动污染作为线网规划决策的依据。 (六)城市轨道交通线路应与声与振动功能区划相适应,优先规划在4类区,鼓励沿既有交通干线或规划交通干线布置。 (七)城市轨道交通线路的走向应与既有建筑物留有充足的防护距离或控制条件;城市轨道交通线网规划用地控制范围内不宜新建建筑物,无法避免时,应采取相应的措施,以消除城市轨道交通引起的不利影响。 (八)合理规划城市轨道交通沿线土地利用性质,优先以商业、工业用地为主,减少居住、文教用地。 三、优化设计 (九)对于轨道交通噪声与振动污染较严重的线路或路段,应增设比选方案,结合潜在的环境噪声与振动污染影响和可控程度,对线路走向、敷设方式、车辆类型等进行比选优化。 (十)规范采用环境噪声与振动影响预测模型或预测模拟方法,结合项目阶段、建筑物使用功能和区域特点,针对性开展预测,提高预测精度。 (十一)在选用减振降噪措施时应科学预估其因安装、施工、

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

噪声和振动控制中阻尼技术的理解

噪声和振动控制中阻尼技术的理解 侯永振 (天津市橡胶工业研究所,天津 300384) 摘要:简要介绍了阻尼材料以自由阻尼、约束阻尼两种阻尼处理方式构成结构阻尼,以及阻尼技术用于振动隔离,通过降低共振可传递性,从而使振动和噪声得到控制的基本原理。 关键词:结构阻尼;振动隔离;阻尼处理;噪声降低 1 导论 机械运转产生的振动现象随处可见,飞机、舰船、机床、汽车、轨道交通(如城市轻轨火车)、水暖管道、纺织机械、空调器、电锯、升降机等机械发出较强的振动和噪声,不仅污染环境,还会影响设备的加工精度,加速结构的疲劳损坏和失效,缩短机器寿命,影响交通车辆的舒适性。 不论怎样的应用,通常都需要几种技术对噪声和振动进行有效控制,而每一种技术都有助于环境的更加安静。对于大多数应用来说,可以采用四种控制噪声和振动的方法:(1)吸收;(2)使用障板和罩子;(3)结构阻尼;(4)隔振。在这些分类中虽然有一定程度的相互交叉,但通过对问题的恰当分析和减振降噪技术的合理应用,每种方法都能够产生显著的减振降噪效果。仅次于吸收材料和大块障板层的应用,通常还要弄明白减振降噪的原理。因此,本文将集中介绍涉及降低结构振动的第(3)和第(4)种方法。 2 结构阻尼 结构阻尼降低振源处由冲击产生的稳态的噪 作者简介:侯永振(1957-),男,天津市橡胶工业研究所高级工程师,主要从事橡胶阻尼材料、橡胶减振材料及制品、橡胶防腐衬里、橡胶吸声材料及制品、乳胶手套、胶粘剂、橡胶杂品等研究和开发工作。 声,它所消耗的是在结构阻尼构成之前并以声的形式在结构中辐射的振动能。然而阻尼仅抑制共振。尽管有时由于敷设阻尼材料从而提高了系统的刚度和质量而对于强迫振动的非共振振动的衰减有点效果,但靠阻尼则衰减很少。 阻尼处理由为了提高阻尼结构消耗机械能能力而被应用于阻尼元件的任何材料(或材料组合)组成。当用于强迫振动结构时,在其固有(共振)频率或其附近,它常是最有用的。该固有(共振)频率受由许多频率成份构成的激振力的振动频率的影响,而这许多频率成份受冲击或其它瞬态力或传递到噪声辐射的结构表面的振动的影响。 尽管所有材料都呈现一定量的阻尼,然而许多材料(如钢、铝、镁和玻璃)有如此小的内部阻尼,是传递振动和噪声的良好介质,几乎不具备降低振动和噪声的能力,以致于它们的共振性能使其成为了有效的声辐射器。但钢材等金属材料强度高,常作为结构材料使用;而橡胶等高分子材料,由于本身的化学结构特性,使得它们具有较高的阻尼性能,具备很强的降低振动和噪声的能力,是最主要的减振降噪材料之一,代表着减振降噪材料的发展方向,尤其是近十几年发展起来的高阻尼橡胶或其它高分子阻尼材料,具备非常突出的减振降噪性能,几乎是目前从科学意义上讲最理想的减振降噪材料。但这类阻尼材料

