文档库 最新最全的文档下载
当前位置:文档库 › 第六章 线性空间与线性变换

第六章 线性空间与线性变换

第六章 线性空间与线性变换
第六章 线性空间与线性变换

第六章 线性空间与线性变换

柴中林

(A)

1. 检验下列集合对于所指的线性运算是否构成实数域上的线性空间:

(1)全体n 阶上三角矩阵,对矩阵的加法和数量乘法。

(2)平面上不平行于某一向量的全部向量所成的集合,对向量的加法和数乘运算。

(3)平面上的全体向量对于通常的加法和如下定义的数量乘法:k 。a =0 .

2. 设V 1和V 2都是线性空间V 的子空间,如果V 1∪V 2也是的子空间,求证有:V 1 V 2或V 2 V 1。

3. 检验下列各向量集合是否是R 3的子空间:

(1)},0|),,{(213211R x x x x x x V i ∈≥=,

(2)}(|),,{(3212有理数)Q x x x x V i ∈=.

4. R 4中,求向量ξ在基α1,α2,α3,α4下的坐标,已知:

(1)α1(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), ξ=(1,2,1,1)。

(2)α1(1,1,0,1), α2=(2,1,3,-1), α3=(1,1,0,0),

α4=(1,1,-1,-1), ξ=(0,0,0,1)。

5. R 4中,求由基α1,α2,α3,α4到基β1,β2,β3,β4的过渡矩阵,并求向量ξ在指定基下的坐标。已知:

(1)α1=(1,0,0,0), α2=(0,1,0,0), α3=(0,0,1,0),

α4=(0,0,0,1),

β1=(2,1,-1,1), β2=(0,3,1,0), β3=(5,3,2,1),

β4=(6,6,1,3)。

ξ=(1,2,1,1)在基β1,β2,β3,β4下的坐标。

(2)α1=(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1),

β1=(1,1,0,1), β2=(2,1,3,1), β3=(1,1,0,0),

β4=(0,1,-1,-1)。

ξ=(1,0,0,-1)在基α1,α2,α3,α4下的坐标。

6. 向量α、β、γ满足0321=++γβαk k k ,且k 1k 2≠0, 求证向量组α、β和向量组β、γ生成相同的向量空间。

7. 判断下面所定义的变换,哪些是线性变换,哪些不是:

(1)在线性空间V 中,T (ξ)=ξ+α,其中α∈V 是一已知向量,

(2)在R 3

中,

T T x x x x x x x T ),,()),,((233221321+=, (3)在R 3中,T T x x x x x x x x T ),,2()),,((13221321+-=, (4)在P[x]n 中,T(f (x ))=f (x +1).

8. 证明线性变换将一个子空间变为一个子空间。

9. 已知矩阵A 与B 相似,C 与D 相似,证明:

???? ??C A 00与???? ??D B 00相似。

10. 设α1,α2,α3,α4是4维线性空间V 的一组基, 线性变换T 在这组基下的矩阵为:

??????? ??--------=7113102/52/92/1323133425T ,

求:(1) T 在基β1=α1+2α2+α3+α4,β2=2α1+3α2+α3,β3=α3,β4=α4下的矩阵.

(2) T 的特征值与特征向量.

11. 用非奇异线性变换化二次型n n x x x x x x f 13221-+++= 为标准型。

(B)

1. 函数:bx e ax cos 1=α,bx e ax sin 2=α,bx xe ax cos 3

=α, bx xe ax sin 4=α (a, b 是非零常数)的所有线性组合构成一个4维线性空间,求微分变换D 在基α1,α2,α3,α4下的矩阵。

2. 试求一个R 3上的自同构映射σ满足:

σ(1,0,1)=(1,-1,1),σ(-1,1,1)=(-2,3,-1)。

3. 已知R 3中线性变换????? ?

