文档库 最新最全的文档下载
当前位置:文档库 › Cd、Pb在根际与非根际土壤中的吸附解吸特点

Cd、Pb在根际与非根际土壤中的吸附解吸特点

Cd、Pb在根际与非根际土壤中的吸附解吸特点
Cd、Pb在根际与非根际土壤中的吸附解吸特点

三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系

收稿日期:2005-01-04 修改稿收到日期:2005-03-29 基金项目:国家自然科学基金项目(30370817,30471006);土壤与农业可持续发展国家重点实验室开放基金资助。 作者简介:邵兴华(1969— ),女,内蒙古人,博士研究生,主要从事土壤磷素化学研究。3通讯作者三种铁氧化物的磷吸附解吸特性以及 与磷吸附饱和度的关系 邵兴华1,章永松1,2 3 ,林咸永1,2,都韶婷1,于承艳1 (1浙江大学环境资源学院,教育部环境修复与生态健康重点实验室,浙江杭州310029;2土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,江苏南京210008) 摘要:采用三种人工合成铁氧化物(针铁矿、赤铁矿和水铁矿)比较了结晶态和无定形铁氧化物对磷的吸附—解吸特性以及与磷吸附饱和度的关系。结果表明,三种铁氧化物的磷吸附特性均可用Langumir 方程来描述,相关系数 均大于019,达到极显著水平。从磷最大吸附量(Q m )、吸附反应常数(K )和最大缓冲容量(MBC )三项吸附参数综合考虑,水铁矿(无定形)对磷的吸附无论在容量还是强度方面均比结晶态铁氧化物针铁矿和赤铁矿大得多。水铁矿吸附的磷比针铁矿和赤铁矿所吸附的磷更难解吸;水铁矿的大量活性表面并没有表现出增加磷释放的作用。磷吸附饱和度有望作为评价土壤或铁氧化物磷吸附—解吸的强度和容量因子的一个综合指标。关键词:铁氧化物;磷;吸附—解吸;吸附饱和度 中图分类号:S15316+1 文献标识码:A 文章编号:1008-505X (2006)02-0208-05 Phosphorusadsorptionanddesorptionpropertiesofthreesyntheticironoxides andtheirrelationtophosphorusadsorptionsaturation SHAOXing 2hua 1,ZHANGYong 2song 1,2 3 ,LINXian 2yong 1,2 ,DUShao 2ting 1,YUCheng 2yan 1 (1MOE KeyLab.of Environ .Remediation and EcosystemHealth,College of Natural Resour .and Environ .Sci.,Zhejiang Univ., 310029Hangzhou,China;2State KeyLab.of Soil and Sustainable Agri., Inst.of Soil Sci., CAS ,Nanjing 210008,China ) Abstract:ThedifferencesofPadsorption 2desorptioncharacteristicsofamorphousandcrystallineironoxidesandtheir relation toPadsorptionsaturationwerestudiedbyusingthreesyntheticironoxides.TheresultsshowedthatPadsorption propertiesofthesethreesyntheticironoxidescouldbedescribedbyLangumirequationwithacorrelationcoefficientlarger than019beingstatisticalsignificantat1%level.ItwasfoundbycomprehensivelytakingQ m (maximumquantityofad 2 sorption ),K (adsorptionconstant )andMBC (maximumbuffingcapacity )intoaccount,ferrihydrate (amorphous )was muchlargerthancrystallineironoxides (goethiteandhematite )inbothintensityandcapacityofPadsorption.Pad 2 sorbedbyferrihydratewasmuchmoredifficulttobedesorbedthanthosebygoethiteandhematite.Thelargeactivesur 2facesofferrihydratecontributelittleonPdesorption.ItwassuggestedbyourresultsthatPadsorptionsaturationmightbe apromisingintegratedindexforestimatingtheintensityandcapacityofPadsorption 2desorptioninsoilsorironoxides.Keywords:ironoxide;phosphorus;adsorption 2desorption;adsorptionsaturation 铁氧化物是土壤结构体的胶结物质之一,不仅是这些土壤中最常见和含量较高的氧化物,而更重要的是它具有较高的活性,易随环境条件的变化而转变[1]。铁氧化物可变电荷表面对磷的固定是影响磷在土壤中的浓度、形态、化学行为和生物有效性的重要因素,有关研究一直是土壤化学领域里的热 点[2]。水稻土淹水过程中,氧化还原电位降低,是促使氧化铁活化的重要条件之一[1]。活化程度不同,形成的铁氧化物的颗粒大小和比表面积有很大的差异,势必引起磷吸附解吸特性的差异。章永松等人[3]研究发现,土壤中的结晶态氧化铁随淹水期明显下降,而无定形氧化铁急剧增加,并且在不同土层 植物营养与肥料学报2006,12(2):208-212 PlantNutritionandFertilizerScience

