文档库 最新最全的文档下载
当前位置:文档库 › 碱金属热电转换器

碱金属热电转换器

碱金属热电转换器
碱金属热电转换器

碱金属热电转换器(碱金属热电转换高效率垃圾发电器)

一、概述

碱金属热电转换是利用”- Al2O3固体电解质的离子导电性、用钠作工质,以热再生浓度差电池过程为工作原理的热电能量直接转换新技术。碱金属热电转换器(Alkali Metal Thermal to Electric Converter, AMTEC)则是一种面积型发电器件,它无运动部件、无噪声、无需维护,可以和温度在600°C至900°C范围任何形式的热源相

结合,构成模块组合式发电装置,满足不同容量负载的要求,热电转换效率可超过30%,而且具有排热温度较高(300°C上下)的特点。

与垃圾气化熔融技术相结合,构成高效率垃圾发电系统,是碱金属热电转换技术的重要应用方向,碱金属热电转换高效率垃圾发电将在我国方兴未艾的垃圾发电技术发展中

占有重要的地位。

二、碱金属热电转换器的工作原理及发展概况

AMTEC的工作过程可以参照图1来说明。AMTEC是一个充有少量钠的密闭容器,由厚度约1毫米的”- Al2O3固体电解质和电磁泵将其分隔成压力不同的两部分。在高压侧,工

质钠被热源加热,在钠与固体电解质的交界面,由压力差决定的化学势梯度驱使钠离子透过”- Al2O3向低压侧的电解质- 多孔电极界面迁移,负载开路时,在b ”- Al2O3两侧

便形成电动势,这一过程和浓度差电池类似,因而,AMTEC的空载电压由能斯特方程决定。负载接通时,电子从高压侧经外电路到达多孔电极处,与离子复合成钠原子,然后图1

。AMTEC的工作原理

钠以蒸气相穿过低压空间到达冷凝器,凝结的液钠则由电磁泵送回高压侧。实质上,”- Al2O3在能量转换过程中起着选择性渗透膜的作用,而AMTEC是工质钠通过固体电解

质等温膨胀做功的热机。

在热源温度1150K、冷源温度500K、”- Al2O3壁厚为1毫米、考虑器件的内部损失时,AMTEC的效率随电流的密度而变化。当不可逆过程造成的损失为0.2瓦¤[ 厘米] 2时,

效率峰值为35%,对同样温度范围的卡诺循环效率的比值达62%。所谓不可逆过程,主要是多孔电极表面向冷凝器表面的热辐射以及通过构件的热传导。与同样是直接发电器件的热

电半导体发电器不同的是,对于后者,热传导是一种本征损失,而对AMTEC,可以靠精心设计把这类不可逆损失降低到最低限度,这是AMTEC具有高效率的重要原因。分析结果表

明,如果把损失抑制到0.02瓦¤[ 厘米] 2 ,那么理论效率将达45%。

迄今用于AMTEC的”- Al2O3都是管材,外径从7毫米至30毫米不等,壁厚最薄的做到0.7 毫米(考虑不可逆损失时的效率)。AMTEC是低电压器件,单管器件的空载电压约为

1.5伏,按电极表面积计算的功率密度达0.5~ 1.0瓦¤[ 厘米] 2。在实际使用时,靠多管单元的适当组合来满足负载的要求。每个单元由多根”- Al2O3管构成,在电气上串联

连接。

碱金属热电转换器是1968年见于美国专利的新概念,美国福特汽车公司和美国宇航局喷气推进实验室是研究、开发AMTEC的先驱,先后取得了一系列重要进展:以单管实验器

件效率19%验证了理论的可靠性;36管实验装置发电1千瓦;用电磁泵加压的实验装置连续发电14000小时;用毛细吸液芯加压的模块式器件连续稳定发电11000小时。

九十年代起,美国先进模块电源系统( AMPS) 公司则以令人瞩目的研究成果大大推动了AMTEC商用化的进程。用5至7根直径7毫米”- Al2O3管构成的器件已经在AMPS公司进行

试生产,器件单元输出4瓦左右,其应用领域为空间电源、余热发电和热电联产等等。

AMPS公司制作的单管器件进行模拟试验:在多管单元运行特性研究和可靠性试验的基础上,AMPS设计了净输出500瓦的AMTEC装置作为住户微型热电联产系统的原型;与此同

时,他们正在为欧洲的公司制造容量为350瓦、利用供暖锅炉余热的发电装置原型,并进行了35千瓦系统的设计研究,初步结果表明,35千瓦系统的尺寸仅为0.7立方米。

中国科学院电工研究所从1994年起,先后在国家自然科学基金和国防科工委科技预研基金的支持下,并与中国科学院上海硅酸盐研究所的密切配合,在国内率先开展碱金属

热电能量直接转换技术的应用研究,建立了热电转换器件实验室和薄膜电极制备、器件封接用的工艺装备,开展了多孔薄膜电极制备、单体封接、集流栅设计和工质循环技术等

关键技术的研究和实用化多管器件的设计及工艺研究,取得了显著进展。单管实验器件达到了能够重复运行多次、累计发电2小时、峰值功率8.85瓦、功率密度0. 9瓦¤[ 厘米]

2的水平。为进一步进行碱金属热电转换垃圾发电的研究创造了良好的条件。

三、国外垃圾发电技术的发展动向和我们的战略

随着国民经济的发展和生活水平的提高,垃圾处理日益成为环保的重要课题,迄今,处理垃圾的方法不外乎深埋、焚化和回收利用,利用垃圾焚化炉所产生的热来发电,是

垃圾处理的重要方向,从发展看,垃圾发电将是形成分散型电源系统和电力生产一次能源多元化的重要内容。

国外垃圾发电发展得最快的是美国、德国和日本。据1995年的数据,美国垃圾发电厂有114座,总容量达2650兆瓦,居世界第一位。居第二位的是德国,1993年已有垃圾发电

厂50座,总容量1000兆瓦。日本的垃圾发电厂数量多达149座,但总容量仅有557兆瓦。美国垃圾发电的平均效率也居世界首位,达22%,德国的达17%,日本9%。除了垃圾的成分

、性质方面的原因,平均效率方面的差别也反映了建设垃圾发电厂的立足点的不同。

迄今为止,日本的垃圾焚化占垃圾处理总量的75%,但是,用于发电的焚化装置只占垃圾焚化装置总数的8%;日本从1965年起就有垃圾发电厂投入使用,主要着眼于环境保护

,通产省、环境厅、自治省和厚生省设立有补助金。大部分垃圾发电厂锅炉出口蒸汽参数比较低,一般为250°C、20大气压左右。

另一方面,美国和德国的垃圾处理以深埋为主(占60%),焚化在美国垃圾处理总量中只占15%,德国稍高,占30%,但是,焚化装置几乎全部用于发电(美国的垃圾发电厂占焚

化装置总数的78%,若按垃圾处理量计算,占93%;德国则接近100%)。因为政府不予财政补贴,他们在兼顾环保效果的同时,比较注重经济效益,多采用高温高压蒸汽运行条件(

比如500°C、90大气压),以期达到高效率。

近年来,特别是日本,一方面,从分散型电源在未来电力生产中的地位着眼,开始强调高效率垃圾发电的重要性,并且已经把垃圾发电纳入了1994年制订的新能源导入大纲

,到2000年,垃圾发电总容量将达2000兆瓦,而到2010年将为4000兆瓦。另一方面,从抑制二恶英排放和重金属的排出水平、节省焚化后灰的处理场地考虑,从环保的角度对垃

圾发电系统提出了更高的要求。

提高垃圾发电效率的方法很多,例如,采用耐腐蚀新材料来提高余热锅炉的工作温度;采用二次燃烧来提高蒸汽的参数;用燃气轮机组成联合循环等等。从技术发展趋势看

,垃圾的气化熔融技术受到极大的关注,因为它在实现高效率的同时,还能抑制二恶英排放,并达到灰的减容化和排气的无害化。

气化熔融系统把垃圾的焚化和余灰的熔融在一个流程中完成,它具有下列优点:

(1)可以用垃圾的燃烧热来使余灰熔融,基本不需要外部热源。

(2)可以采用低空气比燃烧,排气量减少。

(3)燃烧温度高达1000~ 1300°C,可使二恶英分解,而且,因为前驱物质减少,再合成的量也少。

(4)可以在气化部分的出口分离金属以作再生利用。

德国是研究开发气化熔融技术的主要国家,西门子公司开发的日处理量480吨的系统,已于1997年春投入商用试运行。此外,据今年4月份OHM杂志报道,日本从事气化熔融技

术开发的厂家已经超过20家,例如,NKK公司就从1996年起开始了日处理量24吨装置的验证试验。

我国的垃圾发电技术的发展还刚刚起步,然而却有迫切的需求和广阔的市场。借鉴发达国家的经验,我们应该在起步阶段就考虑垃圾焚化和发电结合,并且十分注意经济效

益和社会效益并重,积极安排气化熔融处理技术和高效率发电新技术的研究与开发。

四、关于开展碱金属热电转换高效率垃圾发电技术研究的建议

实际上,在试图以提高燃烧温度来提高垃圾发电效率的场合,都可以考虑用碱金属热电转换器取代传统的动力设备,而达到所期望的性能指标。从发展着眼,将碱金属热电

转换技术与垃圾的气化熔融技术相结合,是构成高效率垃圾发电系统极有前景的方案。

碱金属热电转换器的受热面可以直接与高温烟气流接触,发电装置设在熔融炉排烟部分的炉壁上,直接把燃烧热转换成电能。这样,就省去了余热锅炉、汽轮发电机组以及

蒸汽循环所需的附属设备。参照AMPS的估计,0.75兆瓦的AMTEC发电装置,体积约为15立方米。另一方面,0.75兆瓦汽轮发电机组的尺寸为24立方米,而与之匹配的余热锅炉(出