振动系统的模态分析

理论力学振动系统模态分析实验 一.实验目的: 1.了解数字化测试技术的原理和做法。学习模态分析原理。 2.学会用“锤击发”测量振动系统的模态参数与振型。 二.实验仪器: 1.MSC-1型弹性力锤。 2.Yj9A压电加速度传感器。 3.Zj-601A型震动教学试验仪。 三.实验装置示意图: 四、实验原理: 本实验测试对象是弹性梁。实验步骤与原理是:由力锤锤击被测物体,锤体内的力传感器与被测物体上的加速度计同时记录下脉冲激励与被测物体的响应,震动教学试验仪放大并转化为电压,经接口箱,传入计算机的采集分析系统记录。数据采集完毕后,动用分析系统,首先对数据进行传递函数分析,然后,进入模态分析,根据振动理论,分析系统在确定阶数后,进行质量或振型归一,自动生成分析结果并可以生成振动的动画显示,各阶频率、模态质量、模态刚度、模态阻尼比同时列出。

五、实验步骤: 1.准备工作:先将梁分画成所需的单元格,节点编号,将加速度计固定在梁的 五分之二处(避免放在节点处)。 2. 设备连接:将力锤与加速度计与电荷放大器连接,按力锤与加速度计的灵 敏度分别调好电荷放大器上的旋钮,并选好相应的滤波上限开关。再将二信号输出端与接口箱相应频道相连。 3. 进入计算机采集分析系统参数设置部分,设定实验名称与各频道单位。 4. 进入计算机采集分析系统菜单中模态分析部分,画出被测对象的几何图形 及节点号,给出约束条件。 5. 进入计算机采集分析系统的信号采集部分,开始实验。 6.对17个测试位置依次进行敲击,没一个测试点进行三次。以减小误差。 7.调用采集的数据,打开分析界面,调入波形。进行函数分析,模态拟合。 8.振型编辑,质量归一,至此分析完毕,显示动画 9输出数据及计算结果,保存动画截图。