根际

根际rhizosphere 字体[大][中][小]受植物根生命活动的影响,在物理、化学和生物特性上不同于原土体的根周围的土壤微区。它是土壤-根系-微生物相互作用的产物,并依据植物种类或品种,土壤性质和环境条件形成特定的微生态体系。在这一微区中进行着活跃的物质转化和流通,以及动力学过程。这些过程直接影响着植物的生长发育、水分和养分的吸收利用、有益和有害微生物的存活和繁殖,植物对逆境的调节反应等等。因此,根际环境是当今植物营养学科中新兴的边缘学科分支,涉及到土壤化学、植物生理学和微生物学的交叉科学。 根际是从希腊文根(rhizo)和圈围(sphere)两字合并而来。1904年由德国微生物家学L.赫瑟(Hilther)将这一名词应用于豆科作物,称根周围密集的细菌数量和活性为根际效应。以后,根际的概念由单一的微生物效应扩展到物理、化学和生物效应的各个方面,使之从理论到应用发展成为现代化农业中极为重要的基础研究课题。 根际研究的深入是与微观技术的发展分不开的。继电子显微镜以后电子探针显微分析,微电极等原位检测手段应用到生物科学后,也为根际养分状况和化学变化等的微观研究提供了可能。而根际土壤的液氮冷冻和切片技术相结合的方法建立,进一步扩展了根际研究的范围,为微区距离间水分、养分和微生物分布等的梯度变化积累了资料。80年代以来,高压液相色谱仪和穆斯堡尔谱仪的应用,对根际分泌物和根际土壤中某些重金属化学行为的研究更有所推进。 根际的显微特征由于根表面在空间和时间上的发展,不同根区的根际显微特征不尽相同(图1)。其中根冠细胞中的高尔基体分泌大量的粘液到根外,以及与脱落组织降解物混合,在根与土壤之间形成厚度为几微米到几十微米的粘液层。这层粘液与土壤颗粒有很强的亲和性,在其外沿粘附土粒形成一圈土壤鞘,直径约为根直径的一倍,粘附的程度表现为经水重复冲洗后仍不易洗脱。其后的根伸长区,存在结构致密的表皮细胞。这层细胞仅有初生壁,胞壁外的根冠延伸的及细胞分泌的粘液,它们与初生壁混为一体,厚度约为1~10微米。其中出现少量的细菌群落。当细胞停止伸展后,次生壁形成,粘液层中细菌和其它微生物数量明显增加。

不同煤阶煤层气吸附、解吸特征差异对比

第28卷第3期天然气工业 为进一步定量描述高、低煤阶煤层气藏吸附特征差异,应用FY一Ⅱ型煤层气成藏模拟系统,开展煤吸附特征定量物理模拟实验。 选择一定质量完全解吸的褐煤(R。=0.41%~O.46%)和无烟煤(R。=2.44%~3.82%)样品,样品分别采自准噶尔南缘昌吉地区昌试1井侏罗系西山窑组下段(J:z1)及沁水盆地南部郑庄区块晋试10井山西组,置于FY一Ⅱ型煤层气成藏模拟系统的样品仓中,系统保持38℃恒温,先用氦气将系统的空气排出,充入99.6%的甲烷气体,加压至6MPa。系统压力降至稳定值时,煤岩样品达到吸附平衡。 图1煤阶与煤的吸附能力的关系图 (Ro<0.8%的资料由桑树勋提供) 实验表明,褐煤达到吸附平衡的时间短,无烟煤达到吸附平衡的时间长(图2)。吸附速率呈现出各自的特点,褐煤吸附速率绝对值较小,迅速达到吸附最大速率,并在一较长时段内维持较高吸附速率,吸附饱和后吸附速率降至零;无烟煤吸附速率绝对值大,随实验时间而增加,一般在60~100h达到峰值,然后逐渐降低;两者的吸附速率均存在一个极大值且无烟煤吸附速率极大值较低,煤阶明显增高;但实验前期,褐煤吸附速率高于无烟煤吸附速率(图3)。 2 、一 星 营 掘 * 莲 餐 R(%) 图2R。值与吸附平衡时间的关系图 图3高、低煤阶煤吸附甲烷速率差异图 (褐煤R。一O.42%,无烟煤R。一3.68%) 笔者认为,这是因为在初始状态下,两者均处于吸附“饥饿’’状态,褐煤以大孑L为主,孔隙度大,吸附甲烷速率更快;达到一定吸附饱和度后,高煤阶煤体现出绝对吸附能力强的优势,其吸附速率超出褐煤。 二、解吸特征 采自北票煤层气藏及沁水盆地郑庄区块山西组的罐装煤样解吸结果表明:低煤阶煤心解吸时间较短,通常40~60h解吸量超过总解吸体积的68%(图4),相对解吸速率快;高煤阶煤心解吸时间长,解吸68%的解吸气体体积的时间往往需要100~120h,相对解吸速率低;低煤阶煤心阶段解吸百分率变化大,高煤阶煤心阶段解吸百分率变化平缓,初始阶段解吸百分率大(图5)。 图4高、低煤阶煤层气解吸量达68%的解吸时间差异图 图5高、低煤阶煤层气阶段解吸百分率对比图 注:阶段解吸百分率=特定时间间隔内解吸量/总解吸量 由于高煤阶煤层气含气量高,平均解吸速率大。因此,相对解吸速率更能体现高、低煤阶煤储层物性的差异。 消除含气量的差异,对高、低煤阶煤层气的相对解吸速率进行模拟测试。分别选择尺。一O.58%、质量为935g、长度12.1cm的I煤心及R。=2.78%、质量为940g、长度11.8cm的II煤心。 将I煤心置于FY一Ⅱ煤层气藏模拟系统,注入99.6%的甲烷气体,初始压力4MPa,240h平衡后,平流泵注入蒸馏水,维持压力4MPa左右,计算含气量为3.73m3/t。 同样,放置Ⅱ煤心的FY一Ⅱ煤层气藏模拟系统初始压力1.4MPa,360h平衡后,维持压力1.4MPa左右,计算含气量为4.1m3/t。 降低系统压力至O,煤层气开始解吸,用排水法 ?3】 ?