?++-+++=????? ??z y x z y x z y x z y x 39353σ,求σ的值域和核的基与维数。 4. 在2阶矩阵所形成的线性空间V 中,已知两组基:

α1=

???? ??0001,α2=???? ??0010,α3=???? ??0100,α4=???? ??1000, β1=???? ??1110,β2=???? ??1101,β3=???? ??1011,β4

=???? ??0111。 试分别求从基α1,α2,α3,α4到基β1,β2,β3,β4和从基β1,β2,β3,β4到基α1,α2,α3,α4的过渡矩阵。

5.设向量β和向量α1,α2, ,αm 都正交,求证向量β和向量α1,α2, ,αm 的任一线性组合都正交。

6. 已知R 3的两个基为(Ⅰ):α1,α2,α3和(Ⅱ):β1=α1+α2+α3,β2=α2+α3,β3=α3。

求由基(Ⅱ)到基(Ⅰ)的过渡矩阵。求在基(Ⅱ)和基(Ⅰ)下有相同坐标的全部向量。

(C)

1. 已知

????? ??=213010001A 求证: (1)全体与 A 可交换的3阶矩阵构成一线性空间。

(2)求该空间的维数和一组基。

2. 在 P[x]n (n ﹥1)中,求微分变换D 的特征多项式,并证明D 在任何一组基下的矩阵都不

可能是对角矩阵.

3. 试找出R 4中的一个线性变换σ,使σ的象空间与核空间相同。

4. 设W 是n 维向量空间V 的一个子空间。证明:一定有V 的一个线性变换σ以W 为值域,

另有一个线性变换τ以W 为核。

第7章 线性变换

第7章 线性变换 §1 线性变换的定义 线性空间V 到自身的映射,通常叫做V 的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。 一、线性变换的定义 定义7.1 设V 为线性空间,若对于V 中的任一向量α,按照一定的对应规则T ,总有V 中的一个确定的向量β与之对应,则这个对应规则T 称为线性空间V 中的一个变换,记为 βα=)(T 或 )(,V T ∈=αβα, β称为α的象,α称为β的原象。象的全体所构成的集合称为象集,记作T (V ),即 T (V )={}V T ∈=ααβ|)(。 由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。 定义7.2 线性空间V 中的变换T ,若满足条件 (1) 对任意V ∈βα,有 (2) )()()(βαβαT T T +=+; (3) 对任意V ∈α及数域P 中任意数k 有 )()(ααkT k T =,

则称变换T 为V 中的线性变换。 例7.1 线性空间V 中的恒等变换或称单位变换E ,即 E )()(V ∈=αα α 以及零变换?,即 ?)(0 )(V ∈=αα 都是线性变换. 例7.2 设V 是数域P 上的线性空间,k 是P 中的某个数,定义V 的变换如下: V k ∈→ααα,. 这是一个线性变换,称为由数k 决定的数乘变换,可用K 表示.显然当1=k 时, 便得恒等变换,当0=k 时,便得零变换. 例7.3 在线性空间][x P 或者n x P ][中,求微商是一个线性变换.这个变换通常用D 代表,即 D ()(x f )=)(x f '. 例7.4 定义在闭区间[]b a ,上的全体连续函数组成实数域上一线性空间,以),(b a C 代表.在这个空间中变换 ?()(x f )=?x a dt t f )( 是一线性变换.

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

第六章_线性变换_68180769

第六章 线性变换 映射:,X Y ≠?≠?,如果有一个法则σ,它使得X 中每个元素α,在Y 中有唯一确定的元素β与之对应,则称σ为X 到Y 的一个映射,记作:X Y σ→,()σαβ=,β称为α在σ下的象,α称为β在σ下的原象。 注:()(),X στασατα=??∈=对。 变换:一个集合到自身的映射。 线性变换的定义与性质 定义 设V 是数域F 上的线性空间,σ是V 的一个变换,如果满足条件: (1)()()()βσασβασV,α,β+=+∈?; (2)()()k F,αV,k αk σασ?∈?∈=, 则称σ是V 上的线性变换或线性算子。 (1), (2)等价于条件:,,,k l F V αβ?∈∈ ()()()σk αl βk σαl σβ+=+。 例:设σ:n n R R →,定义为()c αασ=,c 为常数。-----数乘 变换或位似变换。 c =0-----零变换,记为o 。 c =1-----恒等变换,记为ε。 例:设σ是把平面上的向量绕坐标原点逆时针旋转θ角的变换 设()()(),,,T T x y x y ασα''==,则

