文档库 最新最全的文档下载
当前位置:文档库 › 1981年美国大学生数学竞赛试题

1981年美国大学生数学竞赛试题

1981年美国大学生数学竞赛试题
1981年美国大学生数学竞赛试题

Problem A1

Let the largest power of 5 dividing 112233

... n n

be 5f(n)

. What is lim n→∞ f(n)/n 2

?

Solution Answer: 1/8.

Let 5k

be the largest power of 5 not exceeding n.

We proceed by looking first at the contribution of the single power of 5 in all multiples of 5, then at the additional contribution from the second power of 5 in

all multiples of 25 and so on. A single power of 5 in m appears m times in m m

, so the first power of 5 in 5, 10, 15, 20, ... contributes to f(n): 5 + 10 + 20 + ...

+ 5[n/5] = 5( 1 + 2 + ... + [n/5] ) = 1/2 5 ( [n/5]2

+ [n/5] ). Similarly, the second

power of 5 in 25, 50, 75, ... contributes an additional 1/2 52 ( [n/52]2 + [n/52

] ). And so on. Hence

2 f(n) = 5 ( [n/5]2

+ [n/5] ) + 52

( [n/52]2

+ [n/52

] ) + ... + 5k

( [n/5k ]2

+ [n/5k

]). Let [n/5i

] = n/5i

+ δi . Then 5i

( [n/5i ]2

+ [n/5i

] ) = 5i

( (n/5i

- δi )2

+ (n/5i

- δi ) = n 2/5i - 2n δi + 5i δi 2 + n - 5i

δi .

Hence 2 f(n) = n 2∑1/5i

- 2n ∑ δi + ∑ 5i

(δi 2

- δi ) + nk.

Now k = [log 5n], so k/n → 0 as n → ∞. Also |δi | and |δi 2

- δi | < 1. Hence lim 1/n 2 |- 2n ∑ δi + ∑ 5i (δi 2 - δi ) + nk| <= lim 2k/n + lim k/n + lim 1/n 2 ∑ 5i

=

0 + 0 + lim 1/n 2 (1/4 (5k+1

+ 1) = 0 (since the last term is less than 5/4n).

Hence lim f(n)/n 2

= 1/2 (1/5 + 1/52

+ ... ) = 1/2 1/5 1/(1 - 1/5) = 1/8.

Problem A2

We can label the squares of an 8 x 8 chess board from from 1 to 64 in 64! different ways. For each way we find D, the largest difference between the labels of two squares which are adjacent (orthogonally or diagonally). What is the smallest possible D? Solution Answer: 9.

Consider the straightforward ordering 1, 2, 3, 4, 5, 6, 7, 8 for the first row, 9, 10, ... , 16 for the second row, ... , 57, 58, ... , 64 for the last row. Adjacent squares in the same row have difference 1, adjacent squares in different rows have difference 7, 8 or 9. So for this ordering D = 9.

w w w

.1

00x u e

x i

.c

o m

If we take any two squares on a chessboard there is a path from one to the other of length at most 7, where each step of the path is to an adjacent square [if the squares are at opposite corners of an m x n rectangle with m >= n, then take m - 1 steps, n - 1 of them diagonal and the rest along the longest side.] So there is a path of at most 7 steps from 1 to 64. At least one step of that path must have a difference of at least 9 (since 7 x 9 = 64 - 1). So we always have D ≥ 9. Hence the minimal D is 9. Problem A3

Evaluate: lim k→∞ e -k

∫R (e x

- e y

) / (x - y) dx dy, where R is the rectangle 0 ≤ x, y, ≤ k. Solution

Answer: It diverges to plus infinity.

We use L'H?pital's rule. Let f(k) = ∫R (e x

- e y

) / (x - y) dx dy, then the limit

is the same as the limit of f'(k)/e k

. To work out f'(k), note that f(k + δk) - f(k)

= ∫δR (e x - e y

) / (x - y) dx dy, where δR is the strip from x = 0 to x = k at y = k, width δk and the strip from y = 0 to k at x = k width δk. The integral over

the two strips is obviously the same, so we get f'(k) = 2 ∫0k (e k - e x

) / (k - x)

dx. Hence f'(k)/e k = 2 ∫0k (1 - e

-(k-x)

) / (k - x) dx. Changing the integration variable to z = k - x, we get 2 ∫0k (1 - e -z

) / z dz. The integrand is always positive and

for z >= 1 is at least 1 - 1/e > 1/2. So the integral is at least ∫1k

1/z dz = ln k. This tends to infinity with k.

Problem A4

A particle moves in a straight line inside a square side 1. It is reflected from the sides, but absorbed by the four corners. It starts from an arbitrary point P inside the square. Let c(k) be the number of possible starting directions from which it reaches a corner after traveling a distance k or less. Find the smallest constant

a 2, such that from some constants a 1 and a 0, c(k) ≤ a 2k 2

+ a 1k + a 0 for all P and all k.

Solution Answer: π.