影响活性炭吸附性能的因素

影响活性炭吸附性能的因素 在水处理中,活性炭对水中有机物的吸附量与很多因素有关,去除率在20%~80%之间,。 1 .活性炭的结构及特性 活性炭的孔径、空容分布及比表面积影响吸附容量。因活性炭吸附有机物主要在微孔中进行,微孔所占空容和表面积的比例愈大,吸附容量愈大。 由于活性炭表面带微弱的电荷,水中极性溶质竞争活性炭表面的活性位置,导致活性炭对非极性溶质的吸附量降低,而对某些金属离子产生离子交换吸附或络合反应。 2 .被吸附有机物的性质 a.分子结构和表面张力 芳香族有机物比脂肪族有机物更易被活性炭吸附;越是能降低溶液表面张力的有机物越容易被活性炭吸附。 b.有机物的分子量 一般水中有机物的分子量增加,吸附量也增加。但也有出现随分子量的增大,吸附速度降低的现象。当活性炭微孔大小为有机物分子的3~6时能够有效地吸附,由于分子筛的作用而使扩散阻力增加,吸附速度就降低。 c.有机物的溶解度 活性炭在本质上是一种疏水性物质,因此被吸附有机物的疏水性愈强愈易被吸附。因此,在水中溶解度愈小的有机物愈易被活性炭吸附。 3 .影响活性炭吸附的因素 a.水中有机物的浓度 大多数的有机物在浓度和吸附量之间存在特定的关系,而且一般是浓度增加吸附量按指数关系增加。

b.温度和共存物质 活性炭对水中有机物的吸附,温度的影响可以忽略不计。一般天然水中存在的无机离子对活性炭吸附有机物也几乎没有影响。但汞、铬、铁等金属离子含量较高时,则可能因为在活性炭表面起化学反应并生成沉淀、积累在炭粒内,使活性炭的孔径变小,影响活性炭的吸附效果。 c.接触时间 因为吸附是液相中的吸附质向固相表面的一个转移过程,所以吸附质与吸附剂之间需要一定的接触时间,才能使吸附剂发挥最大的吸附能力。在水处理量一定的情况下,增加接触时间,意味着增加水处理设备或增大水处理设备,而且接触时间太长时,吸附量的增加并不明显。因此,一般设计时接触时间约20~30分钟。 d. pH值 在多数情况下,先把水的pH值降低到2~3,然后再进行活性炭吸附往往可以提高有机物的去除率。这是因为水中的有机酸在低pH值下电离的比例较小,为活性炭提供了容易吸附的条件。