cos sin sin cos x x y y x y θθ θθ'=-??'=+? 记cos sin sin cos A θθθ θ-?? =??? ? ,则()A σαα=是一个线性变换。 例:判断下列变换是否是线性变换 (1) ()()12323,,1,,T T a a a a a σ=; (2) ()()12323,,0,,T T a a a a a σ=; (3) ()()12312231,,2,,T T a a a a a a a a σ=-+; (4) ()()212312 3,,,,3T T a a a a a a σ=. 线性变换的基本性质 (1)()θθσ=; (2)()()ασασ-=-; (3)线性变换保持向量的线性组合关系不变,即若s s αk αk αk β+++=Λ2211,则1122s s βk αk αk ασσσσ=+++L ; 若θ=+++s s αk αk αk Λ2211,则θσσσ=+++s s αk αk αk Λ2211。 (4)线性变换将线性相关的向量组映成线性相关的向量组。 线性变换的运算 ()V L ----线性空间V 上所有线性变换的集合。

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

第七章 线性变换.

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:σ+τ是V的线性变换. 二. 数乘运算 定义2(P311) 显然kσ也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换σ 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标 之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换σ关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. ξ与σ (ξ)关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

第一章线性空间与线性变换

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R )和复数域(记为C ),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有0αα+=; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间.

第七章线性变换习题答案

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

第七章线性变换总结篇

第 7章 线性变换 7、1知识点归纳与要点解析 一.线性变换的概念与判别 1、线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。 2、线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3、线性变换的性质 设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈L 。 性质1、 ()()00,σσαα==-; 性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。 性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL 也线性无关。 注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L L L L L 记: ()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? L L L L M M M L 于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换, 12,,,m βββL 就是V 中任意一组向量,如果:

第七章 线性变换

MATLAB软件应用第七章线性变换 例1:求矩阵 122 212 221 A ?? ?? =?? ?? ?? 的特征值与特征向量,并将其对角化. 解1:建立m文件v1.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; E=eye(3); syms x f=det(x*E-A) %矩阵A的特征多项式 solve(f) %矩阵A的特征多项式的根,即A的特征值 %所以A的特征值为x1=5,x2=x3=-1. %(1)当x1=5时,求解(x1*E—A)X=0,得基础解系syms y y=5; B=y*E-A; b1=sym(null(B)) %b1为(x1*E—A)X=0基础解系 %(2)当x2=-1时,求解(x2*E—A)X=0,得基础解系y=-1; B=y*E-A; b2=sym(null(B)) %b2为(x2*E—A)X=0基础解系 T=[b1,b2] %所有特征向量在基下的坐标所组成的矩阵 D=T^-1*A*T %将矩阵A对角化,得对角矩阵D 运行结果如下: f = x^3-3*x^2-9*x-5 ans = 5 -1 -1 b1 = sqrt(1/3) sqrt(1/3) sqrt(1/3) b2 = [ sqrt(2/3), 0] [ -sqrt(1/6), -sqrt(1/2)] [ -sqrt(1/6), sqrt(1/2)] T =

[ sqrt(1/3), sqrt(2/3), 0] [ sqrt(1/3), -sqrt(1/6), -sqrt(1/2)] [ sqrt(1/3), -sqrt(1/6), sqrt(1/2)] D = [ 5, 0, 0] [ 0, -1, 0] [ 0, 0, -1] 解2:建立m文件v2.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; d=eig(A) %求全部特征值所组成的向量 [V,D]=eig(A) %求特征值及特征向量所组成的矩阵inv(V)*A*V %A可对角化,且对角矩阵为D 运行结果如下: d = -1 -1 5 V = 247/398 1145/2158 780/1351 279/1870 -1343/1673 780/1351 -1040/1351 1013/3722 780/1351 D = -1 0 0 0 -1 0 0 0 5 ans = -1 * * * -1 * * * 5 例2:求矩阵 110 430 102 A -?? ?? =-?? ?? ?? 的特征值与特征向量,并判别A 是否可以对角化. 解:建立m文件v3.m如下:clc a=[-1 1 0;-4 3 0;1 0 2]; [V,D]=eig(a)