By a series of reflections we can transform the path into a straight line. The particle reaches a corner iff the transformed line passes through a lattice point. So the number of directions which lead to absorption in a distance k or less is the number of lattice points in a circle radius k. At least that would be true except for the shadowing problem - the starting point may lie on a line of lattice points

w w w

.1

00x u e

x i

.c

o m

in which case it could never reach the ones further out. Shadowing reduces the number of lattice points in the circle that we should count, so the number of lattice points is still an upper bound.

Evidently what we need are some estimates for the number of lattice points in the circle. They do not need to be good estimates - we only need the highest power to be correct. We can regard each lattice point as the centre of a unit square. The

resulting unit squares tile the plane. The circle radius k has area πk 2

, so it

contains around πk 2

of the unit squares and hence around πk 2 lattice points. However, the squares around the edge may be incomplete and the incomplete squares may or may not include their centres. The maximum distance between two points of a unit square is √2, so the circle radius k + √2 contains the entirety of any square which overlaps the circle radius k. Hence the number of lattice points in the circle radius k is

at most π(k + √2)2

. Thus if we take a 2 = π, a 1 = 2π√2, a 0 = 2π, then c(k) ≤ a 2k 2

+ a 1k + a 0 for all P and k.

Similarly, any unit square overlapping the circle radius k - √2 is entirely

contained in the circle radius k. There are at least π(k - √2)2

such squares, so

the circle radius k contains at least π(k - √2)2

lattice points. Take a coordinate system with axes parallel to the sides of the squares. Then all lines joining lattice points have rational slope, so if we take the point P to have one coordinate rational and the other irrational, it cannot lie on any such lines. Thus for these points

there is no shadowing problem and the number of directions is at least π(k - √2)2

. This shows that π is the minimal value of a 2 (because for any smaller value and

any a 1, a 0 we would have a 2k 2 + a 1k + a 0 < π(k - √2)2

for sufficiently large k).

Problem A5

p(x) is a real polynomial with at least n distinct real roots greater than 1. [To be precise we can find at least n distinct values a i > 1 such that p(a i ) = 0. It is possible that one or more of the a i is a multiple root, and it is possible that there

are other roots.] Put q(x) = (x 2 + 1) p(x) p'(x) + x p(x)2 + x p'(x)2

. Must q(x) have at least 2n - 1 distinct real roots?

Solution Answer: yes.

Notice that q(x) = (x p(x) + p'(x) )( p(x) + x p'(x) ). The second factor is (x p(x) )'. Now x p(x) has at least n + 1 distinct roots (those of p(x) plus the root x = 0), so its derivative has at least n distinct zeros. To be precise assume that p(x) has exactly m ≥ n values a i > 1 at which it is zero: 1 < a 1 < a 2 < ... < a m . Then (x p(x) )'

w w w

.1

00x u e

x i

.c

o m

has at least m zeros, one in the interval (0, a 1) and one in each of the intervals (a i , a i+1).

We would like to make a similar argument for x p(x) + p'(x). This needs a trick.

p(x) exp(x 2

/2) also has

zeros at a i . Hence its derivative, exp(x 2/2) ( x p(x) + p'(x) ) has at least m-1 roots, one in each interval (a i , a i+1). But exp(x 2

/2) is positive for all real x, so (x p(x) + p'(x) ) has a root in each interval (a i , a i+1). So we are done unless a root k of (x p(x) )' is also a root of (x p(x) + p'(x) ). But in this case k belongs to some open interval (a i , a i+1) and we have k p(k) + p'(k) = k p'(k) + p(k). Hence (k - 1)( p(k) - p'(k) ) = 0. But k > 1, so p'(k) = p(k). Hence kp(k) + p(k) = 0, so p(k) = 0. But this contradicts the assumption that the a i are the only roots greater than 1. Hence there are at least 2m - 1 (which is ≥ 2n - 1) roots. Problem A6

A, B, C are lattice points in the plane. The triangle ABC contains exactly one lattice point, X, in its interior. The line AX meets BC at E. What is the largest possible value of AX/XE? Solution Answer: 5.

Take A = (2, 4), B = (0, 0), C = (2, 1). This contains a single lattice point X (1, 1). B is a distance 2 from the line AC, and AC = 3, so ABC has area 3. B is a distance 1 from the line CX, and CX = 1, so XBC has area 1/2. So A is 6x the distance of X from BC. Hence AX = 5 XE. So the value 5 can certainly be achieved.

Let L, M, N be the midpoints of BC, CA, AB. Let B have the coordinates (b 1, b 2) and similarly for the other points. Take B' to be such that X is the midpoint of BB'. Then it is also a lattice point, since its coordinates are (2x 1 - b 1, 2x 2 - b 2). So it cannot lie in the interior of the triangle ABC (since X is the only such lattice point). So X cannot lie in the interior of the triangle BNL (which has dimensions half that of BAC and is similar to it). Similarly, X cannot lie in the interior of CLM.

Now consider the point L' on the ray LX such that LL' = 3LX. It is also a lattice point, since its coordinates are (3x 1 - (b 1 + c 1), 3x 2 - (b 2 + c 2) ). So it cannot lie in the interior of ABC. A fortiori, it cannot lie in the interior of LMN. Take M' on LM such that LM' = 1/3 LM, and N' on LN such that LN' = 1/3 LN. Then LM'N'

w w w

.1

00x u e

x i

.c

o m

is similar to LMN and 1/3 the dimensions. So X cannot lie inside LM'N' (otherwise L' would lie within LMN).