口蒸汽参数设为300°C、13大气压)的尺寸则超过300立方米。

因此,所建议的高效率垃圾发电系统在构成上的优点显而易见。在碱金属热电转换高效率垃圾发电系统中,垃圾的热解在流化床型气化炉中完成;AMTEC考虑用空气冷却,即

,发电装置的排热可以用来预热气化炉的燃风或熔融炉的补燃风。当然,还可以有各种具体方案,包括余热利用,都需要进行详细的比较研究。建议国家科技部组织有关单位进

行方案论证,确定项目和选题。

建议我国在“十五”期间开展碱金属热电转换垃圾发电系统关键技术的研究开发,并建成日处理量10吨级的试验装置,进行电厂效率的验证,为在2010年建成中试系统积累

必要的数据,进行技术准备。主要研究内容如下。

(1)垃圾气化熔融机制和过程参数选择。

(2)气化炉和熔融炉装置的优化设计。

(3)余热利用、金属类物质的回收环节的设计。

(4)AMTEC发电装置的设计和可靠性试验。

(5)AMTEC发电装置的功率调节。

(6)AMTEC-垃圾发电系统技术经济评价。

我国“九五”期间,垃圾焚化、发电研究已经有了良好的开端,碱金属热电转换器的研究已经有了较好的基础,相信经过“十五”的努力,我国将在高效率垃圾发电技术的

发展上走出自己的路

一、概述碱金属热电转换是利用”- Al2O3固体电解质的离子导电性、用钠作工质,以热再生浓度差电池过程为工作原理的热电能量直接转换新技术。碱金属热电转换器(Alkali Metal Thermal to Electric Converter, AMTEC)则是一种面积型发电器件,它无运动部件、无噪声、无需维护,可以和温度在600° C至900° C范围任何形式的热源相结合,构成模块组合式发电装置,满足不同容量负载的要求,热电转换效率可超过30%,而且具有排热温度较高(300° C上下)的特点。与垃圾气化熔融技术相结合,构成高效率垃圾发电系统,是碱金属热电转换技术的重要应用方向,碱金属热电转换高效率垃圾发电将在我国方兴未艾的垃圾发电技术发展中占有重要的地位。本报告介绍碱金属热电转换器的基本原理及国内外发展概况;评述国外垃圾发电技术的发展动向,并探讨我国垃圾发电的发展战略;提出”十五”期间开发碱金属热电转换高效率垃圾发电系统的建议。二、碱金属热电转换器的工作原理及发展概况 AMTEC的工作过程可以参照图1来说明。AMTEC是一个充有少量钠的密闭容器,由厚度约1毫米的”- Al2O3固体电解质和电磁泵将其分隔成压力不同的两部分。

在高压侧,工质钠被热源加热,在钠与固体电解质的交界面,由压力差决定的化学势梯度驱使钠离子透过”- Al2O3向低压侧的电解质- 多孔电极界面迁移,负载开路时,在b ”- Al2O3两侧便形成电动势,这一过程和浓度差电池类似,因而,AMTEC的空载电压由能斯特方程决定。负载接通时,电子从高压侧经外电路到达多孔电极处,与离子复合成钠原子,然后图1。AMTEC的工作原理钠以蒸气相穿过低压空间到达冷凝器,凝结的液钠则由电磁泵送回高压侧。实质上,”- Al2O3在能量转换过程中起着选择性渗透膜的作用,而AMTEC是工质钠通过固体电解质等温膨胀做功的热机。图2表示在热源温度1150K、冷源温度

500K、”- Al2O3壁厚为1毫米、考虑器件的内部损失时,AMTEC的效率随电流密度的变化。当不可逆过程造成的损失为0.2瓦¤ [ 厘米] 2时,效率峰值为35%,对同样温度范围的卡诺循环效率的比值达62%。所谓不可逆过程,主要是多孔电极表面向冷凝器表面的热辐射以及通过构件的热传导。与同样是直接发电器件的热电半导体发电器不同的是,对于后者,热传导是一种本征损失,而对AMTEC,可以靠精心设计把这类不可逆损失降低到最低限度,这是AMTEC具有高效率的重要原因。图2所示的分析结果表明,如果把损失抑制到0.02瓦¤ [ 厘米] 2 ,那么理论效率将达45%。迄今用于AMTEC的”- Al2O3都是管材,外径从7

毫米至30毫米不等,壁厚最薄的做到0.7 图2。考虑不可逆损失时的效率毫米。AMTEC是低电压器件,单管器件的空载电压约为1.5伏,按电极表面积计算的功率密度达0.5~ 1.0瓦¤ [ 厘米] 2。在实际使用时,靠多管单元的适当组合来满足负载的要求。每个单元由多根”- Al2O3管构成,在电气上串联连接。碱金属热电转换器是1968年见于美国专利的新概念,美国福特汽车公司和美国宇航局喷气推进实验室是研究、开发AMTEC的先驱,先后取得了一系列重要进展:以单管实验器件效率19%验证了理论的可靠性;36管实验装置发电1千瓦;用电磁泵加压的实验装置连续发电14000小时;用毛细吸液芯加压的模块式器件连续稳定发电11000小时。九十年代起,美国先进模块电源系统( AMPS) 公司则以令人瞩目的研究成果大大推动了AMTEC商用化的进程。用5至7根直径7毫米”- Al2O3管构成的器件已经在AMPS公司进行试生产,器件单元输出4瓦左右,其应用领域为空间电源、余热发电和热电联产图3。单管实验器件等等。图3是AMPS公司制作的单管器件进行模拟试验的照片。在多管单元运行特性研究和可靠性试验的基础上,AMPS设计了净输出500瓦的AMTEC 装置作为住户微型热电联产系统的原型;与此同时,他们正在为欧洲的公司制造容量为350瓦、利用供暖锅炉余热的发电装置原型,并进行了35千瓦系统的设计研究,初步结果表明,35千瓦系统的尺寸仅为0.7立方米。图5 单管实验器件的伏安特性图4 单管实验装置的外观中国科学院电工研究所从1994年起,先后在国家自然科学基金和国防科工委科技预研基金的支持下,并与中国科学院上海硅酸盐研究所的密切配合,在国内率先开展碱金属热电能量直接转换技术的应用研究,建立了热电转换器件实验室和薄膜电极制备、器件封接用的工艺装备,开展了多孔薄膜电极制备、单体封接、集流栅设计和工质循环技术等关键技术的研究和实用化多管器件的设计及工艺研究,取得了显著进展。单管实验器件达到了能够重复运行多次、累计发电2小时、峰值功率8.85瓦、功率密度0.9瓦¤ [ 厘米] 2的水平。为进一步进行碱金属热电转换垃圾发电的研究创造了良好的条件。图4、图5和图6分别为热电转换器件实验室、单管实验器件伏安特性和实用化多管单元的外观。图6.多管实验器件

实体图7.系统流程图三、国外垃圾发电技术的发展动向和我们的战略随着国民经济的发展和生活水平的提高,垃圾处理日益成为环保的重要课题,迄今,处理垃圾的方法不外乎深埋、焚化和回收利用,利用垃圾焚化炉所产生的热来发电,是垃圾处理的重要方向,从发展看,垃圾发电将是形成分散型电源系统和电力生产一次能源多元化的重要内容。国外垃圾发电发展得最快的是美国、德国和日本。据1995年的数据,美国垃圾发电厂有114座,总容量达2650兆瓦,居世界第一位。居第二位的是德国,1993年已有垃圾发电厂50座,总容量1000兆瓦。日本的垃圾发电厂数量多达149座,但总容量仅有557兆瓦。美国垃圾发电的平均效率也居世界首位,达22%,德国的达17%,日本9%。除了垃圾的成分、性质方面的原因,平均效率方面的差别也反映了建设垃圾发电厂的立足点的不同。迄今为止,日本的垃圾焚化占垃圾处理总量的75%,但是,用于发电的焚化装置只占垃圾焚化装置总数的8%;日本从1965年起就有垃圾发电厂投入使用,主要着眼于环境保护,通产省、环境厅、自治省和厚生省设立有补助金。大部分垃圾发电厂锅炉出口蒸汽参数比较低,一般为250° C、20大气压左右。另一方面,美国和德国的垃圾处理以深埋为主(占60%),焚化在美国垃圾处理总量中只占15%,德国稍高,占30%,但是,焚化装置几乎全部用于发电(美国的垃圾发电厂占焚化装置总数的78%,若按垃圾处理量计算,占93%;德国则接近100%)。因为政府不予财政补贴,他们在兼顾环保效果的同时,比较注重经济效益,多采用高温高压蒸汽运行条件(比如500° C、90大气压),以期达到高效率。近年来,特别是日本,一方面,从分散型电源在未来电力生产中的地位着眼,开始强调高效率垃圾发电的重要性,并且已经把垃圾发电纳入了1994年制订的新能源导入大纲,到2000年,垃圾发电总容量将达2000兆瓦,而到2010年将为4000兆瓦。另一方面,从抑制二恶英排放和重金属的排出水平、节省焚化后灰的处理场地考虑,从环保的角度对垃圾发电系统提出了更高的要求。提高垃圾发电效率的方法很多,例如,采用耐腐蚀新材料来提高余热锅炉的工作温度;采用二次燃烧来提高蒸汽的参数;用燃气轮机组成联合循环等等。从技术发展趋势看,垃圾的气化熔融技术受到极大的关注,因为它在实现高效率的同时,还能抑制二恶英排放,并达到灰的减容化和排气的无害化。气化熔融系统把垃圾的焚化和余灰的熔融在一个流程中完成,它具有下列优点: (1)可以用垃圾的燃烧热来使余灰熔融,基本不需要外部热源。 (2)可以采用低空气比燃烧,排气量减少。 (3)燃烧温度高达1000~ 1300° C,可使二恶英分解,而且,因为前驱物质减少,再合成的量也少。 (4)可以在气化部分的出口分离金属以作再生利用。德国是研究开发气化熔融技术的主要国家,西门子公司开发的日处理量480吨的系统,已于1997年春投入商用试运行。此外,据今年4月份OHM杂志报道,日本从事气化熔融技术开发的厂家已经超过20家,例如,NKK公司就从1996年起开始了日处理量24吨装置的验证试验。我国的垃圾发电技术的发展还刚刚起步,然而却有迫切的需求和广阔的市场。借鉴发达国家的经验,我们应该在起步阶段就考虑垃圾焚化和发电结合,并且十分注意经济效益和社会效益并重,积极安排气化熔融处理技术和高效率发电新技术的研究与开发。四、开展碱金属热电转换高效率垃圾发电技术研究的建议实际上,在试图以提高燃烧温度来提高垃圾发电效率的场合,都可以考虑用碱金属热电转换器取代传统的动力设备,而达到所期望的性能指标。从发展着眼,将碱金属热电转换技术与垃圾的气化熔融技术相结合,是构成高效率垃圾发电系统