煤体瓦斯吸附和解吸特性的研究_张力

煤体瓦斯吸附和解吸特性的研究 张 力1,邢平伟2 (1.中国矿业大学,江苏徐州221008;2.太原理工大学,山西太原030024) [摘 要] 简要介绍了煤吸附瓦斯气体的本质,影响煤吸附量的主要因素以及煤吸附瓦斯气体的过程;分析了煤体瓦斯解吸扩散的主要形式和影响煤体瓦 斯扩散速度的主要因素。 [关键词] 煤;瓦斯;吸附;解吸;扩散 [中图分类号]T D712 [文献标识码]A [文章编号]1003-6083(2000)04-0018-03 0 引 言 固体物质都具有或大或小的把周围介质中的分子、原子或离子吸附到自己表面的能力,这一性能被称为物质的吸附性能。煤是一种复杂的多孔介质,是天然吸附剂[1],其中直径在10-6cm以下的微孔,由于其内表面积占表面积的97.3%,可以高达200m2/g,具有很大的比表面积,从而决定了煤的吸附容积。甲烷以两种形式(承压游离状态和吸附状态)存在于煤层和共生岩层的孔隙裂隙中,对不同状态甲烷相对含量的实验研究表明煤中全部甲烷含量的90%~95%以吸附状态存在。研究煤与瓦斯的吸附和解吸规律,对于煤与瓦斯的突出预测,煤层瓦斯流动机理,煤的瓦斯含量预测及计算采落煤瓦斯涌出,煤层气开发和利用都有现实意义。 1 煤的吸附特性 1.1 煤吸附瓦斯的本质 研究表明煤对瓦斯的吸附作用,在一定瓦斯压力下乃是物理吸附,其吸附热一般小于20k J/m ol。煤表面的原子(它们的价力尚未达到完全饱和程度)在其表面产生一种力场。在这种力场的影响下,周围的瓦斯分子比无力场存在时更易凝结。瓦斯的凝结能力决定着它的被吸附能力,煤分子对瓦斯气体分子的吸引力越大,煤对瓦斯气体的吸附量越大。煤分子和瓦斯气体分子之间的作用力由德拜(Debye)诱导力和伦敦色散力(London dispersion force)组成,由此而形成吸引势,即吸附势阱深度Ea(也称势垒)。自由气体分子必须损失部分所具有的能量才能停留在煤的孔隙表面,因此吸附是放热的;处于吸附状态的瓦斯气体分子只有获得能量Ea才能越出吸附势阱成为自由气体分子,因此脱附是吸热的[2]。瓦斯气体分子的热运动越剧烈,其动能越高,吸附瓦斯分子获得能量发生脱附可能性越大。当瓦斯压力增大时,瓦斯气体分子撞击煤体孔隙表面的机率增加,吸附速度加快,瓦斯气体分子在煤孔隙表面上排列的稠密度增加。吸附量与瓦斯压力的关系(吸附等温线),一般可用朗格缪尔方程式计算。 1.2 瓦斯吸附影响因素 (1)温度的变化会引起瓦斯气体分子热运动剧烈程度的变化。温度升高时,瓦斯气体分子的热运动加剧,因而其扩散能力增加,瓦斯气体分子在煤孔隙表面停留时间缩短,因而吸附能力下降。温度降低时情况相反。吸附气体不同,其吸附能力不同。 (2)研究表明煤体对于二氧化碳(C O2)、甲烷(CH4)和氮气(N2)来说,其吸附能力C O2 >CH4>N2。 (3)外载荷对吸附的影响与煤体孔隙率变化有关。压力升高时,煤体孔隙、裂隙逐渐闭合。一方面孔隙率降低,煤体孔隙表面积减小,因面吸附量减小;另一方面瓦斯通道缩 81 江 苏 煤 炭 2000年第4期  收稿日期:2000-08-19