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

《噪声与振动控制技术手册》已由化学工业出版社出版发行

第5期高晓进:金属夹心CFRP复合材料超声检测方法531 参考文献 [1]张锐, 陈以方, 付德永. 复合材料手动扫描超声特征成像检测[J]. 材料工程, 2003(4): 34-35. ZHANG Rui, CHENG Yifang, FU Deyong. Manual scan ultrasonic feature imaging testing of composite material[J]. Journal of Materials Engineering, 2003(4): 34-35. [2]葛邦, 杨涛, 高殿斌, 等. 复合材料无损检测技术研究进展[J]. 玻 璃钢/复合材料, 2009(6): 67-71. GE Bang, YANG Tao, GAO Dianbin, et al. Advances of nondestructive testing of composite materials[J]. Fiber Reinforced Plastics/Composites, 2009(6): 67-71. [3]王耀先. 复合材料结构设计[M]. 北京: 化工工业出版社, 2011. W ANG Yaoxian. Structure design of composites[M]. Beijing: Chemical Industry Press, 2011. [4]彭金涛, 任天斌. 碳纤维增强树脂基复合材料的最新应用现状[J]. 中国胶粘剂, 2014, 23(8): 48-52. PENG Jintao, REN Tianbin. The latest application status of carbon fiber reinforced resin matrix composites[J]. China Adhesives, 2014, 23(8): 48-52. [5]李威, 郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学, 2011, 4(3): 201-212. LI Wei, GUO Quanfeng. Application of carbon fiber composites to cosmonautic fields[J]. Chinese Journal of Optics, 2011,4(3): 201-212. [6]魏建义. 航空复合材料无损检测应用研究[J]. 现代制造技术与装 备, 2016, (230): 82-83. WEI Jianyi. Research on nondestructive testing of aviation composite materials[J]. Modern Manufacturing Technology and Equipment, 2016, (230): 82-83. [7]沈建中, 林俊明. 现代复合材料的无损检测技术[M]. 北京: 国防 工业出版社, 2016: 109-112. SHEN Jianzhong, LIN Junming. Nondestructive testing technology of modern composite materials[M]. Beijing: National Defense Industry Press, 2016: 109-112. [8]史亦韦. 超声检测[M]. 北京: 机械工业出版社, 2009: 85-88. SHI Yiwei. Ultrasonic testing[M]. Beijing: China Machine Press, 2009: 85-88. [9]徐浪, 潘勤学, 王超, 等. 碳纤维-铝多层结构胶接质量的超声检 测[J]. 计测技术, 2015, 35(3): 34-35. XU Lang, PAN Qinxue, W ANG Chao, et al. Bonding test of carbon fibers by ultrasonic[J]. Metrology & Measurement Technology, 2015, 35(3): 34-35. [10]张祥林, 谢凯文, 姜迎春. 复合材料板-板粘接结构超声检测[J]. 无损探伤, 2011, 35(4): 18-21. ZHANG Xianglin, XIE Kaiwen, JIANG Yingchun. Ultrasonic testing of composite plate bonding structure[J]. Nondestructive Testing, 2011, 35(4): 18-21. [11]郑晖, 林树青. 超声检测[M]. 北京: 中国劳动社会保障出版社, 2008: 32-35. ZHENG Hui, LIN Shuqing. Ultrasonic testing[M]. Beijing: China Labor Social Security Press, 2008: 32-35. [12]杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2001: 131-140. DU Gonghuan, ZHU Zhemin, GONG Xiufen. Acoustic Foundation[M]. Nanjing: Nanjing University Press, 2001: 131-140. 《噪声与振动控制技术手册》已由化学工业出版社出版发行由中船第九设计研究院工程有限公司牵头,联合清华大学、北京市劳动保护科学研究所组织编写的《噪声与振动控制技术手册》(主编吕玉恒,副主编燕翔、魏志勇、邵斌、孙家麒、冯苗锋)已由化学工业出版社于2019年9月出版发行。全书约260万字、1700页,由18个单元及5个附录等组成,荟萃了本世纪以来噪声与振动控 制行业的部分最新成果。全书主要内容包括:基础知识;噪声源数据库;噪声的生理效应、 危害以及噪声标准;听力保护;噪声与振动测量方法和仪器;噪声源的识别、预测及控制方 法;声源降噪与低噪声产品;经典而常用的隔声、吸声、消声、隔振、阻尼减振、室内声学 等;有源噪声控制以及国内外噪声与振动控制技术新进展等。本手册还提供了300多种常用 的声学设备和材料的性能、参数等,列举了40多个噪声与振动控制污染治理成功案例,附 录中给出了本行业已出版的书籍、标准、生产厂家、科研设计教学单位的部分名录等,是一 本大型、综合、实用的工具书,也是参与编著的10个单位、27名作者多年来工作实践成果 汇编。本手册可为读者提供科学、严谨、新颖、可信赖的专业知识和应用技术,可供工程设 计、环境保护、职业安全卫生、基本建设等领域从事研究开发、生产制造、监测评价、工程 管理等工程技术人员以及有关专业师生使用、参考。 中船第九设计研究院工程有限公司冯苗锋

车辆系统振动的理论模态分析

振 动 与 冲 击 第20卷第2期 JOURNA L OF VI BRATION AND SHOCK V ol.20N o.22001  工程应用 车辆系统振动的理论模态分析 Ξ 陶泽光 李润方 林腾蛟 (重庆大学机械传动国家重点实验室,重庆 400044) 摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力 学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。 关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41 0 引 言 高速铁路运输以快速、节能、经济、安全和污染小 等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。 车辆系统是由车体、转向架构架、轮对,通过悬挂 元件联接起来的机械系统。通常,把车体及装载、转 向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。 本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础 。 图1 车辆振动系统的有限元模型 1 车辆的动力学模型 将车辆振动系统简化为图1所示的分析模型,即 由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每 Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目 收稿日期:2000-10-10 修改稿收到日期:2000-11-20 第一作者 陶泽光 男,博士,副教授1963年12月生