It follows that X must lie above the extended line M'N' (which is parallel to BC). But the distance of this line above BC is 1/6 the distance of A above BC. So if the line AX cuts it at F (and BC at E), then AF/FE = 5. Hence AX/XE ≤ 5. Problem B1

Evaluate lim n→∞ 1/n 5

∑ (5 r 4

- 18 r 2

s 2

+ 5 s 4

), where the sum is over all r, s satisfying 0 < r, s ≤ n.

Solution

Answer: - 1.

This seems curiously difficult for a qu 1, which makes me think I am missing something!

We need: ∑1n r 2 = 1/3 n 3 + 1/2 n 2

+ O(n), and ∑1n

r 4

= 1/5 n 5

+ 1/2 n 4

+ O(n 3

).

Applying these we get that the sum given is 5 (1/5 n 5

+ 1/2 n 4

+ O(n 3

) ) n - 18 (1/3 n 3 + 1/2 n 2 + O(n) )2 + 5 (1/5 n 5 + 1/2 n 4 + O(n 3) ) n = (n 6 + 5/2 n 5 + O(n 4) ) - (2n 6

+ 6n 5 + O(n 4) ) + (n 6 + 5/2 n 5 + O(n 4) ) = - n 5 + O(n 4

). So the required limit is - 1.

The tricky part is proving the relation for ∑ r 4

. A fairly trivial induction gives

that ∑ r(r+1)(r+2)...(r+s) = 1/(s+2) r(r+1)...(r+s+1). Hence ∑ r k = 1/(k+1) n k+1

+ O(n k ). Also ∑(r 4 + 6r 3 + O(r 2) ) = 1/5 (n 5 + 10 n 4 +O(n 3) ). Hence ∑ r 4 = 1/5 n 5

+ 2n 4 + O(n 3) - 6(1/4 n 4 + O(n 3) ) - ∑ O(n 2) = 1/5 n 5 + 1/2 n 4 + O(n 3

). The relation

for ∑ r 2

can be obtained similarly, although most people probably remember the exact formula 1/6 n(n+1)(2n+1), which is easy to prove by induction.

Problem B2

What is the minimum value of (a - 1)2

+ (b/a - 1)2

+ (c/b - 1)2

+ (4/c - 1)2

, over all real numbers a, b, c satisfying 1 ≤ a ≤ b ≤ c ≤ 4. Solution

Answer: 12 - 8√2.

w w w

.1

00x u e

x i

.c

o m

Let A = a, B = b/a, C = c/b, D = 4/c. Then we require the minimum of (A-1)2 + (B-1)2

+ (C-1)2 + (D-1)2

subject to ABCD = 4 and A, B, C, D >= 1.

We consider first the simpler case of minimising (A-1)2

+ (B-1)2

subject to AB = k 2

and A, B > 1. We show that it is achieved by taking A = B. This is routine. Set f(x)

= (x - 1)2 + (k 2/x - 1)2 and set f'(x) = 0, leading to a quartic (x - k)(x + k)(x 2

- x + k 2

) = 0 with real roots k, -k. Note that f'(x) < 0 for x just less than k, and > 0 for x just greater than k, so x = k is a minimum.

Now it follows that all four of A, B, C, D must be equal. For if any two were unequal, we could keep the others fixed and reduce the sum of squares by equalising the unequal pair whilst keeping their product fixed. Thus the minimum value is achieved with A = B = C = D = √2, which gives value 12 - 8√2. Problem B3

Prove that infinitely many positive integers n have the property that for any prime

p dividing n 2 + 3, we can find an integer m such that (1) p divides m 2

+ 3, and (2) m 2

< n. Solution

I started by finding some small n with the required property. This led to: (1) 52

+ 3 = 227, with 7 | 22 + 3, 2 | 12 + 3; (2) 122 + 1 = 723, with 3 | 32 + 3; (3) 232

+ 1 = 227 19 with 192 | 42

+ 3.

That suggested as the first line of attack looking at special n such as 2a 7b

. That led nowhere.

My second line of attack was to look for relations of the type (a 2

+ 3)(b 2

+ 3) =

f(a, b)2 + 3. After some playing around, I obtained (m 2 + 3)( (m+1)2 + 3) = M 2

+ 3,

where M = (m 2 + m + 3). We are almost there. Any prime factor of M 2

+ 3 which divides m 2 + 3 has the required property since m 2

< M. But that is not true for prime factors

of (m+1)2

+ 3. However, all we have to do is to iterate. We need to split the larger factor:

(m 2

+ 3)( (m+1)2 + 3)( (m 2+m+2)2

+ 3) = ( (m 2

+m+2)2

+ (m 2

+m+2) + 3)2

+ 3.

This shows that any n of the form ( (m 2

+m+2)2

+ (m 2

+m+2) + 3) has the required property. Problem B4

A is a set of 5 x 7 real matrices closed under scalar multiplication and addition. It contains matrices of ranks 0, 1, 2, 4 and 5. Does it necessarily contain a matrix of rank 3?

w w w

.1

00x u e

x i

.c

o m

Answer: no.