煤对多元气体的吸附与解吸

煤对多元气体的吸附与解吸 唐书恒1,韩德馨2 (11中国地质大学,北京 100083;21中国矿业大学(北京校区),北京100083) 摘 要:论述了用纯甲烷气体的等温吸附资料进行煤层气开发潜力的评价可能会产生错误的结论,利用多元气体的吸附-解吸资料,可以正确评价煤层气的开发潜力,预测产出气体的成分变化,为煤层气开发的经济评价提供依据。 关键词:多元气体;吸附-解吸;煤层气开发;经济评价 中图分类号:71213 文献标识码:B 文章编号:0253-2336(2002)01-0058-03 Adsorption and desorption of multi element gas by coal T ANG Shu2heng1,H AN De2xin2 (11China University o f G eosciences,Beijing 100083,China;21China University o f Mining and Technology,Beijing 100083,China) 1问题的提出 中国煤田地质总局在进行全国煤层气资源评价时[1],根据煤层气参数井取得的实测含气量、储层压力、纯甲烷气体等温吸附曲线等资料,计算了部分煤层的含气饱和度和临界解吸压力。并且发现,有些矿区的煤储层实测饱和度与临界解吸压力很低,临储比很小,导致气井采收率较低。根据这些参数进行评价这些矿区都没有经济开发意义,但煤层气试验井的排采资料表明,气井的实际临界解吸压力要高于根据等温吸附曲线所计算的值。如铁法DT-3井,液面降到85m处时就开始产气,上煤组深度为532m,实际临界解吸压力4147MPa,要比计算的临界解吸压力高得多。寿阳HG-6井和屯留T L-003井也有类似情况。作者认为,造成上述情况的主要原因是,所采用的等温吸附曲线,都是用纯甲烷气体测定的,而没有考虑煤层气中存在的其他气体成分。 本研究对晋城目标区施工的甲、乙2口煤层气勘探试验井的含气量测定资料和煤层气成分数据进行了分析。针对这2口煤层气井的3号和15号煤层,采集了34个煤芯样进行了含气量测定。同时,在进行煤芯样的解吸期间,对每个煤芯样品各采集3个气体成分样,取样时间分别设为现场解吸的第1天、第3天和第5天,共采集102个气成分样,经气相色谱分析,获得了甲、乙2口井3号和15号煤层的煤层气组成。仅从这2口井来看,晋城地区的煤层气成分中甲烷含量93132%~97109%,氮气含量2175%~6141%,二氧化碳和重烃含量极少。经过对这2口井3号和15号煤层的煤层气组成进行分析发现,由于取样时间的不同,解吸出的煤层气组分发生规律性的变化,随着解吸时间的延长,煤层气中的甲烷组分逐渐增加,而氮组分逐渐减少。 所有上述现象,都与煤层气的成分联系在一起,都发生在煤层气的吸附-解吸过程中。因此认为,通过多元气体的吸附-解吸试验,可以帮助分析上述现象发生的原因和机理,促进煤层气的开发。 2煤对多元气体吸附-解吸试验研究现状 211从煤矿安全角度研究气体混合物的吸附前苏联的马凯耶夫煤炭安全研究所和东方煤炭安全研究所,曾研究了顿巴斯和库兹巴斯煤对烃混合气的吸附[2],并研究了二元混合物(CH4-N2, CH4-C O2,CH4-H2)在干燥煤样中的吸附行为。切尔尼岑[2]也曾作过类似的试验,在用天然煤进行二元混合气体的吸附试验时发现,研究混合气体是相当困难的,因为在吸附过程中,游离相的成分发生变化,得出的被吸附组分数量间的关系,与原始混合气体中的组分不同。 艾鲁尼[2]通过分析认为,在研究煤对二元混合气体的吸附时,除了测量混合气体的平衡压力以外,还必须确定游离相的化学组成,以便以后计算 85

活性炭的吸附性能及有机物吸附介绍

活性炭的吸附性能及有机物吸附介绍 活性炭的吸附性能及有机物吸附的一般概念 活性炭的强吸附性能除与它的孔隙结构和巨大的比表面积有关 外(其比表面积可500-1700m2/g),还与细孔的行状和分布以及表面化学性质有关。 活性炭的细孔一般为1~10nm,其中半径在2nm以下的微孔占95%以上,对吸附量影响最大;过渡孔半径一般为10~100nm,占5%以下,它为吸附物质提供扩散通道,影响扩散速度;半径大于100nm、所占比例不足1%的大孔也是作为提供扩散通道的。 活性炭的吸附通道决定影响吸附分子的大小,这是因为孔道大小影响吸附的动力学过程。有报道认为,吸附通道直径是吸附分子直径的1.7~21倍,最佳范围是1.7~6倍,一般认为孔道应为吸附分子 的3倍。

活性炭表面化学性质可以说其本身是非极性的,但由于制造过程中处于微晶体边缘的碳原子共价键不饱和而易与其他元素(如H、O)结合成各种含氧官能团,如羟基、羧基、羰基等,以致活性炭又具有微弱的极性,并具有一定的化学和物理吸附能力。这些官能团在水中发生离解,使活性炭表面具有某些阴离子特性,极性增强。为此,活性炭不仅可以除去水中的非极性物质,还可吸附极性物质,优先吸附水中极性小的有机物,含碳越高范德华力越大,溶解度越小的脂肪酸愈易吸附,甚至微量的金属离子及其化合物。 活性炭过滤用以脱除水中的微量污染物和对反渗透膜产生损害 的游离氯。因为活性炭是一种非极性吸附剂,外观为暗黑色,粒状。主要成分碳、氧、硫、氢,具有良好的吸附性能和稳定的化学性质,可以耐强酸、强碱,能经受水浸、高温、高压作用,不易破碎。活性炭是用动植物、煤、石油及其它有机物作原料,经加热脱水、炭化、活化制成的。具有巨大的比表面积和发达的微孔,微孔直径为20~30埃。此外,活性炭的表面有大量的羟基和羧基官能团,可以对各种性质的有机物进行化学吸附、以及静电引力作用。因此,可以脱色,除臭味,脱除重金属、各种溶解性有机物、放射性元素、胶体及游离氯等。 活性炭对有机物的去除 活性炭去除有机物的影响因素