极有前景的方案。碱金属热电转换器的受热面可以直接与高温烟气流接触,发电装置设在熔融炉排烟部分的炉壁上,直接把燃烧热转换成电能。这样,就省去了余热锅炉、汽轮发电机组以及蒸汽循环所需的附属设备。参照AMPS的估计,0.75兆瓦的AMTEC发电装置,体积约为15立方米。另一方面,0.75兆瓦汽轮发电机组的尺寸为24立方米,而与之匹配的余热锅炉(出口蒸汽参数设为300° C、13大气压)的尺寸则超过300立方米。因此,所建议的高效率垃圾发电系统在构成上的优点显而易见。图7是碱金属热电转换高效率垃圾发电系统的构成,在此系统中,垃圾的热解在流化床型气化炉中完成;AMTEC考虑用空气冷却,即,发电装置的排热可以用来预热气化炉的燃风或熔融炉的补燃风。当然,还可以有各种具体方案,包括余热利用,都需要进行详细的比较研究。建议国家科技部组织有关单位进行方案论证,确定项目和选题。建议我国在“十五”期间开展碱金属热电转换垃圾发电系统关键技术的研究开发,并建成日处理量10吨级的试验装置,进行电厂效率的验证,为在2010年建成中试系统积累必要的数据,进行技术准备。主要研究内容如下。 (1)垃圾气化熔融机制和过程参数选择。 (2)气化炉和熔融炉装置的优化设计。 (3)余热利用、金属类物质的回收环节的设计。 (4)AMTEC发电装置的设计和可靠性试验。 (5)AMTEC发电装置的功率调节。 (6)AMTEC -垃圾发电系统技术经济评价。我国“九五”期间,垃圾焚化、发电研究已经有了良好的开端,碱金属热电转换器的研究已经有了较好的基础,相信经过“十五”的努力,我国将在高效率垃圾发电技术的发展上走出自己的路。参考文献童建忠、倪秋芽,一种独特的热电能量直接转换器件? 碱金属热电转换器(AMTEC),电工电能新技术,1993年第1期 Rahul Mital, et al., Micro-Cogen AMTEC Systems for Residential and Transportation Opportunities, Proceedings of 33rd IECEC, Colorado Springs,CO, August 2-6, 1998 都市型分散电源系统,(日本)电气学会技术报告,第609号,1996年10月废弃物发电的内外动向和气化熔融技术,OHM,1998年 No.1 许萃群,余热发电,上海科技出版社,1981

年版

高效率点聚焦太阳热直接发电

-------------------------------------------------------------------------------- 来源:中国洁净煤技术网时间:2005年7月21日浏览次数:2833 1、引言

面对二十一世纪,发电系统的一次能源多元化和更为强调环境的洁净与安全的发展趋势为人阳能发电的发展提供了良好的机遇。二十世纪七十年代以来,太阳热发电和人伏发电的研究都有了显著的进展,虽然还没有达到商用,应该说部进入了成熟的阶段

近年来,光伏电池制造技术日趋成熟、光伏电池生产能力增长、光伏模块价格不断下降,不论国内还是国外,都有格外看好光伏系统的倾向。然而,尽管据最近的报道,一九九八年全世界光伏电池的产量已达157,4兆瓦,而且在美国,过去三年间光伏模块的制造成本降低了31%,据称,到1999年可做到一峰瓦1. 79美元,但是,光伏系统的价格仍然相当昂责。另一方面,如所周知,迄今唯一达到商业运行水平的太阳能电站,恰恰是建立在美国南加州的槽式线聚焦热发电系统,该系统的建造历经十年,九个电站的总容量达354兆瓦,发电量已达60亿度,最后建成的电站容量80兆瓦、电价已降至每度电12美分。

本报告概括太阳热发电技术的现状,探讨碱金属热电能量直接转换枝术与太阳能发电系统结合的可行性,叙述点聚焦太阳热直接发电的概念与特点,并提出”十五”期间开展此项研究的建议。

2.太阳热发电技术的现状

太阳热发电枝木的现状可以美国的动向为代表。除了已经提到的槽式线聚焦系统,还有用定日镜聚光的塔式系统以及采用旋转抛物面聚光镜的点聚焦一斯特体系统。大家知道,线聚焦系统和点聚焦系统都取得过举世瞩目的成果,特别是麦道公司研制的点聚焦一斯特林系统曾经创下了转换效率接近30%的记录.最近十五所以来,对于线聚焦系统,在提高部件性能和可靠性、降低部件造价、降低运行维护费用等方面都取提了长足的进展。另一方面,塔式系统的实验装备经过重要的改造,已成为近年来发展的重点,因为,根据美国能源部的预测,塔式系统具有最吸引人的技术经济指标。图1(略)是三种系统电价的预测结果,由图可见,塔斯社式系统的电价可望在2010年降到5美分,与常规火电厂匹敌。

以过去十五年的工作成果为基础,美国能源部制订了1996年至2015年太阳热发电技术的20年发展规划,其目标是,到2020年,世界上太阳热发电系统的总容量达20000兆瓦。

图2(略)是三种不同类型热发电系统的容量份额,可以看到,随着年代的推移,塔式系统和气聚焦系统的容量增长得很快。图3则是太阳热发电总容量在美国国内和国外的分布,由图可知,差不多从2005年起,美国就把主要注意力放在占领国外市场上。

美国能源部的规划旨在支持和吸引产业界的积极参与,以促进太阳热发电的商业化。与比相呼应,麦道公司和斯特林发动机系统公司联合推出了点聚焦一斯特林

系统商业化的开发计划,以2001年建成示范电站为目标。图4和图5分别为这种电站的成本及电价的子测结果.由图4可知,当年产一万套时, 25千瓦装置的成本在每千瓦1000美元到2000美元之间,而图5表明,如果容量因子大于50%,那么, 25千瓦装置的电价在5美分上下。

3、在太阳热发电系统中采用直接发电器件的可行性

已有的三种太阳热发电系统都用热机和发电机来实现能量的转换,在线聚焦和塔式系统中用的是传统的蒸汽轮机作原动机,这样的系统只有在大容量发电的场合才能获得良好的技术经济指标;另一方面,点聚焦一斯持林系统的容量可以小到几个千瓦,而且可以达到高效率,但是需要用氢或氦作工质,工作压力高速150个大气压,增加了斯特林发动机的制造难度。不仅如此,所有这些带有运动部件的系统都包含了可观的维护工作量和必须的运行维护费用。

于是,把无运动部件、无声而且不需维护的直接发电器件来替代上迷能量转换部件,显燃是一种可取的思路。所说的热电直接发电器件,有温差半导体、热电子发电器、光伏发电器和碱金属热电转换器,四种器件的工作原理各不相同,运用的热源温度亦有差异,如表1所示。

碱金属热电转换器是四种直接发电器件中最年轻的分支,它的概念提出于1968年,大的经过十年的探索,完成了原理试验,建立了基本理论,并且以效率19%,功率密度1.1瓦/[厘米]的实验成果验证了理论的可靠性。碱金属热电转换器用β"-Al2O3固体电解质作选择性渗透膜,以金属钠为工质,在液钠/β"A1203界面由化学势梯度驱动,使钠离子和电子分离,实现热电能量的直接转换,由于它在中等的热源温度范国就能达到30%左右的效率,远高于热电半导体发电的效率(5%左右),又不必使用像热光伏发电器那样的高温材料,器件结构也比热电子发电器简单,因而颇受人们的关注,以空间电源为目标的研制工作在美国

宇航局所设计划的支持下正积极顺利的进行。

除了无运动部件、无声、无需维护之外,碱金属热转换器是一种低电压面积型器件,功率密度可达0.5~ 1.0瓦(厘米)2,比普通先伏电池的高;可以靠模块组合构成不同规模的发电装置,而且能量转换效率与装置容量无关。

因此,只要在效率和价格方面具有竞争力,用直接发电器件代替传统的能量转换部件是可行的。

4、点聚焦太阳热直接发电的概念

如果把点聚焦一斯特体系统中的斯特林发动机/发电机组以碱金属热电转换发电器件取而代之,那么就构成了点聚焦太阳热直接发电系统,它的结构框图示于图6。由碟型集能器聚焦的太阳辐射被位于抛物面焦点处的热管传热单元所接收并输入碱金属热电转换器,后者使热能直接转换成直流电,经功单调节变换成用户所需要的交流电力。必要的支持系统有太阳辐射集能器跟踪子系统和贮能装置,还有和热电转换器件的冷却及余热利用有关的设备。采用点聚焦集能是非常合适的,首先因为它有很大的聚光比,容易达到高效率,就能量转换效率而言,碱金属转换器可以同斯特林机组匹敌,还可以考虑与其他器件串级组合,有效利用排热来增加系统的效率。此外,点聚焦系统容量范围宽,在我国发展,可以避开占地、选点的难题,降低建设费用。

碱金属热电转换器只要求聚光镜焦斑处的温度不低干900℃就能实现高效发电,这一温度正好与斯特林发动机所要求的一致,于是点聚焦一斯特林系统研究的许多成果都可以借鉴到直接发电系统中来,特别是一体化的热管式吸热器。图7(略)和图8(略)分别为美国和日本提出的用碱金属热电转换器的大空太阳能电源的示意图.在地面应用时,为了降低成本,将考虑廉价的贮热物质。顺便指出,与光伏系统相比,在夜间或雨天时对策多样化是太阳热发电的一大特长,除了热贮能,也可以考虑燃烧驱动的所谓混合方式,当然也可以考虑电力贮能方法、包括先进蓄电池和超级电客器。

图7和图8所示结构的差别在于,前者发电单元的轴线与吸热器的轴线垂直,后者则是平行配置的。

5、点聚焦太阳热直接发电系统主要部件的发展状况

1、碱金属热电转换器

美国最早研究开发碱金属热电转换技术的机构有福特汽车公司和美国宇航局喷气推进实验室, 1990年以来,美国先进模块电源系统(AMPS)公司则对碱金属热电转换器的商用化起了重要的推动作用。美国在该领域所取得的成果有:

36管实验装置发电1千瓦;

用电磁泵加压的实验装置连续发电14000小时;

用毛细芯加压的模块式器件连续稳定发电11000小时;

AMPS公司的功率4瓦的器件已进入试生产阶段。

AMPS公司还对燃烧加热,电功率35千瓦的碱金属热电转换装置进行了设计研究,结果表明,35 千瓦系统的尺寸仅为0.7立方米,燃烧加热的装置每千瓦的价格约为650美元。