The 5 x 7 is something of a red herring. Note that we would expect the answer to be no, because addition and scalar multiplication do not impose any mixing on the matrix elements.

Consider the 5 x 5 matrix with a in the first 4 positions on the diagonal, c is the last position, b at positions (4,5) and (5,4) and zeros elsewhere. Taking (a, b, c) = (1, 0, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0) gives matrices of rank 5, 4, 2, 1, 0 respectively. If a = 0, then all the entries in rows 1, 2 and 3 are zero, so the rank is at most 2. If a is non-zero, then there is certainly a 4 x 4 unit submatrix, so the rank is at least 4. Thus no member of the set has rank 3. If we add two columns of zeros to every member of the set, then we get a counter-example for the 5 x 7 case. Problem B5

f(n) is the number of 1s in the base 2 representation of n. Let k = ∑ f(n) / (n + n 2), where the sum is taken over all positive integers. Is e k

rational?

Solution Answer: yes.

Obviously f(2n+1) = f(2n) + 1 (because the base 2 representation for 2n+1 is the same as that for 2n with an additional 1 at the end). Note also that f(2n) = f(n).

Let us look at the adjacent terms f(2n) /( 2n(2n + 1) ), and f(2n + 1) / ( (2n+1)(2n+2) ). They sum to 1/ ( (2n+1)(2n+2) ) + 2 f(2n) / ( 2n(2n+2) ) = 1/ ( (2n+1)(2n+2) ) +

1/2 f(n) / ( n(n+1) ). Thus we get k = f(1)/2 + ∑1∞

( 1/ ( (2n+1)(2n+2) ) + 1/2 f(n) / ( n(n+1) ) = (1 - 1/2 + 1/3 - 1/4 + ... ) + 1/2 k [since 1/( (2n+1)(2n+2) )

= 1/(2n+1) - 1/(2n+2) ]. Thus k = 2 ln 2 = ln 4. So e k

= 4.

Problem B6

Let P be a convex polygon each of whose sides touches a circle C of radius 1. Let A be the set of points which are a distance 1 or less from P. If (x, y) is a point of A, let f(x, y) be the number of points in which a unit circle center (x, y) intersects P (so certainly f(x, y) ≥ 1). What is sup 1/|A| ∫A f(x, y) dx dy, where the sup is taken over all possible polygons P?

w w w

.1

00x u e

x i

.c

o m

Answer: 8/3.

Construct a rectangle on each side of P, with the other dimension of each rectangle 1. Between each adjacent pair of rectangles construct a sector radius 1, center the common vertex. Then A comprises the interior of P, the rectangles and the sectors. By joining each vertex of P to the center of C we divide the interior of P into triangles, each with area 1/2 x length of side. So the area of P = k/2, where k is the perimeter of P. Obviously, the area of the rectangles is k and since the sectors form a circle their area is π. So |A| = π + 3k/2.

The center of a unit circle which cuts a segment length δx must lie in one of two crescents centered on δx, which have total area 4δx. We may now integrate around P to get the area 4k. In this integration points are counted multiple times if the unit circles centered on them intersect P multiple times. In fact, the integral is exactly ∫A f(x, y) dx dy. Note that most unit circles meeting P will meet it twice, but those with centres near a vertex may meet it 4 times.

Thus 1/|A| ∫A f(x, y) dx dy = 4k/(π + 3k/2) = 8/(3 + 2π/k). So clearly 8/3 is an upper bound. But we can make k arbitrarily large (by taking one vertex of P off to infinity), so 8/3 is also the least upper bound.

w w w

.1

00x u e

x i

.c

o m

AMC/AIME美国数学竞赛 试题真题

AMC/AIME美国数学竞赛试题真题 考试信息 AMC最新考试时间: ●2010年第26届AMC8于 11月16日,星期二 ●2011第12届AMC10A,第62届AMC12A 于2月8日,星期二 ●2011第12届AMC10B,第62届AMC12B 于2月23日,星期三 ●2011第29届AIME-1于3月17日,星期四 2011第29届AIME-2于3月30日,星期三 ●2009年AMC8考试情况

●2008年考试情况 AMC/AIME中国历程: 1983第1届AIME上海有76名同学获得参赛资格 1984年第2届AIME有110人获得参赛资格 1985年第3届AIME北京有118名同学获得参赛资格 1986年第4届AIME上海有154名同学获得参赛资格,我国首次参加IMO的上海向明中学吴思皓就是在第四届AIME中获得满分 1992年第10届AIME上海有一千多名同学获得参赛资格,其中格致中学潘毅明,交大附中张觉,上海中学葛建庆均获满分1993年第11届AIME上海有一千多名同学获得参赛资格,其中华东师大二附中高一王海栋,格致中学高二(女)黄静,市西中学高二张