煤储层渗透率影响因素

煤层气储层渗透率影响因素 摘要:煤层气作为一种新型能源,而且我国煤层气储量丰富,因此其开采利用可以很大程度上缓解我国常规天然气需求的压力。煤储层的渗透率是煤岩渗透流体能力大小的度量,它的大小直接制约着煤层气的勘探选区及煤层气的开采等问题。因此掌握煤储层渗透率的研究方法及影响因素,对于指导煤层气开采具有重要的指导意义。本文主要在前人的基础上,从裂隙系统、煤变质程度、应力及当前其他领域的技术对渗透率的研究的理论、认识及存在的问题等进行总结,对煤储层渗透率的预测有一定的理论指导意义。 Abstract: Our country is rich in the CBM which is a new resource. So the development of CBM can lighten our pressure for the requirement of conventional gas.The permeability of the coal reservoir is a measure of fluid’s osmosis permeability, restricting the exploration area and mining of CBM. Therefore, controlling the method of mining and the effect factoring has an important guiding significance for mining .This article is summarized from fracture system,the degree of coal metamorphism, stress for the theory, matters and so on of permeability’s study which is based on the achievement of others,having a great guiding significance for the permeabilityprediction.关键词:煤层气;渗透率;影响因素 1、引言 煤层气是指赋存在煤层中常常以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解在煤层水中的烃类气体[1]。美国是最早开发煤层气并取得成功的国家,其富产煤层气的煤级主要是气、肥、焦煤,即中级煤。我国煤盆地一般都具有复杂的热演化史和构造变形史,构造样式复杂多样,煤储层物性差异较大,孔渗性偏低,富产煤层气的煤级是几个高级煤、无烟煤和贫煤[2]。因此我们不能照搬美国的理论来指导我国煤层气的生产。近十几年来,我们在实践中不断认识到这种差异,并针对我国煤层气储层的特征进行了一系列的研究,在煤储层物性方面取得了丰硕的成果,已初步形成了一套研究的理论与方法。渗透性是制约煤层气勘探选区的最重要的参数之一,有效预测煤储层渗透性对我国煤层气的勘探开发具有重要意义[3]。笔者主要从煤储层裂隙系统、煤变质程度、有效应力等方面作以阐述。

根际研究方法

根际研究方法 (一)根系“表观自由空间”中养分测定方法 根系“表观自由空间(AFC)”,就是根系内部的细胞间隙和细胞壁微纤丝中的空隙在植物体内相互连通行程运输通道,容许水分和溶液的自由移动。 根系“表观自由空间”值得测定有一些不同的方法,如用非电解质——甘露糖醇测定不同植物的AFC体积,应用同位素标记法测定养分离子在AFC中的转移,等等。70年代以来产生了一种比较简便的化学方法,其原理是应用低温蒸馏水(4O C)降低根系活力,使进入AFS中养分离子只能向外扩散,以此了解AFS的养分状况。 基本测定步骤将待测水培根取出,用蒸馏水冲洗,重复3次,每次10S。用滤纸吸取多余的水分,称1~10g鲜根,置于250ml烧杯中备用。 若为土培的根系,小心取出后置于一块60cm×60cm的尼龙薄膜上,用手工出去容易抖落下来的土壤,这部分可作为原土体的土壤。然后将土根移至另一薄膜上抖动多次,分离出松散附着于根表面土壤,这部分可作为距根1~4mm的根际土。仍然粘附于根表的极为紧密附着的根际土,约距根0~2mm,一般不易从跟表面分离出来,一般采用蒸馏水浸洗的方法收集。洗净根系后,吸干多余的水分,称1~10g鲜根,置于250ml烧杯中。所收集的不同部分的土壤可用于不同的研究目的。 将备用的已知鲜重的根系按1:20的比例加入预先准备好的4O C的蒸馏水中,用玻璃棒轻轻搅拌1~2min,放入冰箱中浸提2h后取出,过滤,对滤液进行所需研究的养分测定。 测定要点样品的处理要求尽量在短时间内完成,以保持原有的养分状况。在土培条件下除去根系上附着的土壤时,主要尽量不要损伤根系,以免细胞内养分由破口处进入AFS 中,使测定结果偏高。 (二)根际土壤的冰冻切片法 冰冻切片法最早是1964年由Brown等建立并应用与土壤养分扩散的研究。主要分两步,首先是根际微环境模拟培育方法,可采用根垫法、集束根——土地接触法、隔层法等,然后将土块冰冻切片,供测试用。 1. 集束根——土地接触法集束根——土地接触法是一种根际微环境的模拟研究手段,其基本原理是利用一种允许养分和水分自由通过而根系不能穿过的隔膜使根系和土壤之间分离开来,分别逐层切取土壤薄片和进行分析,借此了解不同根表面不同距离土壤的物理化学性状。首先,要进行集束平面根的培育,一般地可采用有机玻璃的漏斗形框架(4×13×0.3cm3),在漏斗上放入尼龙网,密集地播种30颗露白的种子(禾谷类植物,如水稻),连同漏斗框架放入溶液中培育。根系通过漏斗颈往下生长,一个月后形成定型的集束平面根。其次,要进行土块的制备。将供试土样磨碎后过100目筛。城区一定量体积为2×4×4cm3的长方形有机玻璃盒内,盒的两端开口,以便连接根系和外界。将制备好的两块土块在某一根段处对称地紧贴于平面根的两侧(根土界面为2×4cm2),中间隔一层能容养分和水分自由通过,而根系无法穿透的隔膜(可用尼龙网或孔径为1.2μm的混合和纤维素脂)。然后放入盆钵中,装进石英砂或土壤,在温室内培育。 2.冰冻法当植株在盆钵中生长了一段时间后(一般低于20天),取出有机玻璃盒和土块,随即置氮液中速冻。将土块在切片机上切成1mm厚的薄片供化学测试。 优点:比较严格地解决了不同层次的微区土壤的区分、定量地研究各种养分、水分在根——土界面上的动态及迁移规律,并可以区分有效养分以及利用同位素方法难以测定的微量养分变化。 主要限制:只能进行短期试验,一般只在2天内。实验技巧要求很高,且每次技能得到有限的土壤样品量。