中国科学院电工研究所和上海硅酸盐研究所是国内从事碱金属热电转换器研究的主要单位,上硅所主要从事β"A12O3,管材的研制,用于钠-硫电池的管材己达到国际先进水平。电工所则进行发电装置的关键技术研究和发电系统的设计研究,已经建立了热电直接发电器件实验室和必要的工艺设备,单管实验装置已经达到重复运行多次、累计发电2小时、峰值输出885瓦、功率密度0。9瓦/(厘米)2的水平。

2、点聚焦碟形集能器

应用于斯特林循环的抛物面碟形集能器在美口已发展多年,在降低价格、改进镜面材料工艺等方面作了大量工作。聚焦碟的效率与聚焦比以及上限工作温度有关,对于碱金属热电转换器,其工作温度在700℃~800℃,聚焦比可以在150D 上下,效率可做到85%~ 9.%。聚焦碟支架的设计需要兼顾跟踪的要求,当地的风速和系统的振动。碱金属热电转换器无运动部件,振动的约束大为缓和。八十年代,湘潭电机厂曾与美国合作建立了张口直径7.5米的聚焦碟,铝质结构,表面。镀铝反光膜,积累了宝贵的制作经验;近年来,国内随着卫星通讯及卫星电视产业的发展,抛物面天线的制作技术发展很快,比如深圳华达玻璃钢公司引进美国的技术,制造的碟型天线,形状精度完全能满足太阳能发电的要求。中科院电工所则利用玻璃钢质抛物面聚焦碟表面粘贴镀铝反光膜,当张口直径为1.8米、焦径比0.39时,焦斑直径约40毫米,斑点温度达1300℃,为进一步研制轻质、廉价的聚焦碟作了有效的探索。

3.钠热管吸热器

钠热管吸热器很大程度上可以借鉴太阳能/斯特林系统已有的研究成果,据1993年的报告,德国工程热力学研究所为V-160斯特林发动机研制的和直径7.5米碟型聚能器配合使用的钠热管吸热器,经历了两代的演进。第一代样机,在钠蒸汽温度为700t时,工作60个循环,累计190小时,当蒸汽温度达780℃时,热管传输的最大热功率为33千瓦。经改进后的第二代样机,吸收表面的最高温

度达900C,在西班牙的PSA现场试验,已运行了730小时.在斯特林发动机系统中,钠蒸汽携带的热量必须传给高压的氦气,在碱金属热电转换器的场合,囚为钠蒸汽兼作热电转换的工质,钠热管吸热器的设计可以简化,国内工业用高钠热管的研制已有较多的成果积累,可作为借鉴。

4.贮能装置

可以根据技术经济评价,把热贮能和电力贮能结合起来考虑。因为点聚焦直接发电是单元型的发电系统,因此热贮能可以是分单元配置也可以集中配置。

特别要提到,像钠硫电池和超级电容器这类新型电力贮能器件在太阳能发电系统中的应用正受到极大的关注,将成为新的发展方向。

另外,还可考虑用燃料油作为夜间或阴雨天无日照时的热源,用燃烧热维持发电系统工作,这将有利于降低系统的成本。

和光伏系统类似,太阳热发电系统的并网运行也是降低系统成本的可取途径。我们对电功率10千瓦的点聚焦太阳热直接发电装置技术经济指标所作的初步估计表明,系统净效率可达24%,到2010年每千瓦的成本不超过人民币20000元,同光伏发电相比具有显然的竞争能力。

6、“十五”立项的建议

从以上叙述可知,点聚焦太阳热直接发电系统,能够高效率利用太阳辐射这一洁净能源,在技术经济指标上可以与光伏系统匹敌,适合我国太阳资源分布不平衡,迪远地区日照资源丰富、却缺乏其他能源的情况,建议在,“十五”,期间立项开展这种新发电系统的研究与开发,以在“十五”建成电功率2千瓦试验装置为目标,开展关键技术的研究,研究内容如下。

(1)高效碟形集能器及其跟踪控制技术(2)高效钠热管吸热器(3)碱金属热电转换发电组件的优化设计及工作可靠性(4)新型热贮能和电力贮能技术及其组合方式的研究(5)点聚焦太阳热直接发电系统技术经济分析

工业和人口的增长增加了对清洁的和可持续利用的能源的要求。据预测,如果温室效应不那么严重,今后50年人们仍将以使用矿物燃料(石油、天然气、水合物--甲烷气体与水的混合物)为主。因此,矿物燃料及其产地(尤其是中东地区),不论从经济还是从地缘政治,即国家安全的角度来说都是十分重要的。在使用矿物燃料方面,当前的

注意力更多地放在提高效率,降低燃料消耗方面。1971-1984年,国外以不变价格进行生产加工所消耗的能源降低了29%,将来还可以降低50%。人们正在追求每加仑汽油可以跑130,甚至190千米的汽车;家庭住房将来可以节省10-30%的能源。

今天军事系统多数使用石油作燃料(除了核航母和潜艇外),石油类燃料与空气燃烧每磅可产生近20000英国热量单位(BTU)。未来燃料产生的能量可以大大增强。

发现并利用新能源具有巨大的经济、政治、军事意义,许多科学家正在进行研究,以期取得突破。一方面,科学家企图更多地利用诸如太阳能、风能、水能、海洋波浪能量等可再生和重复使用的、对环境友好的、成本较低(如太阳能发电的成本仅仅是大型发电站的1/2-1/5)的能源。另一方面,科学家还在寻找新的替代能源,如核聚变、或以氢为基础的能源、从空间真空中挖掘"零点能量"、利用基因工程大大提高制造酒精的生物总量等。但是,据科学家预测,在今后25年内,受控核聚变发电技术仍无法取得突破。只有电解水释放的热能比它消耗的电力多,证明"冷聚变"是真实的这一事实,为开发新能源提供了一线希望。

高能量密度材料的另一个领域是长寿命微型探测装置使用的和其它小型应用要求的微动力源。包括微型燃产电池、纳米机器用的涡轮交流发电机组等技术。目的是研制像手表纽扣电池那么大的微动力源,储能能力至少是目前最好的锂蓄电池的5倍。

在军事领域,对能源和动力的需求不但越来越高,而且还提出许多特殊要求。武器系统为了提高射程(或航程)和机动能力,要求提供更多的能量;由于现代武器系统装备了大量信息系统,甚至电炮、激光、高能微波等新的高能武器,需要提供高功率电力;此外,在特殊环境中工作的空间系统、微型系统,需要特殊的能源。现代陆军的平台需要的电力是:人(<10×3瓦);无人机(>10×3瓦);地面车辆(<×5瓦);坦克(操作-<10×6瓦;停驶观察-10×3-10×4瓦);直升机(<10×6瓦)。探测装置需要的电力:前视红外(8瓦);雷达(>100瓦);无线电通信(9瓦);处理器(>10瓦);显示器(8瓦)。未来卫星系统需要的功率大于一千瓦、工作时间长于3年。行星际探测器要求能源系统工作时间更长、更可靠。未来安装高能武器的全电战车需要更多的电力:电炮700-2400千焦;激光100千焦;高能微波武器40千焦耳;电装甲216千焦耳。舰载激光或高能微波武器需要100-500千瓦的能量,即要求550千瓦的柴油发动机作为原始的能源。

目前正在发展的、为军事系统提供高能量密度的能源技术有:先进柴油发电机、太阳能电池、燃料电池、锂聚合物蓄电池、电解电容器、通过人行走的机械运动来发电的发电靴,以及利用深海洋流发电的材料,如静电聚合物、压电材料。

一、太阳能电池

今天的太阳能电池采用低成本的硅,能量转换效率为13%;更耐辐射的砷化镓的能量转换效率为19%。先进的太阳能电池包括薄膜、多晶(或非晶)硅多带隙(MBG),它们的成本更低,效率更高,更耐辐射。现在最好的太阳能电池转换效率达到27%。

太阳能电池在空间用得比较多。通信卫星和侦察卫星一般多使用太阳能帆板提供电力。"深空1"探测器采用折射线形元件技术的太阳能搜集器阵列(SCARLET),它使用GaInP2/GaAs/Ge太阳能电池,电力达2521瓦,比预期值稍高,转换效率为22.5%,采用SCARLET技术可以提供60瓦/千克的质量效率比。"火星勘察者2001着陆器"将使用两个超灵活太阳电池阵列,可以提供870瓦的能量,每个翼仅重4.2千克。为国际空间站建造的临时控制舱,用于将空间站推向较高的轨道。它将安装16个太阳能阵列。

轻型飞机的太阳能电池厚度为125微米,密封厚50-100微米,覆盖层厚25微米,每千克太阳能电池可以产生200瓦电力。如果采用超薄(5微米)砷化钾做太阳能电池,

输出会更高。使用复合材料制造的光学设备和结构的太阳电池阵列能够提供2570瓦电力,比功率为每千克质量60瓦。

二、核发电系统

核电力系统具有高功率密度,操作与轨道位置无关、使用寿命长等特点。一般多采用核裂变和放射性同位素两种系统。因为长时间无人维护使用,要求高度可靠和自动控制。因为需要温度控制,所以体积应该小,才好屏护和进行辐射加固。放射性同位素电源的功率可达几百瓦,每年每衙克可产生43800瓦小时的电力,而化学蓄电池每衙克只能产生200瓦小时的电力。放射性同位素电源的半衰期为88年,在十年内该电力系统的功率能够保持在最大功率的15%的范围内,即在该期间能量功率比可保持为每衙克430000瓦小时。美国23个航天器采用过该种设备。前苏联的海洋监视卫星使用核放射性同位素电源为星载雷达供电。一些执行行星际探险任务的诸如"伽利略"、"尤利塞斯"、"卡西尼"号航天器上使用了同位素热电发电机,它们的性能稳定,工作可靠。在小行星带外探索太阳系的"卡西尼"使用放射性同位素加热热电转换器提供电力,燃料为钚-238,但转换效率只有6.7%,价格昂贵,发射前的安全也是问题。

三、燃料电池

燃料电池通过控制氢和氧的分学反应,产生电力。其优点是:

·比柴油发电机和气轮机效率高(燃料电池能量转换效率达35%-75%,新型固体氧化物燃料电池,效率可以提高到80%,而涡轮发电机的效率只有30%。);

·产生的二氧化碳少;

·燃料多样灵活;

·安静;

·不用燃烧燃料,没有活动部件;

·电能质量高

·对环境友好。

燃料电池的缺点是:成本较高、燃料需改造、尺寸较大、使用时间短。

美国能源部推荐采用质子交换膜燃料电池技术,质子交换膜燃料电池在减轻重量和体积方面有了很大的进展。主要技术障碍是把含硫高的重燃料转变为燃料电池所用的纯净的氢。美国防高级研究计划局开创的燃料处理技术可以把含高硫(百万分之3000)的蒸馏液转变成氢,成功地用于燃料电池发电。