亮,复旦附中高三韩志刚四人获得满分,前三名总分排名复旦附中41分,华东师大二附中41分,上海中学40分。 北京地区参加2006年AMC的共有7所市重点学校的842名学生,有515名学生获得参加AIME资格,其中,清华附中有61名学生参加AMC,45名学生获得AIME资格,20名学生获得荣誉奖章 据悉中国大陆以下地区可以报名参加考试: 北京地区:中国数学会奥林匹克委员会负责组织实施 长春地区、哈尔滨地区也有参加考试 在华举办的美国人子弟学校也有参加考试广州地区:《数学奥林匹克报》负责组织实施。 在中国大陆报名者就在中国大陆考试。考题采用英文版。 2009年AMC中国地区参赛学校一览表

2010年美国大学生数学建模竞赛B题一等奖

Summary Faced with serial crimes,we usually estimate the possible location of next crime by narrowing search area.We build three models to determine the geographical profile of a suspected serial criminal based on the locations of the existing crimes.Model One assumes that the crime site only depends on the average distance between the anchor point and the crime site.To ground this model in reality,we incorporate the geographic features G,the decay function D and a normalization factor N.Then we can get the geographical profile by calculating the probability density.Model Two is Based on the assumption that the choice of crime site depends on ten factors which is specifically described in Table5in this paper.By using analytic hierarchy process (AHP)to generate the geographical profile.Take into account these two geographical profiles and the two most likely future crime sites.By using mathematical dynamic programming method,we further estimate the possible location of next crime to narrow the search area.To demonstrate how our model works,we apply it to Peter's case and make a prediction about some uncertainties which will affect the sensitivity of the program.Both Model One and Model Two have their own strengths and weaknesses.The former is quite rigorous while it lacks considerations of practical factors.The latter takes these into account while it is too subjective in application. Combined these two models with further analysis and actual conditions,our last method has both good precision and operability.We show that this strategy is not optimal but can be improved by finding out more links between Model One and Model Two to get a more comprehensive result with smaller deviation. Key words:geographic profiling,the probability density,anchor point, expected utility

2018年美国“数学大联盟杯赛”(中国赛区)初赛三年级试卷及答案

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛 (三年级) (初赛时间:2017年11月26日,考试时间90分钟,总分200分) 学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。 请在装订线内签名表示你同意遵守以上规定。 考前注意事项: 1. 本试卷是三年级试卷,请确保和你的参赛年级一致; 2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全; 3. 请确保你已经拿到以下材料: 本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、及如何参加复赛的说明。其他材料均不能带走,请留在原地。 选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。 1. 5 + 6 + 7 + 1825 + 175 = A) 2015 B) 2016 C) 2017 D) 2018 2.The sum of 2018 and ? is an even number. A) 222 B) 223 C) 225 D) 227 3.John and Jill have $92 in total. John has three times as much money as Jill. How much money does John have? A) $60 B) $63 C) $66 D) $69 4.Tom is a basketball lover! On his book, he wrote the phrase “ILOVENBA” 100 times. What is the 500th letter he wrote? A) L B) B C) V D) N 5.An 8 by 25 rectangle has the same area as a rectangle with dimensions A) 4 by 50 B) 6 by 25 C) 10 by 22 D) 12 by 15 6.What is the positive difference between the sum of the first 100 positive integers and the sum of the next 50 positive integers? A) 1000 B) 1225 C) 2025 D) 5050 7.You have a ten-foot pole that needs to be cut into ten equal pieces. If it takes ten seconds to make each cut, how many seconds will the job take? A) 110 B) 100 C) 95 D) 90 8.Amy rounded 2018 to the nearest tens. Ben rounded 2018 to the nearest hundreds. The sum of their two numbers is A) 4000 B) 4016 C) 4020 D) 4040 9.Which of the following pairs of numbers has the greatest least common multiple? A) 5,6 B) 6,8 C) 8,12 D) 10,20 10.For every 2 pencils Dan bought, he also bought 5 pens. If he bought 10 pencils, how many pens did he buy? A) 25 B) 50 C) 10 D) 13 11.Twenty days after Thursday is A) Monday B) Tuesday C) Wednesday D) Thursday 12.Of the following, ? angle has the least degree-measure. A) an obtuse B) an acute C) a right D) a straight 13.Every student in my class shouted out a whole number in turn. The number the first student shouted out was 1. Then each student after the first shouted out a number that is 3 more than the number the previous student did. Which number below is a possible number shouted out by one of the students? A) 101 B) 102 C) 103 D) 104 14.A boy bought a baseball and a bat, paying $1.25 for both items. If the ball cost 25 cents more than the bat, how much did the ball cost? A) $1.00 B) $0.75 C) $0.55 D) $0.50 15.2 hours + ? minutes + 40 seconds = 7600 seconds A) 5 B) 6 C) 10 D) 30 16.In the figure on the right, please put digits 1-7 in the seven circles so that the three digits in every straight line add up to 12. What is the digit in the middle circle? A) 3 B) 4 C) 5 D) 6 17.If 5 adults ate 20 apples each and 3 children ate 12 apples in total, what is the average number of apples that each person ate? A) 12 B) 14 C) 15 D) 16 18.What is the perimeter of the figure on the right? Note: All interior angles in the figure are right angles or 270°. A) 100 B) 110 C) 120 D) 160 19.Thirty people are waiting in line to buy pizza. There are 10 people in front of Andy. Susan is the last person in the line. How many people are between Andy and Susan? A) 18 B) 19 C) 20 D) 21

希望杯数学竞赛小学三年级精彩试题

小学三年级数学竞赛训练题(二) 1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数. 8.(1)如果“访故”变成“放诂”,那么“1234”就变成. (2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.