苎麻根际和非根际环境的土壤比较研究

苎麻根际和非根际环境的土壤比较研究 Abstract: The dynamic property of soil nutrients, soil microbes, soil enzyme and pH in ramie rhizosphere soil and non-rhizosphere soil collected from producing areas of 6 ramie varieties was studied. And the relationship between them was discussed. The results showed that the content of available N, available K, organic matter, total K and water, the numbers of soil bacteria, actinomyces and fungi, the activities of urease and acid phosphatase in rhizosphere soils were all significantly higher than those of non-rhizosphere. Meanwhile, there was significant difference in pH between rhizosphere soil and non-rhizosphere soil. The correlations among soil nutrients, soil microbes, soil enzyme and pH in rhizosphere soil were more significant than that in non-rhizosphere soil. It was hypothesized that the ramie root brought about the differences between the rhizosphere soil and non-rhizosphere soil. Key words: ramie; rhizosphere; non-rhizosphere; soil factors 在植物生长过程中,由于根系和土壤的相互作用,根际环境在物理?化学和生物特性上不同于周围的土体,即产生了根际效应?研究作物的根际环境对作物的水肥管理和病虫害防治有重要意义[1]?根际土壤中聚居着的微生物包括细菌?放线菌?真菌?藻?原生动物和病毒?它们在营养的转化中起着极其重要的作用?在土壤中,由于根际是一个特殊的生态环境,因此在根际的土壤微生物比根外的土壤微生物在数量和种类上都要多,它们在根上的繁殖和分布受根系生长发育的影响而表现出较为明显的根际效应?因此,根际微生物研究也倍受关注?土壤养分是土壤肥力的重要组成,是作物高产稳产的基础条件?在水?热?气等条件适宜时,土壤养分的含量及比例直接影响作物的生长发育和产量高低?氮?磷?钾是植物生长发育所必需的三大基本元素;土壤pH值是土壤重要的化学性质,它通过影响土壤微生物活动?土壤有机质的分解?矿质营养的有效状态等影响土壤的肥力状态;土壤有机质的数量与质量变化是土壤肥力及环境质量状况的最重要表征,是制约土壤理化性质如水分?通气性?抗蚀力?供保肥能力和养分有效性等的关键因素[2]?土壤酶参与土壤中许多重要的生物化学过程和物质循环,可以客观地反映土壤肥力状况,是土壤生物学肥力的重要因素?由于受植物根系和微生物的影响,植物根际土壤中酶的活性与原土体存在差异?玉米根际土壤中磷酸酶[3,4]和脲酶[5]的活性均比非根际土壤高? 苎麻是我国极具特色的经济作物,其产量和面积均占全世界的90%以上?但近几年由于诸多原因导致麻类的种植面积和总产大幅度降低?苎麻的高产栽培方面已有很多研究报道[6-9],但是苎麻根际环境的研究还较少?本试验主要通过比较根际和非根际环境的土壤养分?土壤酶?土壤微生物含量的差异及其相关关系的不同来研究苎麻的根际环境,旨在为苎麻的施肥管理提供理论基础? 1材料与方法 1.1材料

煤层气储层评价指标及评价方法

煤层气储层评价指标及评价方法 赵胜绪 摘要:本文在总结前人对煤层气储层评价工作的基础上,综述了煤层气储层评价参数组合及获取方法,提出了一套新的煤层气储层评价体系。主要包括以下3大类16项参数: ①煤层气储层地质参数;②煤层气储层物性参数;③煤层气储层封盖参数。进而提出了煤层气储层评价标准。又综合对比分析了目前煤层气储层评价使用的评价方法,本文采用了基于GIS的多层次模糊数学综合判别法。该方法突出了层次分析法的系统性优势,与模糊综合评判法巧妙结合,充分发挥GIS技术展示空间数据在综合评价方面的功能优势。但是该方法不可避免地又涉及到赋权问题,客观性在此表现较差。如果将熵权法的赋权优势与基于GIS的多层次模糊数学综合评价体系相结合,则可创造一种精确度、可信度更高的煤层气储层评价方法。 关键词:煤层气储层评价评价参数获取评价指标体系评价方法选择 1 前言 煤层气产业是近20年在世界上崛起的新型能源产业,我国煤层气的资源量位列世界第三,在深埋2000米以内的