碱金属碳酸盐型燃料电池已经用于航宇局的航天器上。磷酸型燃料电池可用于像汽车那样的大型车辆。

美国陆军研究局和国防高级研究计划局正在研究几项有希望的加氢技术。

美国陆军选择燃料电池考虑的几个因素:体积、重量、成本、后勤支援、安全、特征信号低、放置时间长短、可靠性。美军还在研究野外使用甲醇和使用氢做燃料的、可产生50-100瓦电力的小型燃料电池。美陆军与加拿大一公司签定设计制造自制再生燃料电池发电系统,为陆军车辆平台提供辅助动力。该系统将采用质子交换膜燃料电池系统,以取代现在使用蓄电池和柴油发电装置。再生式燃料电池在车辆发动机工作时,为发电系统再充氢气。它可以在野外工作十个小时,提供3千瓦平均功率,5千瓦峰值功率。该系统的优点是可长时间运作、零辐射、噪声低、降低畸变、提高在寒冷气候下的性能。

美海军计划在5年之后,潜艇和水面舰将采用燃料电池作动力。在此之前,首先需要建造一7.2米长,1.8米宽,3米高、625千瓦的演示装置,进行广泛的实验。因为海军需要2.5兆瓦的电力,所以需要4个这样的装置。现在已经建造的燃料电池堆的功率是250千瓦。最后将建造兆瓦级燃料电池电力设施,进行实验。

四、蓄电池

蓄电池可以将能量保存起来,供机动平台和人员使用。

储存电力的蓄电池占航天器重量的10%。现在使用的蓄电池是镍镉(NiCd)和镍氢(NiH2或NiMH2),新发展的有硫化纳(Nas)和固体聚合物蓄电池(SSP)。

未来国际空间站将使用48个"轨道机动装置"(ORU),每个轨道机动装置由38个串接的镍氢电池供电,每两个轨道机动装置进行串连,组成蓄电池。国际空间站最终将使用1824个镍氢电池。由24颗Teledesic极轨道通信卫星组成的星座。每颗星装有三个锂-离子蓄电池组,每组可以提供11.6千瓦峰值电能,平均2.2千瓦电能,三倍冗余。电池操作温度为-20摄氏度-+40摄氏度。"火星勘察者2001着陆器"选用可充电的锂离子蓄电池,其比能量可达150We-h/KG。火星微型探测器以蓄电池为能源,可为微电子装置提供6-15伏电力。电力微电子装置的尺寸是1×1.5×3/8英寸,它与蓄电池都要承受-120摄氏度-+50摄氏度的温度变化和30000g见速度的冲击。碱金属碳酸盐型燃料电池已经用于宇航局的航天器上。

美电能公司的双极镍-金属氢化物蓄电池有希望用于航空航天。该公司已经演示了每千克1.2千瓦的功率能力。美宇航局已经演示了这种新疑技术可以达到每千克70-82瓦时和每升154-204瓦时的能量密度。双极镍-金属氢化物蓄电池消除了毒性很大的镉,在不增加重量的情况下,把现有的F-16飞机主蓄电池能量容量和能量密度(54安小时,每衙克75瓦时)提高了三倍。密封的薄片小电池(Wafer cell)设计,与棱形或圆柱形相比,体积和重量减少25%。该公司正在为低地轨道卫星发展双极镍-金属氢化物蓄电池。计划通过5年研制,能够达到每衙克100瓦小时和每升250瓦小时的能力。第一项计划的焦点是发展高能量密度的双极镍-金属氢化物电极。全尺寸(15.2×30厘米,17安时)薄片小电池以40%放电达到2280低地轨道循环。第二项计划是发展多个薄片小电池的双极蓄电池原型。目前正在建造24个12个薄片小电池(0.5千瓦,17.3安时),能量密度为每千克70瓦小时和每升154瓦小时的双极蓄电池。1999年10月将建造两个由48个小电池组成的双极蓄电池(1千瓦)。

五、新型高能量密度能源和材料

高能量密度材料,是指能量密茺高的燃料、推进剂和炸药。多年来,人们已经认识到采用分子分解技术,有可能将能量密度比传统高能炸药的提高4-20倍。亚稳态固体氮恢复为气体时,比TNT炸药释放出的能量高4倍多。亚稳态固体氢分解成气体时,比TNT炸药释放出的能量高19倍。

中等能源是所谓的解发核异能素,经过触发,松驰核的旋转或形态时,能够释放出大量低能伽玛量子。核异能素技术能够释放出的能量比化学燃烧高100倍,但仍低于核辐射残余和其它核炸药的能量。

今天的HMX和RDX(混合炸药)炸药的爆炸能量比甘油炸药高50%。目前正在进行的工作是研究合成新的分子,其单位重量的爆炸或推进能量比甘油炸药高2-5倍,是现在使用的材料的2-6倍。如果成功,由于推力增加而能提高武器系统的射程、机动性,由于单位体积和重量减小而提高弹头的杀伤力。这种仅仅或大部分使用含氮的分子,所以在生产和使用时不会对环境产生不好的影响。现已经证实,世界上只存在三种稳定的氮:1772年发现的N2,1890年发现的N5,1999年生产出来的新的氮离子N+5。

使用原子作为推进剂取得重大进展。已经成功地演示了迅速将液氢冻结在液氢的表面上。一些氢离子可以漂浮在氦上达20-30分钟,有的甚至达到1.5小时。这是未来把原子的氢、硼或碳引进或捕获到固体氢内的关键。这些原子重新结合将释放大量能量,可能使氢氧火箭发动机的性能提高50-150%。

高能量密度材料的另一个领域是长寿命微型探测装置使用的和其它小型应用要求的微动力源。包括微型燃料电池、纳米机器用的涡轮交流发电机组等其它技术。目的是研制像手表纽扣电池那么大的微动力源,储能能力至少是最好的锂蓄电池的5倍。

使用氦,然后使用氢作推进剂的电热等离子火箭也取得了成功。实验已经达到设计10千瓦飞行所需要的等离子密度和温度。使用高功率密度(1千瓦/千克)源,能够支持90天载人火星旅行。

评估高功率注锂洛伦兹力加速器取得重大进展;莫斯科应用机械和电子动力学研究所的应用场洛伦兹力加速器在185KWe操作时,效率达到48%,比冲达4500秒。今后几年将发展500Kwe推进器。

美国洛斯·阿拉莫斯实验室进行了推力为15000磅核热火箭发动机实验,火箭喷气被引入内华达实验场的一个密封的洞内,3个小时的实验结果表明,压力达35磅/平方英寸。

便携式反质子搜集器使用氢离子诱发反质子行为,实验表明可以将10×5-10×6个反质子约束3-4天。马歇尔实验室完成了第二代高性能反质子搜集器的组装,该装置应能够储存10×12个反质子达几个月。将用它演示通过湮灭产生推力的可能性。

六、其它先进能源技术

2000年发射的欧洲轨道器采用机电方法以弥补热电转换效率不高。烃基碱金属热电转换器(AMTEC)以铌和1%锆作热面,铌10%铪1%钛做冷面,热面温度达到1150-1350K,冷面温度为600-700K就能满足性能要求。

通过散步那样的机械运动发电的发电靴,是利用人体的运动来发电,安装在鞋部的发电装置。美军设想的士兵组件式一体化电子系统概念,将随着技术的进步而减轻重量。

美军还在研究直接从后勤燃料(重油)中获取300-500瓦电力。(苏平)

碱金属和碱土金属

第17章 碱金属和碱土金属 2. 以食盐为原料,如何制备下列物质?写出反应方程式。 Na NaOH Na 2O 2 Na 2CO 3 Na 2SO 3 Na 2S 2O 3 答:(1)电解熔融NaCl-CaCl 2混合物制备金属Na : 2 NaCl(l) ==== 2 Na(l) + Cl 2(g) (2)电解NaCl 饱和溶液制备NaOH : 2 NaCl + 2H 2O==== 2 NaOH + H 2(g) + Cl 2(g) (3)由步骤(1)中制备的 Na 在过量O 2中燃烧制备Na 2O 2 : 2Na + O 2 ==== Na 2O 2 (4)用NaCl 饱和溶液吸收NH 3和CO 2析出NaHCO 3,煅烧NaHCO 3即得到Na 2CO 3: + CO 2 ===== NaHCO 3↓+ NH 4Cl NH 3 + NaCl + H 2O ===== Na 2CO 3 + H 2O ↑+ CO 2↑ 2NaHCO 3 也可用步骤(2)制备的NaOH 溶液吸收CO 2制备Na 2CO 3: 2 NaOH + CO 2 ==== Na 2CO 3 + H 2O (5)用步骤(2)制备的NaOH 溶液吸收SO 2制备Na 2SO 3 : 2 NaOH + SO 2 ==== Na 2SO 3 + H 2O (6) 用步骤(5)制备的Na 2SO 3溶液与S 粉共煮制备Na 2S 2O 3 : 电解 Na 2SO 3 + S ==== Na 2S 2O 3 3. 碱土金属碳酸盐的热分解反应如下: MCO 3(s) === MO(s) + CO 2(g) 根据下表中分解反应的热力学数据,计算它们的分解温度,总结碱土金属碳酸盐热稳定性的变化规律并简要说明原因。 碳酸盐 MgCO 3 CaCO 3 SrCO 3 BaCO 3 Δr H o (298 )/kJ ?mol -1 117 176 238 268 Δr S o (298 )/J ?mol -1?K -1 168 148 168 168 解:根据 Δr G o(T)=Δr H o(298) - T ?Δr S o(298) = 0 得 T =Δr H o(298)/Δr S o(298) 将表中数据带入上式求得各碱土金属碳酸盐的分解温度T 如下: 燃烧 电解 加热 加热