10.图9、图10分别是由汉字组成的算式,不同的汉字代表不 同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使 算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大 值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了, 大家都盼着晴天,再过36小时会出太阳吗? 14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是 星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少?

原创!!全面大学生数学竞赛试题

2011年数学竞赛练习题C_3解答 1. 设数列{}n x 满足: 11 sin (2)sin 11 n n x n n n <<+++, 则1 1lim 1n k n k x n →∞==+∑_______。 11 sin (2)sin 111 n n n x n x n n <<+∴→++解 ; Q 1 1 1 1lim lim lim lim 1111n n k k n k k k n n n n k x x n n x n n n n n ==→∞→∞→∞→∞ =∴=?=?=+++∑∑∑ 2.设曲线()y f x =与sin y x =在原点相切, 则极限lim n ________。 (0)0,(0)1n n f f '===已知有: 2. 设(1n n a b =+, 其中,n n a b 为正整数,lim n n n a b →∞=__ 2224 113 (1) 1)3)(13)3) )()3) ) n n n n n n n C C C C C C =+++ =+++++ 224 41133(1(1)() n n n n n C C C C =++-++ (1=+(1=n n n n n n a b a b a b -所以,若则解得:

lim =n n n n n a b →∞∴= 3. 设()f x 有连续导数且0 () lim 0x f x a x →=≠, 又20 ()()()x F x x t f t dt =-?, 当0x →时()F x '与n x 是同阶无穷小, 则n =________。 2020 ()()()()()x x x F x x t f t dt x f t dt tf t dt =-=-? ?? 20 ()2()()()x F x x f t dt x f x xf x '=+-? 0() lim 0x F x x →'=显然 20 2 02()()() lim x x x f t dt x f x xf x x →+-?考虑: 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim 0x x x f t dt f x x x →→=-+?0a =-≠ 2n ∴= 5. ()f x ∞设在[1,+)上可导,下列结论成立的是:________。 +lim ()0()x f x f x →∞ '=∞A.若,则在[1,+)上有界;

如何准备美国大学生数学建模比赛

如何准备美赛 数学模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,2012年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。 对于不同功能的模型有不同的方法,例如 评价模型方法有层次分析、模糊综合评价、熵值法等; 优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等); 预测模型方法有灰色预测、神经网络、马尔科夫链等。 在数学中国、数学建模网站上有许多关于这些方法的相关介绍与文献。 软件与书籍: 软件一般三款足够:Matlab、SPSS、Lingo,学好一个即可。 书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够: 《数学模型》姜启源谢金星叶俊高等教育出版社 《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社 《数学建模算法与程序》司守奎国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解模型思想,参考自学。 分工合作:数模团队三个人,一般是分别负责建模、编程、写作。当然编程的可以建模,建模的也可以写作。这个要视具体情况来定,但这三样必须要有人擅长,这样才能保证团队最大发挥出潜能。 这三个人中负责建模的人是核心,要起主导作用,因为建模的人决定了整篇论文的思路与结构,尤其是模型的选择直接关系到了论文的结果与质量。 对于建模的人,首先要去大量的阅读文献,要见识尽可能多的模型,这样拿到一道题就能迅速反应到是哪一方面的模型,确定题目的整体思路。 其次是接口的制作,这是体现建模人水平的地方。所谓接口的制作就是把死的方法应用到具体问题上的过程,即用怎样的表达完成程序设计来实现模型。比如说遗传算法的方法步骤大家都知道,但是应用到具体问题上,编码、交换、变异等等怎么去做就是接口的制作。往往对于一道题目大家都能想到某种方法,可就是做不出来,这其实是因为接口不对导致的。做接口的技巧只能从不断地实践中习得,所以说建模的人任重道远。 另外,在平时训练时,团队讨论可以激烈一些,甚至可以吵架,但比赛时,一定要保持心平气和,不必激烈争论,大家各让3分,用最平和的方法讨论问题,往往能取得效果并且不耽误时间。经常有队伍在比赛期间发生不愉快,导致最后的失败,这是不应该发生的,毕竟大家为了一个共同的目标而奋斗,这种经历是很难得的。所以一定要协调好队员们之间的关系,这样才能保证正常发挥,顺利进行比赛。 美赛特点:一般人都认为美赛比国赛要难,这种难在思维上,美赛题目往往很新颖,一时间想不出用什么模型来解。这些题目发散性很强,需要查找大量文献来确定题目的真正意图,美赛更为注重思想,对结果的要求却不是很严格,如果你能做出一个很优秀的模型,也许结果并不理想也可能获得高奖。另外,美赛还难在它的实现,很多东西想到了,但实现起来非常困难,这需要较高的编程水平。 除了以上的差异,在实践过程中,美赛和国赛最大的区别有两点: 第一点区别当然是美赛要用英文写作,而且要阅读很多英文文献。对于文献阅读,可以安装有道词典,