第七章 线性变换 习题答案

第七章 线性变换 3.在[]P x 中,()()f x f x '=A ,()()f x xf x =B ,证明: -=A B BA =E . 『解题提示』直接根据变换的定义验证即可. 证明 任取()[]f x P x ∈,则有 ()()()()(())(())f x f x f x xf x f x '-=-=-=A B BA A B BA A B (())()()()xf x xf x f x f x ''=-==E , 于是-=A B BA =E . 4.设,A B 是线性变换,如果-=A B BA =E ,证明: 1 ,1k k k k k --=>A B BA A . 『解题提示』利用数学归纳法进行证明. 证明 当2k =时,由于-=A B BA =E ,可得 22()()2-=-+-=A B BA A A B BA A B BA A A , 因此结论成立. 假设当k s =时结论成立,即1 s s s s --=A B BA A .那么,当1k s =+时,有 1 1 ()()(1)s s s s s s s s s s ++-=-+-=+=+A B BA A A B BA A B BA A A A A , 即对1k s =+结论也成立.从而,根据数学归纳法原理,对一切1>k 结论都成立. 『特别提醒』由0 =A E 可知,结论对1k =也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 证明 设A 是线性空间V 上的一个可逆变换.对于任意的,V ∈αβ,如果=αβA A ,那么,用1 -A 作用左右两边,得到1 1 ()()--===ααββA A A A ,因此A 是单射;另外,对于任意的V ∈β,存在 1V -=∈αβA ,使得1()-==αββA A A ,即A 是满射.于是A 是双射. 『特别提醒』由此结论可知线性空间V 上的可逆映射A 是V 到自身的同构.

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

第七章线性变换(小结)

第七章 线性变换(小结) 本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系. 线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用. 本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算 1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式. 2. 基本结论 (1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组 (2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略). (4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基 n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }. ker A = A -1(0)= { α∈V | A α=0}. (c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n . (d)A 是双射?A 是单射? Ker(A )={0}?A 是满射.

1.什么是线性空间什么是线性变换线性变换

1. 什么是线性空间?什么是线性变换?线性变换的秩如果小于空间的维数将会怎样?平方的秩? 2. 描述一下密度矩阵的特征,纯态和混合态的区别(表现在密度矩阵的秩) 3. 什么是U 变换,U 变换对应的矩阵满足什么样的特点。U 矩阵一定是可对角化的吗?对应欧氏空 间的正交变换有什么特点?正交变换对应的矩阵的矩阵元一定是实的吗? 4. 什么是厄米算符,厄米算符的物理意义?对应的矩阵具有什么样的特点?厄米算符的本征值具有 什么样的特征?厄米算符对应的矩阵的矩阵元是实的吗?厄米算符是否可以表示成实矩阵,特点是什么?互相对易的厄米算符具有共同的本征态,具有共同本征态的算符一定是对易的吗?具有共同本征值的呢?厄米算符的和是厄米算符吗?厄米算符的乘积呢?直积呢?不对易的厄米算符一定不可交换吗? 5. exp (A )exp (B )=exp (A+B )?LnA 怎么计算? 6. 简单介绍一下三种picture 的物理意义,态的特征,算符的特征。为什么采用这三种picture ,只有 这三种picture 吗?你觉得相互作用picture 可以用在什么地方?Heisenberg picture 的波函数不随时间演化,本征态呢?与哈密顿量对易算符的本征态呢?本征值怎么样? 7. 传播子的物理意义?路径积分与惠更斯原理有什么联系吗?两个光子能够叠加吗?最小作用原 理和路径积分的联系。 8. 什么是态的纠缠?什么是直积态? 9. 量子力学的五大假设是什么?什么是测量假设?测量假设可以从量子力学的其它假设推导出来 吗?能够从态演化过程推导出来吗?它是一个物理过程吗? 10. EPR 佯谬讲了一些什么内容?说明了什么物理本质? 11. Bell 不等式怎么写?它有什么作用?2),(),(),(),(≤-++=''''b a b a b a b a u u E u u E u u E u u E S 12. 在quantum teleportation 中,对于粒子1的初态10βαψ+=,如果根据粒子1和2的Bell 基测 量结果推知粒子3的量子态为10βαψ-=,10αβψ+=以及10αβψ-=,怎么样才能是粒子3的态恢复到粒子1原来的量子态? 13. 什么是定态? 第二次作业中的2.2题中的(e)小问, 为什么在上一次测量x μ得到0μ+之后隔一个时间间隔t ?再测量x μ,得到0μ+的几率并不完全等于1? 1). 若体系的H 不显含时间t ,在初始时刻(t=0)体系处于某一个能量本征态)()0,(E ψψ=,其中),(),(t r E t r H E E ψψ=,则 ]/exp[)(),( iEt t E -=ψψ