-碱金属和碱土金属元素习题

第17章碱金属和碱土金属习题1.选择题 17-1下列氢化物中,稳定性最强的是…………………………………………..( ) (A) RbH (B) KH (C) NaH (D) LiH 17-2下列关于锂和镁性质上的相似性的说法错误的是……………………….( ) (A) 锂和镁的氢氧化物受热时,可分解为相应的氧化物 (B) 锂和镁的氟化物、碳酸盐和磷酸盐都难溶于水 (C) 锂和镁的氯化物都能溶于有机溶剂 (D) 锂和镁的固体密度都小于1g/cm3,熔点都很低 17-3下列各组化合物中,均难溶于水的是……………………………………...()(A) BaCrO4,LiF (B) Mg(OH)2,Ba(OH)2 (C) MgSO4,BaSO4(D) SrCl2,CaCl2 17-4下列氯化物在有机溶剂中溶解度最大的是……………………………….()(A) LiCl (B) NaCl (C) KCl (D) CaCl2 17-5下列碳酸盐的热稳定性顺序正确的是……………………………………. ( ) (A) BeCO3>MgCO3>CaCO3>SrCO3>BaCO3(B) BaCO3>CaCO3>K2CO3 (C) BaCO3>SrCO3>CaCO3>MgCO3>BeCO3(D) Li2CO3>NaHCO3>Na2CO3 17-6下列各金属在空气中燃烧生成的氧化物仅为普通氧化物的是…………( ) (A) K (B) Na (C) Li (D) Rb 17-7 已知Na +H2O == NaOH(aq) + 1/2H2Δr H m?=-185.77kJ·mol-1 NaH + H2O == NaOH(aq) + H2Δr H m?=-132.21 kJ·mol-1 则NaH 的生成热为………………………………………………………….( ) (A) –317.98 kJ·mol-1(B) +317.98 kJ·mol-1 (C) –53.56 kJ·mol-1(D) +53.96 kJ·mol-1 17-8下列各碳酸盐中溶解度最小的是………………………………………..( ) (A) NaHCO3(B) Na 2CO3 (C) Li2CO3(D) K2CO3 17-9 NaNO3和LiNO3都在1000K左右分解,其分解产物……………………( ) (A) 都是亚硝酸盐和O2(B) 都是氧化物和O2 (C) 都产生N2O和O2(D) 除了都有氧气外,其余产物均不同

AD转换器及其应用

AD转换器及其应用 一A/D转换器的基本原理 定义:能将模拟量转换为数字量的电路称为模数转换器,简称A/D转换器或ADC。 A/D转换器转化模拟量的四个步骤:采样、保持、量化、编码。 模拟电子开关S在采样脉冲CP S的控制下重复接通、断开的过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C上的电压保持不变,为保持过程。在保持过程中,采样的模拟电压经数字化编码电路转换成一组n位的二进制数输出。 1取样定理 将一个时间上连续变化的模拟量转换成时间上离散的模拟量称为采样。

取样定理:设取样脉冲s(t)的频率为f S,输入模拟信号x(t)的最高频率分量的频率为f max,必须满足f s ≥ 2f max y(t)才可以正确的反映输入信号(从而能不失真地恢复原模拟信号)。 通常取f s =(2.5~3)f max 。 由于A/D转换需要一定的时间,在每次采样以后,需要把采样电压保持一段时间。 s(t)有效期间,开关管VT导通,u I向C充电,u0(=u c)跟随u I的变化而变化; s(t)无效期间,开关管VT截止,u0(=u c)保持不变,直到下次采样。(由于集成运放A具有很高的输入阻抗,在保持阶段,电容C上所存电荷不易泄放。) 2 量化和编码 数字量最小单位所对应的最小量值叫做量化单位△。 将采样-保持电路的输出电压归化为量化单位△的整数倍的过程叫做量化。 用二进制代码来表示各个量化电平的过程,叫做编码。 一个n位二进制数只能表示2n个量化电平,量化过程中不可避免会产生误差,这种误差称为量化误差。量化级分得越多(n越大),量化误差越小。 划分量化电平的两种方法 (a)量化误差大;(b)量化误差小 3 采样-保持电路

热电转换

热电转换效应的研究 张镱 哈尔滨工业大学能源学院核反应堆工程,哈尔滨150001,zuguoyukexue@https://www.wendangku.net/doc/ad4354344.html, 摘要:热能是自然界最广泛的能量之一,电能是人类社会应用最普遍的能源。如何将热能转 换为电能并且提高热电转换的效率将是一件意义重大的课题。本文首先介绍热电转换的原 理,以塞贝克效应为基本原理,探索热电效应转换的效率。然后介绍现阶段热电转换研究进 展,展示当前热电转换的最新研究成果。其次,揭示热电转换效应在现代工业中的应用,比 如温差发电等新型能源的利用。最后,得出自己的研究心得与感悟,对热电转换效应有更深 入的认识。 关键词:塞贝克效应;温差发电;半导体;载流子 The research of thermoelectric conversion Zhang Yi Harbin Institute of Technology Nuclear Reactors of Energy Institute, Harbin 150001, china, zuguoyukexue@https://www.wendangku.net/doc/ad4354344.html, Abstract: Thermal energy is one of the most extensive energy in the nature, electricity is the most common energy in the human social . How to convert heat to electricity and improve the efficiency of thermoelectric conversion will be a significant issue. This paper introduces the principle of thermoelectric conversion, to the basic principle of the Seebeck effect, to explore the efficiency of thermoelectric conversion. Then introduces the research progress of thermoelectric conversion at this stage, display the current thermoelectric conversion of latest research results. Second, revealing Thermoelectric effect in the application of modern industry, such as thermal power generation and other new energy. Finally, draw their own research experiences and has a better understanding on the thermoelectric conversion effect. Key words: Seebeck effect; Thermal energy; Semiconductor; Carrier “1821年,德国科学家塞贝克做了一个实验:当把一个由两种不同导体构成的闭

ad转换器

《电子技术》课程设计报告 课题:计数式8位AD转换器的设计与制作 班级电子1141学号 1141202207 学生姓名冯申申 专业电子信息工程 系别电子信息工程系 指导教师电子技术课程设计指导小组 淮阴工学院 电子信息工程学院 2016年06月

计数式8位A/D转换器的设计与制作 1、设计目的: a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 d)培养学生的创新能力。 2、技术指标及要求: 1电源±5V 2输出数字量8位 3误差1LSB 4定时开始转换或手动控制开始 5有转换结束标志 6输入电压直流电压0~2.5V; 7 主要单元电路和元器件参数计算、选择; 8画出总体电路图; 9 安装自己设计的电路,按照自己设计的电路,在通用板上焊接。焊接完毕后,应对照电路图仔细检查,看是否有错接、漏接、虚焊的现象; 10 调试电路; 11 电路性能指标测试; 12提交格式上符合要求,内容完整的设计报告;

3、总体设计 总体设计框图 上图为8位为计数式8位A/D转换器的总体设计框图。该八位AD转换器由以下几部分组成:1)模拟电压产生电路 2)电压比较电路 3) DA转换电路 4)脉冲产生电路 5)控制电路 6)计数电路 7)输出电路 3.2 电路组成及工作原理

热电材料作为环境友好的能源转化材料

热电材料作为环境友好的能源转化材料,已显示出了引人瞩目的应用前景,但是热电器件 走向实际应用的最大问题在于它的转换效率。从热力学的基本定理来说,热电优值没有上限。即使是应用固体理论模型和较为实际的数据计算得到的优值上限为ZT=4,仍远远大于目前 己获得的最大ZT值。通过寻求新类型或新结构的热电材料,优化制备工艺等,将有可能使 材料优值得到明显提高。 从目前的研究现状来看,未来热电材料的研究方向趋于以下几个方面: 2.纳米复合热电材料的研究 1低维热电材料的研究 降低材料维度,使用二维量子阱,一维量子线超晶格可以有效提高费米能级附近的态密度,增加载流子有效质量,提高Seebeek系数,同时材料中大量晶界对声子的散射使热导率大幅降低,两方面的共同作用使材料ZT值大幅提高。 即在三维块体材料中引入或原位生成纳米结构,或者将低维材料体系聚合成微纳复合材料,纳米结构的引入一方面可以大幅降低热导率,另一方面,可以通过量子限制效应大幅提高费米能级附近的电子态密度,提咼Seebeck系数。 电子跃迁示意图 导电聚合物的热电优值(ZT)优化只是处于起步阶段,还需要关于形态,化学和电子结构对三个主要的热电参数的影响进行了系统的了解。因为热电特性都彼此相关,以及导电聚合物众所周知的形态复杂性及其物理性质的各向异性,这一问题变得困难起来。就在过去几十年的导体和半导体聚合物研究的基础上,为聚合物基有机热电材料的发展奠定了坚实的基础。这一新兴研究领域的一个主要挑战是理解在导电聚合物各种塞贝克效应的来源以获得高的能量因子。此外,材料的热电性能表征也应得到发展。今天,从废物和太阳热能中大面积地进行热电能量收集看起来不起眼,但正在投入一些重要的努力,使起成为可能变得不再那么遥远。 随着能源与环境问题的日益突出,矿物能源来源枯竭和污染环境的挑战,太阳能的热利用越来越受到人们的重视。太阳能作为一种绿色可再生能源,具有储量大、利用经济、清洁环保等优点,温差发电技术是利用塞贝克效应效应,直接将热能转化为电能的发电技术,具有无运动部件,体积小,质量轻,可靠性高等特点,是绿色环保的发电方式。将温差发电技术和太阳能集热技术结合起来,能够直接将太阳热能转化为电能,大大简化了发电系统的结构,具有广阔的应用前景。 随着我国国民经济的迅速发展,能源的日益紧张以及环境污染的日趋严重。热电材料作为一种环保型能力转换材料备受人们的关注、重视,热电材料巨大的军用、民用市场需求和现代科学技术的飞速发展,必将带动相关产业的发展,形成一个具有广阔发展空间的绿色节能和环保高技术产业,产生巨大的社会和经济效益。 最初,热电材料主要在太空探索等一些特殊领域被应用。20世纪60~70年代,美国、俄罗斯等国家就研究和开发了铅-碲系中温热电偶臂以及硅-锗系高温热电偶臂,并将其用作太空飞行器,微波无人中继站和地震仪等的特殊电源。1962年,美国首次将热电发电机应用于卫星上,开创了研制长效远距离,无人维护的热电发电站的新纪元。此后,美

ad转换器原理与分类

ad转换器ad转换芯片ad转换器原理与分类常用ad转换器 2008年08月18日星期一23:02 下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。 1)积分型(如TLC7135) 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705) Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。 5)电容阵列逐次比较型 电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。 6)压频变换型(如AD650) 压频变换型(V oltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。 2. AD转换器的主要技术指标 1)分辩率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n 的比值。分辩率又称精度,通常以数字信号的位数来表示。 2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为