美国小学数学教育研究报告

更多免费资料请访问:豆丁教育百科 美国小学数学教育研究报告 深圳市罗湖区翠北小学高红妹 摘要:在近百年来世界课程改革的各次浪潮中,美国从来没有做观潮派,而是积极的参与者甚至是主宰者。出现了不少颇有世界影响的课程改革家和课程学论著,值得我们去研究、借鉴。本研究报告介绍了笔者对美国小学数学教育研究的情况。主要包括:研究背景、研究意义、研究方法、研究结果、研究启示、研究反思。 关键词:美国小学数学教育研究 前言 我有幸参加深圳市组织的第三期海外培训,到美国学习、参观和考察。期间我们参观了大学和中小学,听了不同年级的课,参加了各种各样的活动,感受到了极具特色的美国文化风情。 一、研究背景 人们普遍的看法是:中国的基础教育是打基础的教育,“学多悟少”;而美国的教育是培养创造力的教育,“学少悟多”。中美两国的教育有着极为不同的传统。中国的教育注重对知识的积累和灌输;注重培养学生对知识和权威的尊重;注重对知识的掌握和继承,以及知识体系的构建。相比较,美国则更注重培养学生运用知识的实际能力;注重培养学生对知识和权威的质疑;注重对知识的拓展和创造。这两种教育表达了对待知识的不同态度,中国教育的表达是对知识的静态接受,美国教育则表达的是对知识的动态改变,反映了两国教育不同的知识观。 以数学为例,我国教育界历来认为,基本概念和基本运算是数学的基础。尽管教材有计算器的介绍,但老师们总担心学生会依赖计算器,因为考试时学生是不允许带计算器的。然而在美国,基本运算不受重视,计算器在中小学使用很普遍。美国人认为,计算器既然算得又快又准,我们又何必劳神费力地用脑算呢?人脑完全可以省下来去做机器做不了的事。这点我深有体会,记得有一次我们坐公交车时,几个人合起来投币,但司机要我们一个一个投币,我们都觉得奇怪,经过了解,原来他们无法算出几个人一共要付的钱,在我国就决不会出现此等情况。我们教育的“基础”侧重,让学生大脑在独立于计算机的前提下,尽可能多地储

美国AMC8数学竞赛试题(含答案)

2001 年 美国AMC8 (2001年 月 日 时间40分钟) 1. 卡西的商店正在制作一个高尔夫球奖品。他必须给一颗高尔夫球面上的300个小凹洞着色, 如果他每着色一个小凹洞需要2秒钟,试问共需多 分钟才能完成他的工作。 (A) 4 (B) 6 (C) 8 (D) 10 (E) 12 。 2. 我正在思考两个正整数,它们的乘积是24且它们的和是11,试问这两个数中较大的数是什 么 。 (A) 3 (B) 4 (C) 6 (D) 8 (E) 12 。 3. 史密斯有63元,艾伯特比安加多2元,而安加所有的钱是史密斯的三分之一,试问艾伯特 有 元。 (A) 17 (B) 18 (C) 19 (D) 21 (E) 23 。 4. 在每个数字只能使用一次的情形下,将1,2,3,4及9作成最小的五位数,且此五位数为 偶数,则其十位数字为 。 (A) 1 (B) 2 (C) 3 (D) 4 (E) 9 。 5. 在一个暴风雨的黑夜里,史努比突然看见一道闪光。10秒钟后,他听到打雷声音。声音的速 率是每秒1088呎,但1哩是5280呎。若以哩为单位的条件下,估计史努比离闪电处的距离 最接近下列何者 。 (A) 1 (B) 121 (C) 2 (D) 22 1 (E) 3 。 6. 在一笔直道路的一旁有等间隔的6棵树。第1棵树与第4棵树之间的距离是60呎。试问第1 棵树到最后一棵树之间的距离是 呎。 (A) 90 (B) 100 (C) 105 (D) 120 (E) 140 。 问题7、8、9请参考下列叙述: 主题:竞赛场所上的风筝展览 7. 葛妮芙为提升她的学校年度风筝奥林匹亚竞赛的质量,制作了一个小风筝 与一个大风筝,并陈列在公告栏展览,这两个风筝都如同图中的形状, 葛妮芙将小风筝张贴在单位长为一吋(即每两点距离一吋)的格子板上,并将 大风筝张贴在单位长三吋(即每两点距离三吋)的格子板上。试问小风筝的面 积是 平方吋。 (A) 21 (B) 22 (C) 23 (D) 24 (E) 25 。 8. 葛妮芙在大风筝内装设一个连接对角顶点之十字交叉型的支撑架子,她必须使用 吋的 架子材料。 (A) 30 (B) 32 (C) 35 (D) 38 (E) 39 。 9. 大风筝要用金箔覆盖。金箔是从一张刚好覆盖整个格子板的矩形金箔裁剪下来的。试问从四 个角隅所裁剪下来废弃不用的金箔是 平方吋。 (A) 63 (B) 72 (C) 180 (D) 189 (E) 264 。 10. 某一收藏家愿按二角五分(即41元)银币面值2000%的比率收购银币。在该比率下,卜莱登现 有四个二角五分的银币,则他可得到 元。 (A) 20 (B) 50 (C) 200 (D) 500 (E) 2000 。 11. 设四个点A ,B ,C ,D 的坐标依次为A (3,2),B (3,-2),C (-3,-2),D (-3,0)。则四边形 ABCD 的面积是 。 (A) 12 (B) 15 (C) 18 (D) 21 (E) 24 。 12. 若定义a ?b =b a b a -+,则(6?4)?3= 。 (A) 4 (B) 13 (C) 15 (D) 30 (E) 72 。 13. 在黎琪儿班级36位学生中,有12位学生喜爱巧克力派,有8位学生喜爱苹果派,且有6 位学生喜爱蓝莓派。其余的学生中有一半喜爱樱桃派,另一半喜爱柠檬派。黎琪儿想用圆形 图显示此项数据。试问:她应该用 度的扇形表示喜欢樱桃派的学生。 (A) 10 (B) 20 (C) 30 (D) 50 (E) 72 。 14. 泰勒在自助餐店排队,准备挑选一种肉类,二种不同蔬菜,以及一种点心。若不计较食物 的挑选次序,则他可以有多少不同选择方法?