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

第六章 线性空间与线性变换

第六章 线性空间与线性变换 柴中林 (A) 1. 检验下列集合对于所指的线性运算是否构成实数域上的线性空间: (1)全体n 阶上三角矩阵,对矩阵的加法和数量乘法。 (2)平面上不平行于某一向量的全部向量所成的集合,对向量的加法和数乘运算。 (3)平面上的全体向量对于通常的加法和如下定义的数量乘法:k 。a =0 . 2. 设V 1和V 2都是线性空间V 的子空间,如果V 1∪V 2也是的子空间,求证有:V 1 V 2或V 2 V 1。 3. 检验下列各向量集合是否是R 3的子空间: (1)},0|),,{(213211R x x x x x x V i ∈≥=, (2)}(|),,{(3212有理数)Q x x x x V i ∈=. 4. R 4中,求向量ξ在基α1,α2,α3,α4下的坐标,已知: (1)α1(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), ξ=(1,2,1,1)。 (2)α1(1,1,0,1), α2=(2,1,3,-1), α3=(1,1,0,0), α4=(1,1,-1,-1), ξ=(0,0,0,1)。 5. R 4中,求由基α1,α2,α3,α4到基β1,β2,β3,β4的过渡矩阵,并求向量ξ在指定基下的坐标。已知: (1)α1=(1,0,0,0), α2=(0,1,0,0), α3=(0,0,1,0), α4=(0,0,0,1), β1=(2,1,-1,1), β2=(0,3,1,0), β3=(5,3,2,1), β4=(6,6,1,3)。 ξ=(1,2,1,1)在基β1,β2,β3,β4下的坐标。 (2)α1=(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), β1=(1,1,0,1), β2=(2,1,3,1), β3=(1,1,0,0), β4=(0,1,-1,-1)。 ξ=(1,0,0,-1)在基α1,α2,α3,α4下的坐标。 6. 向量α、β、γ满足0321=++γβαk k k ,且k 1k 2≠0, 求证向量组α、β和向量组β、γ生成相同的向量空间。 7. 判断下面所定义的变换,哪些是线性变换,哪些不是: (1)在线性空间V 中,T (ξ)=ξ+α,其中α∈V 是一已知向量, (2)在R 3 中, T T x x x x x x x T ),,()),,((233221321+=, (3)在R 3中,T T x x x x x x x x T ),,2()),,((13221321+-=, (4)在P[x]n 中,T(f (x ))=f (x +1). 8. 证明线性变换将一个子空间变为一个子空间。 9. 已知矩阵A 与B 相似,C 与D 相似,证明: ???? ??C A 00与???? ??D B 00相似。 10. 设α1,α2,α3,α4是4维线性空间V 的一组基, 线性变换T 在这组基下的矩阵为: ??????? ??--------=7113102/52/92/1323133425T ,

第七章线性变换.

宁波工程学院理学院《高等代数》课程组 ans = 5 -1 -1 b1 = sqrt(1/3) sqrt(1/3) sqrt(1/3) b2 = [sqrt(2/3), 0] [-sqrt(1/6), -sqrt(1/2)] MATLAB 软件应用 第七章线性变换 1 例1:求矩阵A 2 2 2 1 2的特征值与特征向量,并将其对角化. 2 解1:建立m 文件v1.m 如下: cic A= [1 2 2;2 1 2; 2 2 1]; E=eye (3); syms x f=det(x*E-A) solve(f) 矩阵A 的特征多项式 矩阵A 的特征多项式的根,即A 的特征值 渐以A 的特征值为x1=5,x2=x3=-1. %(1) 当x1=5时,求解(x1*E —A ) X=0,得基础解系 syms y y=5; B=y*E-A; b1=sym( null(B)) %b1 为 %(2) (x1*E —A )X=0基础解系 当x2=-1时,求解(x2*E —A )X=0,得基础解系 y=-1; B=y*E-A; b2=sym( null(B)) T=[b1,b2] % D=TA-1*A *T % 运行结果如下: f = X A3-3*X A2-9*X -5 %b2 为 所有特征向量在基下的坐标所组成的矩阵 将矩阵A 对角化,得对角矩阵D (x2*E —A )X=0基础解系