热电式传感器 热电式传感器是一种将温度变化转化为电量变化的装置

3.2.4热电式传感器热电式传感器是一种将温度变化转化为电量变化的装置。在各种热 电式传感器中,以将温度量转换为电势和电阻的方法最为普遍。其中最为常用于测量温度的是热电偶和热电阻,热电偶是将温度转化为电势变化,而热电阻是将温度变化转化为电阻的变化。这两种热电式传感器目前在工业生产中被广泛应用。该系统需要的传感器是将温度转化为电流,且水温最高是100℃,所以选择Pt100铂热电阻传感器。P100铂热电阻,简称为:PT100铂电阻,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值成匀速增长。 3.2.5可控硅加热装置简介 对于要求保持恒温控制而不要温度记录的电阻炉采用带PID调节的数字式温度显示调节仪显示和调节温度,输出0~10mA作为直流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率,完全可以满足要求,投入成本低,操作方便直观并且容易维护。温度测量与控制是热电偶采集信号通过PID温度调节器测量和输出0~10mA 或4~20mA控制触发板控制可控硅导通角的大小,从而控制主回路加热元件电流大小,使电阻炉保持在设定的温度工作状态。可控硅温度控制器由主回路和控制回路组成。主回路是由可控硅,过电流保护快速熔断器、过电压保护RC和电阻炉的加热元件等部分组成 3系统整体设计方案和电气连接图 系统选用了PLC CPU 226为控制器,PT100型热电阻将检测到的实际锅炉水温转化为电流信号,经过EM231模拟量输入模块转化成数字量信号并送到PLC中进行PID调节,PID控制器输出转化为0~10mA的电流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率,从而调节电热丝的加热。PLC和组态王连接,实现了系统的实时监控。 整体设计方案如图3 系统工作原理加热炉温度控制系统基本构成如图1-1所示 它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。

AD转换器种类

AD指标与类型 1. AD转换器的分类 下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。 1)积分型(如TLC7135) 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频A D转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型A D转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705) Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。

第15章碱金属与碱土金属

第15章碱金属与碱土金属 教学要求 1.掌握碱金属、碱土金属单质的性质,了解其结构、制备、存在及用途与性质的关系。 2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途。 3.了解碱金属、碱土金属氢氧化物溶解性和碱性的变化规律。 4.掌握碱金属、碱土金属重要盐类的性质及用途,了解盐类热稳定性、溶解性的变化规律。 教学时数4学时 15-1 碱金属和碱土金属的通性 碱金属元素原子的价电子层结构为ns1。因此,碱金属元素只有+1氧化态。碱金属原子最外层只有一个电子,次外层为8电子(Li为2电子),对核电荷的屏蔽效应较强,所以这一个价电子离核校远,特别容易失去,因此,各周期元素的第一电离能以碱金属为最低。与同周期的元素比较,碱金属原子体积最大,只有一个成键电子,在固体中原子间的引力较小,所以它们的熔点、沸点、硬度、升华热都很低,并随着Li一Na—K一Rb一Cs的顺序而下降。随着原子量的增加(即原子半径增加),电离能和电负性也依次降低,见表17—1。 碱金属性质的变化一般很有规律,但由于锂原子最小,所以有些性质表现特殊。事实上,除了它们的氧化态以外,锂及其化合物的性质与本族其它碱金属差别较大,而与周期表中锂的右下角元素镁有很多相似之处。 碱金属元素在化合时,多以形成离子键为特征,但在某些情况下也显共价性。气态双原子分子,如Na2、Cs2等就是以共价键结合的。碱金属元素形成化合物时,锂的共价倾向最大,铯最小。 与碱金属元素比较,碱土金属最外层有2个s电子。次外层电子数目和排列与相邻的

碱金属元素是相同的。由于核电荷相应增加了一个单位,对电子的引力要强一些,所以碱土金属的原子半径比相邻的碱金属要小些,电离能要大些,较难失去第一个价电子。失去第二个价电子的电离能约为第一电离能的一倍。从表面上看碱土金属要失去两个电子而形成二价正离子似乎很困难,实际上生成化合物时所释放的晶格能足以使它们失去第二个电子。它们的第三电离能约为第二电离能的4—8倍,要失去第三个电子很困难,因此,它们的主要氧化数是+2而不是+1和+3。由于上述原因,所以碱土金属的金属活泼性不如碱金属。比较它们的标准电极电势数值,也可以得到同样的结论。在这两族元素中,它们的原了半径和核电荷都由上而下逐渐增大,在这里,原子半径的影响是主要的,核对外层电子的引力逐渐减弱,失去电子的倾向逐渐增大,所以它们的金属活泼性由上而下逐渐增强。 碱金属和碱土金属团体均为金属晶格,碱土金属由于核外有2个有效成键电子,原于间距离较小,金属键强度较大,因此,它们的熔点、沸点和硬度均较碱金属高,导电性却低于碱金属。碱土金属的物理性质变化不如碱金属那么有规律,这是由于碱土金属晶格类型不是完全相同的缘故。碱金属皆为体立方晶格,碱土金属中,Be、Mg为六方晶格,Ca、Sr为面心立方晶格,Ba为体立方晶格。 这两族元素的离子各有不同的味道特征,如Li+离子味甜;K+、Na+离子味咸;Ba+离子味苦。 Li+离子的极化力是碱金属中最强的,它的溶剂化作用和形成共价的趋势异常的大,有人提出有“锂键”的存在,类似于氢键,如H—F···Li—F和(LiF2)2。 15-2 碱金属和碱土金属的单质 15-2-1 存在和制备 一、存在 由于碱金属和碱土金属的化学性质很活泼,所以它们只能以化合状态存在于自然界中。在碱金属中,钠和锂在地壳中分布很广,两者的丰度都为2.5%。主要矿物有钠长石Na[AlSi3O8]、和钾长石K[A1Si3O8],光卤石KCl·MgCl2·6H 20及明矾石K2SO4·A12(SO4)3·24H2O等。海水中氯化钠的含量为2.7%,植物灰中也含有钾盐。锂的重要矿物为锂辉石Li2O·A1203 4SiO2,锂、铷和铯在自然界中储量较少且分散,被

AD转换简介

A/D转换:就是把模拟信号,转换为数字信号 ad:模数转换,将模拟信号变成数字信号,便于数字设备处理。 da:数模转换,将数字信号转换为模拟信号与外部世界接口。 具体可以看看下面的资料,了解一下工作原理: ad转换器的分类 1.下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-δ调制型、电容阵列逐次比较型及压频变换型。 1)积分型(如tlc7135) 积分型ad工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片ad转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如tlc0831) 逐次比较型ad由一个比较器和da转换器通过逐次比较逻辑构成,从msb 开始,顺序地对每一位将输入电压与内置da转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如tlc5510) 并行比较型ad采用多个比较器,仅作一次比较而实行转换,又称flash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频ad转换器等速度特别高的领域。

串并行比较型ad结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型ad转换器配合da转换器组成,用两次比较实行转换,所以称为half flash(半快速)型。还有分成三步或多步实现ad转换的叫做分级(multistep/subrangling)型ad,而从转换时序角度又可称为流水线(pipelined)型ad,现代的分级型ad中还加入了对多次转换结果作数字运算而修正特性等功能。这类ad速度比逐次比较型高,电路规模比并行型小。4)∑-δ(sigma?/font>delta)调制型(如ad7705) ∑-δ型ad由积分器、比较器、1位da转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。 5)电容阵列逐次比较型 电容阵列逐次比较型ad在内置da转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列da转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片ad转换器。最近的逐次比较型ad转换器大多为电容阵列式的。 6)压频变换型(如ad650) 压频变换型(voltage-frequency converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种ad的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功

热电转换材料

热电转换材料 摘要:随着工业的进步,很多废热得不到合理的利用,造成很大的能量浪费,而热电材料可以很好的解决这个问题。利用自然界温差和工业废热热电发电。他能利用自然界的非污染能源,具有良好的社会综合效益。在环境污染和能源危机日益严重的今天,进行热电材料的研究具有很强的现实意义。 关键词:热电材料;热导率;电导率;影响因素 引言 热电材料主要是利用温差将热能转化为电能,热电材料主要通常无量纲热电优值来表征。无量纲热电优值越大热电材料性能越好。而影响无量纲优值的因素有:see-beck系数、电导率和热导率。固体中的导热主要是由晶格振动的格波和自由电子的运动来实现的,所以影响热导率的主要影响因素有温度,显微结构,化学组成,复相陶瓷,气孔等。影响无机材料电导率的因素主要有杂质及缺陷。在中国主要的发电形式是热电,但热电的由于余热浪费很严重。还有汽车尾气、工厂废气余热等都得不到很好的利用。在资源日益紧缺的当代,解决余热浪费问题就显得比较迫切了。而提高热电材料的热电转换率就可以解决这一问题。现在热电材料在电厂及工厂废热发电以及在处理汽车尾气上,航空航天领域都有很高的应用价值。 正文 随着全球工业化步伐的加快,世界性的能源短缺已成为制约经济社会发展的重要因素。然而,生活中有许多耗费能源所生成、却又被废弃的热能,例如汽车尾气、工厂锅炉排放的气体等。经计算,汽车的能源利用率不到30%,其余的能量除了用来冷却和摩擦生热外,有高达40%的能量作为尾气直接排掉,不仅浪费了大量能量,而且污染环境、造成温室效应。如果能将这些热能善加利用,即可成为再次使用的能源。 热电材料就是这样的一类材料,热电材料是有温差引起载流子运动并将热能转换为电能的一种环保行动能材料。热电材料因具有耐高温、耐氧化、无污染等特性,使其在特殊领域具有其他

什么是ad转换器

什么是ad转换器 将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br> 为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的a/d和d/a转换器,它们具有愈来愈先进的技术指标。 A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D 转换一般要经过取样、保持、量化及编码4个过程。在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。 取样和保持 取样是将随时间连续变化的模拟量转换为时间离散的模拟量。取样过程示意图如图11.8.1所示。图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号v O(t)为输入信号v1,而在(T s-τ)期间,传输门关闭,输出信号v O(t)=0。电路中各信号波形如图(b)所示。 图11.8.1 取样电路结构(a)

图11.8.1 取样电路中的信号波形(b) 通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。 取样定理:设取样信号S(t)的频率为f s,输入模拟信号v1(t)的最高频率分量的频率为f imax,则f s与f imax必须满足下面的关系f s≥2f imax,工程上一般取f s>(3~5)f imax。 将取样电路每次取得的模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定值,每次取得的模拟信号必须通过保持电路保持一段时间。 取样与保持过程往往是通过取样-保持电路同时完成的。取样-保持电路的原理图及输出波形如图11.8.2所示。