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

(完整word版)希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数.

8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是. 10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?

14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问: (1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数? 23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.

2018年美国数学竞赛 AMC 试题

2018 AIME I Problems Problem 1 Let be the number of ordered pairs of integers with and such that the polynomial can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when is divided by . Problem 2 The number can be written in base as , can be written in base as , and can be written in base as , where . Find the base- representation of . Problem 3 Kathy has red cards and green cards. She shuffles the cards and lays out of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is , where and are relatively prime positive integers. Find . Problem 4 In and . Point lies strictly between and on and point lies strictly between and on so that . Then can be expressed in the form , where and are relatively prime positive integers. Find . Problem 5 For each ordered pair of real numbers satisfying there is a real number such that

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足22 ()3()d 2f x x f x x =--? ,则()f x =. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且 1≠'f ,则=22d d x y . 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()() g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)??-=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5d d π?≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定 c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求 函数项级数∑∞ =1 )(n n x u 之和.

美国大学生数学建模竞赛优秀论文翻译

优化和评价的收费亭的数量 景区简介 由於公路出来的第一千九百三十,至今发展十分迅速在全世界逐渐成为骨架的运输系统,以其高速度,承载能力大,运输成本低,具有吸引力的旅游方便,减少交通堵塞。以下的快速传播的公路,相应的管理收费站设置支付和公路条件的改善公路和收费广场。 然而,随着越来越多的人口密度和产业基地,公路如花园州公园大道的经验严重交通挤塞收费广场在高峰时间。事实上,这是共同经历长时间的延误甚至在非赶这两小时收费广场。 在进入收费广场的车流量,球迷的较大的收费亭的数量,而当离开收费广场,川流不息的车辆需挤缩到的车道数的数量相等的车道收费广场前。因此,当交通繁忙时,拥堵现象发生在从收费广场。当交通非常拥挤,阻塞也会在进入收费广场因为所需要的时间为每个车辆付通行费。 因此,这是可取的,以尽量减少车辆烦恼限制数额收费广场引起的交通混乱。良好的设计,这些系统可以产生重大影响的有效利用的基础设施,并有助于提高居民的生活水平。通常,一个更大的收费亭的数量提供的数量比进入收费广场的道路。 事实上,高速公路收费广场和停车场出入口广场构成了一个独特的类型的运输系统,需要具体分析时,试图了解他们的工作和他们之间的互动与其他巷道组成部分。一方面,这些设施是一个最有效的手段收集用户收费或者停车服务或对道路,桥梁,隧道。另一方面,收费广场产生不利影响的吞吐量或设施的服务能力。收费广场的不利影响是特别明显时,通常是重交通。 其目标模式是保证收费广场可以处理交通流没有任何问题。车辆安全通行费广场也是一个重要的问题,如无障碍的收费广场。封锁交通流应尽量避免。 模型的目标是确定最优的收费亭的数量的基础上进行合理的优化准则。 主要原因是拥挤的

AMC美国数学竞赛AMCB试题及答案解析

2003 AMC 10B 1、Which of the following is the same as 2、Al gets the disease algebritis and must take one green pill and one pink pill each day for two weeks. A green pill costs more than a pink pill, and Al’s pills cost a total of for the two weeks. How much does one green pill cost? 3、The sum of 5 consecutive even integers is less than the sum of the ?rst consecutive odd counting numbers. What is the smallest of the even integers? 4、Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the ?gure. She plants one flower per square foot in each region. Asters cost 1 each, begonias each, cannas 2 each, dahlias each, and Easter lilies 3 each. What is the least possible cost, in dollars, for her garden? 5、Moe uses a mower to cut his rectangular -foot by -foot lawn. The swath he cuts is inches wide, but he overlaps each cut by inches to make sure that no grass is missed. He walks at the rate of

相关文档
相关文档 最新文档