宁波工程学院理学院《高等代数》课程组 1 [-sqrt(1/6), sqrt(1/2)] T = [sqrt(1/3), sqrt(2/3), 0] [sqrt(1/3), -sqrt(1/6), -sqrt(1/2)] [sqrt(1/3), -sqrt(1/6), sqrt(1/2)] D = [5, 0, 0] [0, -1, 0] [0, 0, -1] ans = -1 -1 0的特征值与特征向量,并判别A 2 是否可以对角化 . 解:建立m 文件v3.m 如下: cic 解2:建立m 文件v2.m 如下: clc A= [1 2 2;2 1 2; 2 2 1]; d=eig(A) % [V,D]=eig(A) % inv (V)*A*V %A 运行结果如下: d = -1 -1 5 V = 247/398 279/1870 -1040/1351 D = -1 0 0 求全部特征值所组成的向量 求特征值及特征向量所组成的矩阵 可对角化,且对角矩阵为D 1145/2158 -1343/1673 1013/3722 780/1351 780/1351 780/1351 0 -1 0 例2:求矩阵A

第六章线性空间与线性变换.

第六章线性空间与线性变换 1.验证: (1)2阶矩阵的全体S i ; ⑵主对角线上的元素之和等于0的2阶矩阵的全体S 2; (3)2阶对称矩阵的全体S 「 对于矩阵的加法和乘数运算构成线性空间, 解(1)设A,B 分别为二阶矩阵,则A,B S i 显然 (A B) S i ,k A S i ,从而对于矩阵的加法和乘数运算构成线性空间. 0 0 1 是S 1的一个基. a b de A B ⑵设 c a , f d A,B S 2 (a d) c b ka kb A B S 2 kA S 2 c a a d kc ka 1 0 0 1 0 0 1 2 3 0 1 0 0 1 0 是 ?个 基. ⑶设A, B S 3 ,则 T A A,B T B (A B)T A T B T A B ,从而(A B) S 3 (kA) kA 从,故kA S 3,所以对于加法和乘数运算构成线性空 间. 2.验证:与向量(0,0,1) 不平行的全体3维数组向量,对于数组向量 的 加法和乘数运算不构成线性空间. 解 设V 与向量(0,0,1)不平行的全体三维向量,设「1 (1,1,0) r 2 ( 1,0,1),则「1,「2 V .但「1 「2 (0,0,1) V 即 V 不是线性空间. 1 0 0 1 0 0 0 0 2 1 0 3 0 1 是S 3的一个基. 1 并写出各个空间的一个基.

3 .设U 是线性空间V 的一个子空间,试证:若U 与V 的维数相等,则 U V . 证明设1 2 r 为U 的一组基,它可扩充为整个空间 V 的一个基, 由 于dim(U) dim(V)从而i 2 r 也为V 的一个基,贝卩:对于x V 可 以表示为x ki 1 k 2 2 kr r .显然,x U ,故V U ,而由 已知知U V ,有U V . 4 .设V r 是n 维线性空间V n 的一个子空间,a 1, a r 是V r 的一个基.试 证:V n 中存在元素a r 1, a n ,使印, a 2, a r 冃仆,a n 成为V n 的一个 基. 证明 设r n ,则在V n 中必存在一向量a r 1 V r ,它不能被ai ,a 2, a r 线性表示,将 a r 1 添加进来,则a i ,a 2,a 3, a r 1是线性无关的.若 r 1 n ,则命题得证,否则存在a r 2 L(a 1,a 2, ,a r 1)则 a 1,a 2, ,a r 2线性无关,依此类推,可找到n 个线性无关 的向量 a 1,a 2, ,a n ,它们是V n 的一个基. 5 .在 R 3 中求向量 (3,7,1) 在基 1 (1,3,5) , 2 (6,3,2), 3 (3,1,0/ 下的坐标. 解 1 (1,0,0), 2 (0,1,0), 3 (0O1) 1 6 3 A 3 3 1 ( T T (1 , 2 , T )(:, T 2 , ;)A 5 2 0 X 1‘ X 1 2 6 3 x 1 X 2' A 1 X 2 5 15 8 x 2 坐标变换公式: X 3‘ X 3 9 28 15 X 3 X 1' 2 6 3 3 33 X 2‘ 5 15 8 7 82 故所求为X 3' 9 28 15 1 154 ? 所求坐标为33, 82,154

相关文档
相关文档 最新文档