噪声与振动

1040 2-=Ll L 噪声定义:(环境保护角度):凡是妨碍人正常生产和学习的声音或对人交流干扰的声音。 噪声来源:1、工业噪声源;2、交通噪声源;3、建筑工地噪声源;4、商业噪声源。 世界四大污染:水污染,大气污染,固体废弃物污染,噪声污染。 噪声特点:区别于物理化学污染,噪声与振动源消失后没有延迟。 机械振动的三种方式:简谐振动;阻尼振动;受迫振动。 阻尼振动:(1)两种方式:摩擦阻尼、辐射阻尼; 阻尼振动方程: 受迫振动:(1)方程:错误!未找到引用源。 受迫振动的三种控制方式:1、ω>>ω0 质量控制;2、ω<<ω0 弹性控制;3、ω≈ω0 阻尼控制。 波长、波速和频率之间的关系:v=f λ 声强:单位时间内垂直于传播方向上单位面积上通过的声能。 声压:空气压强在大气压强附近的起伏变化部分。 声强级: 声压级:错误!未指定书签。 听阈声压:错误!未找到引用源。 (在1000Hz 纯音情况下)痛阈声压:20Pa (在1000Hz 纯音情况下) 声功率级:错误!未指定书签。 声压与声强的关系: I=p 2/(ρ0×C) ρ0:空气密度 1.29kg/m 3; C :声速 340m/s 。 频谱分析:由于噪声是一个混合音,在噪声控制过程中了解噪声源所发生的频谱特性,掌握噪声成分及大小,详细分析噪声的频率组成及各频率声压的大小。 高频噪声:1000Hz 以上;中频噪声:300~1000Hz ;低频噪声:500Hz 以下。可听音范围内:20~20000Hz 1/3倍频带与倍频带之间的关系:1:21/3:22/3:2 声强的叠加:I 总=I 1+I 2+…+I n ;声压的叠加:P 总2=P 12+P 22+…P n 2 加速度级: 错误!未指定书签。 a ref =10-6m/s 2 点声源在自由场距离加倍,声压级衰减6dB; 线声源在自由场距离加倍,声压级衰减3dB 。 声压衰减系数由经典(空气)吸收和分子吸收两部分组成。 声屏障:在声源与接收者之间插入足够大面密度板或墙使噪声产生大的附加衰减,使透过的噪声减少。 永久性听阈位移(职业性耳聋):1、慢性噪声耳聋;2、爆震性噪声耳聋。 听力损失判定标准:一耳或两耳听损在500,1000,2000Hz 三个倍频带上的均值。(取好耳,两个耳朵听力损失值相差>25dB 进行5dB 的修正,即对好耳朵加5dB 的修正) 听力损失四个等级:①正常<25dB ;②轻度聋25~40dB ;③中度聋40~70dB ;④重度聋>70dB 。 响度级:以1000Hz (2×10-5Pa) 纯音为基础声音,调整其声压级使大量受试者判断,如果噪声与该纯音听起来一样响,此时纯音压级就是响声的响度级phon(方)。 响度:①取40phon 为1响;②响度与响度级之间的关系 ;③响度级升高10pho n ,响度加倍。 四种计权声级:A 计权:模拟40方等响曲线 A 声级;B 计权:模拟70方等响曲线 B 声级;C 计权:模拟100 方等响曲线 C 声级;D 计权:标准化计权网络(测飞机的) D 声级。 各种统计声级:等效连续声级;L N 累计分布声级(L 10 峰值噪声;L 50 中值噪声;L 90 背景噪声);L dn 日夜等效声级;L den 公共环境等效声级;L NP 噪声污染级;L AE 声暴露级 噪声控制的工程技术方式:吸声技术;消声技术;隔声技术。 噪声作业分级:0级:安全作业 I <0;I 级:轻度伤害 0

相关文档