碱金属碱土金属

第20章s区金属(ⅠA、ⅡA ) [教学要求] 1.掌握碱金属、碱土金属单质的性质,了解其存在、制备及用途与性质的关系。 2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途。 3.了解碱金属、碱土金属氢氧化物溶解性和碱性的变化规律。 4.掌握碱金属、碱土金属重要盐类的性质及用途,了解盐类热稳定性、溶解性的变化规律。[教学重点] 1.碱金属、碱土金属的单质、氧化物、氢氧化物、重要盐类的性质。 2.碱金属、碱土金属性质递变的规律。 [教学难点] 碱金属、碱土金属的氢氧化物性质递变规律。 [教学时数] 2学时(课堂讨论课) [主要内容] 1.碱金属、碱土金属的通性。 2.碱金属、碱土金属单质的性质、制法及用途。 3.碱金属、碱土金属的氧化物、氢氧化物、氢化物、盐类、配合物的性质。 [教学内容] 碱金属和碱土金属是周期表ⅠA族和ⅡA族元素。ⅠA族包括锂、钠、钾、铷、铯、钫六种金属元素。它们的氧化物溶于水呈碱性,所以称为碱金属。ⅡA族包括铍、镁、钙、锶、钡、镭六种金属元素。由于钙、锶、钡的氧化物在性质上介于“碱性的”和“土性的”(以前把粘土的主要成分,既难溶于水又难熔融的Al2O3称为“土”)之间。其中锂、铷、铯、铍是希有金属,钫和镭是放射性元素。钠、钾、镁、钙和钡在地壳内蕴藏较丰富,它们的单质和化合物用途广泛。 20-1 通性 1 结构:ns1-2 2 成键特征:+Ⅰ,+ Ⅱ离子型 3 I.E. χA在同周期最低。碱金属原子最外层只有一个电子,次外层为8电子(Li为2电子),对核电荷的屏蔽效应较强,所以这一个价电子离核校远,特别容易失去,因此,各周期元素的第一电离能以碱金属为最低。 4 m.p. b.p. 硬度低,且从上自下,有高到低。 导电性ⅠA>ⅡA 碱金属原子体积最大,只有一个成键电子,在固体中原子间的引力较小,所以它们的熔点、沸点、硬度、升华热都很低,并随着Li一Na—K一Rb一Cs的顺序而下降。碱金属和碱土金属团体均为金属晶格,碱土金属由于核外有2个有效成键电子,

AD转换器和DA转换器试题及答案

第九章 A/D 转换器和D/A 转换器 一、填空题 1.(11-1易)D/A 转换器是把输入的________转换成与之成比例的_________。 2.(11-1中)倒T 形电阻网络D/A 转换器由___________、__________、_________及 _____________组成。 3.(11-1易)最小输出电压和最大输出电压之比叫做__________,它取决于D/A 转换器的 ________。 4.(11-1中)精度指输出模拟电压的_________和_________之差,即最大静态误差。主要 是参考电压偏离__________、运算放大器____________、模拟开关的 ________、电阻值误差等引起的。 5.(11-1易)D/A 转换器输出方式有____________、__________和__________。 6.(11-2易)采样是将时间上___________(a.连续变化,b.断续变化)的模拟量,转换成 时间上_________(a.连续变化,b.断续变化)的模拟量。 7.(11-2) 参考答案: 1.数字量/数字信号,模拟量/模拟信号 2.译码网络,模拟开关,求和放大器,基准电源 1. 分辨率 位数 2. 实际值 理论值 标准值 零点漂移 压降 3. 单极性同相输出 单极性反相输出 双极性输出 4. a b 二、选择题 1.(11-2中)将采样所得的离散信号经低通滤波器恢复成输入的原始信号,要求采样频率s f 和输入信号频谱中的最高信号max i f 的关系是( )。 A .max 2s i f f ≥ B .max s i f f ≥ C .max s i f f = D . max s i f f < 2.(11-2易)下列不属于直接型A/D 转换器的是( )。 A .并行A/D 转换器 B .双积分A/D 转换器 C .计数器A/ D 转换器 D .逐次逼近 型A/D 转换器 三、判断题(正确打√,错误的打×) 1.(11-2易)采样是将时间上断续变化的模拟量,转换成时间上连续变化的模拟量。 ( ) 2.(11-2中)在两次采样之间,应将采样的模拟信号暂存起来,并把该模拟信号保持到下 一个采样脉冲到来之前。 ( )

AD转换器主要技术指标

AD转换器的主要技术指标 1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。 2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。 3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。 4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。 5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Re lative Accuracy),微分非线性,单调性和无错码,总谐波失真(T otal Harmonic Distotortion缩写THD)和积分非线性。 AD的选择,首先看精度和速度,然后看是几路的,什么输出的比如SPI或者并行的,差分还是单端输入的,输入范围是多少,这些都是选AD需要考虑的。DA呢,主要是精度和输出,比如是电压输出啊,4-20mA电流输出啊,等等。DSP呢,用来计算嘛,所以主要是看运算能力了,当然,外围的接口也是需要考虑的。个人看法,TI的单DSP处理能力还可以,ADI的多DSP联合使用的优点特别突出,当然了,不同档次的DSP的运算能力和速度都是有很大差别的。 工程师在进行电路设计时,面对林林总总的AD/DA芯片,如何选择你所需要的器件呢?这要综合设计的诸项因素,系统技术指标、成本、功耗、安装等,最主要的依据还是速度和精度。 精度 与系统中所测量控制的信号范围有关,但估算时要考虑到其他因素,转换器位数应该比总精度要求的最低分辩率高一位。常见的AD/DA器件有8位,10位,12位,14位,16位等。 速度 应根据输入信号的最高频率来确定,保证转换器的转换速率要高于系统要求的采样频率。 通道 有的单芯片内部含有多个AD/DA模块,可同时实现多路信

碱金属和碱土金属

新乡医学院无机化学实验课教案首页 授课教师姓名及职称: 新乡医学院化学教研室年月日

实验碱金属和碱土金属(I-II) 一、实验目的 1.了解金属镁和氢氧化镁的性质; 2.比较镁、钙、钡难溶盐的生成和性质; 3.掌握钠、钾的鉴定方法。 二、实验原理 周期系第ⅠA族元素称为碱金属元素,价电子层结构为ns1;周期系第ⅡA族元素称为碱土金属元素,价电子层结构为ns2。这两族元素是周期系中最典型的金属元素,化学性质非常活泼,其单质都是强还原剂。 除LiOH为中强碱外,碱金属氢氧化物都是易溶的强碱。碱土金属氢氧化物的碱性小于碱金属氢氧化物,在水中的溶解度也较小,都能从溶液中沉淀析出。 碱金属盐多数易溶于水,只有少数几种盐难溶(如醋酸铀酰锌钠、四苯硼酸钠等),可利用它们的难溶性来鉴定Na+、K+离子。 在碱土金属盐中,硝酸盐、卤化物(氟化物除外)、醋酸盐易溶于水;碳酸盐、硫酸盐、草酸盐、磷酸盐等难溶。可利用难溶盐的生成和溶解性的差异来鉴定Mg2+、Ca2+、Ba2+离子。 三、实验用品(略) 四、实验内容 (一)金属镁和氢氧化镁的性质 1.在2支试管中分别加入少量镁粉及蒸馏水约2mL,加热其中一支试管2~3min再分别加入酚酞指示剂1滴,观察溶液颜色变化,解释原因并写出反应式。 2.在2支试管中各加入0.1mol·L-1MgSO4溶液5滴,再分别滴加2mol·L-1NaOH溶液2~3滴,观察现象。然后在两试管中分别加入3mol·L-1NH4Cl溶液和2mol·L-1HCl数滴,观察现象并写出反应式。 (二)镁、钙、钡难溶盐的生成和性质 1.硫酸盐溶解度的比较 在3支试管中分别加入5滴0.1mol·L-1MgCl2、0.1mol·L-1CaCl2、0.1mol·L-1 BaCl2,然

碱金属和碱土金属

第 20 章 s 区元素 [ 教学要求] 1、了解碱金属和碱土金属的通性。 2、掌握碱金属和碱土金属的氢化物及氧化物的性质和用途。 3、掌握碱金属和碱土金属的氢氧化物及其盐类的性质和用途。[ 教学重点] 碱金属和碱土金属的单质及其重要化合物的性质变化规律 [ 教学难点] 碱金属和碱土金属的单质及其重要化合物的性质变化规律 [ 教学时数] 4 学时 [ 教学内容] 20-1 碱金属和碱土金属的通性 20-2 碱金属和碱土金属的单质 20-3 碱金属和碱土金属的化合物 [教学方法与媒体] 讲解,ppt展示 20-1 碱金属和碱土金属的通性 1、碱金属和碱土金属的基本性质 碱金属元素的一些基本性质 1决定碱金属的主要氧化态:+1 2溶剂化强度最大(水化能为519kJ·mol-1)。

碱土金属元素的一些基本性质 讨论:Li 的φθ值为什么最负?Be 的φθ值最小? 锂电对的数值乍看起来似乎反常,这个原子半径最小、电离能最高的元素倒成了最强的还原剂.显然与其溶剂化程度(水合分子数为25 . 3)和溶剂化强度(水合焓为-519 kJ ·mol -1 )都是最大的有关。 φθ(Be 2+/Be) 明显低于同族其余电对,与其高电离能有关。无法被水合焓补偿: I 1 (Be) + I 2 (Be) = 2 656 kJ ·mol -1。 2、碱金属和碱土金属的存在 由于碱金属和碱土金属的化学活泼性很强,因此在自然界均以化合态形式存在。钠、钾在地壳中分布很广,其丰度均为 2.5% 。锂、铷、铯在自然界中的储量很小且分散,被列为稀有金属。碱土金属的重要矿物较多,铍为稀有金属。 3、用途 一些元素的某些重要用途分述如下: 3 决定碱金属的主要氧化态:+3。 4 电离势很高,I1+I2=2567kJ·mol -1,无法补偿其水合焓。 Li +/Li Na +/Na K +/K Rb +/Rb Cs +/Cs -3.04 -2.71 -2.93 -2.92 -2.92 Be 2+/Be Mg 2+/Mg Ca 2+/Ca Sr 2+/Sr Ba 2+/Ba -1.97 -2.36 -2.84 -2.89 -2.92 S 区金属元素相关电对的标准电极电势φ (Ox/Red) (单位:V)

相关文档
相关文档 最新文档