煤层气预测总资源量为30万亿至35万亿立方米[1]。中国的煤炭资源和煤层气资源非常丰富,煤层气勘探开发活动空前活跃。但由于煤储层条件差异变化大,煤层作为储气层与常规天然气储层相比有许多显著的差别。要取得煤层气勘探开发的突破,必须提高煤层气勘探开发工作的决策水平,建立一套适合中国的煤层气储层评价指标体系及评价方法。因此,本文在总结前人对煤层气储层评价工作的基础上,综合分析了目前对煤层气储层评价所建立的评价指标体系及使用的评价方法,建立了一套新的煤层气储层评价指标体系,并对现有的评价方法进行分析对比,提出建设性改进建议。 2 煤层气储层评价指标体系的建立 2.1煤层气储层评价参数组合及获取方法 煤层气储层评价是一项复杂的系统工程,在整个评价过程中,需要地质工程、气藏工程、钻井工程和生产工程技术人员互相配合。在实际工作中,对煤层气储层评价参数的大部分或者全部不可能都进行深入的探索和研究,特别是在煤层气勘探开发初期,由于技术、工程手段、实验方法和仪器等方面的限制,仅能获取有限的煤层气储层评价参数。因此,如何集中有限的资金、设备和技术人员,最大限度的获取煤层气储层评价所必须的主要参数,也是我们在煤层气储层评价研究中遇到的一个难题。

平顶山煤田煤储层物性特征与煤层气有利区预测

第32卷第2期 地球科学———中国地质大学学报 Vol.32 No.22007年3月 Earth Science —Journal of China University of G eosciences Mar. 2007 基金项目:国家自然科学基金项目(No.40572091);国家重点基础研究发展计划课题(No.2002CB211702);中国地质调查局资助项目(No. 20021010004);国家重点基础研究发展计划课题(No.2006CB202202). 作者简介:姚艳斌(1978-),男,博士研究生,从事油气及煤层气地质研究工作.E 2mail :yaoyanbin @https://www.wendangku.net/doc/a14470540.html, 平顶山煤田煤储层物性特征与煤层气有利区预测 姚艳斌1,刘大锰1,汤达祯1,唐书恒1,黄文辉1,胡宝林2,车 遥1 1.中国地质大学能源学院,北京100083 2.安徽理工大学资源和环境系,安徽淮南232000 摘要:通过对平顶山煤田采集煤样的煤质、煤岩显微组分、煤相、煤岩显微裂隙分析,低温氮比表面及孔隙结构和压汞孔隙 结构测试,研究了该区的煤层气赋存地质条件、煤层气生气地质条件和煤储层物性特征.并采用基于GIS 的多层次模糊数学评价方法计算了该区的煤层气资源量,预测了煤层气资源分布的有利区.研究结果表明,该区煤层气总资源量为786.8×108m 3,煤层气资源丰度平均为1.05×108m 3/km 2,具有很好的煤层气资源开发潜力.其中,位于煤田中部的八矿深部预测区和十矿深部预测区周边地区,煤层累计有效厚度大,煤层气资源丰度高,煤层埋深适中,同时由于该受挤压构造应力影响,煤储层孔裂隙系统发育、渗透性高,是该区煤层气勘探、开发的最有利目标区.关键词:煤层气;平顶山煤田;储层物性;有利目标区.中图分类号:P618.130.2+1 文章编号:1000-2383(2007)02-0285-06 收稿日期:2006-05-20 Coal R eservoir Physical Characteristics and Prospective Areas for CBM Exploitation in Pingdingshan Coalf ield YAO Yan 2bin 1,L IU Da 2meng 1,TAN G Da 2zhen 1,TAN G Shu 2heng 1,HUAN G Wen 2hui 1,HU Bao 2lin 2,C H E Yao 1 1.Facult y of Energ y Resources ,China Universit y of Geosciences ,Bei j ing 100083,China 2.Department of Resources and Environmental Engineering ,A nhui Universit y of Science and T echnology ,Huainan 232000,China Abstract :Based on the elemental ,maceral ,micro 2fracture ,coal facies ,liquid nitrogen adsorption/desorption and mercury injection analyses ,the coalbed methane (CBM )geological characteristics ,coal reservoir physical characteristics ,CBM re 2sources and its exploration and exploitation prospect in Pingdingshan coalfield were systematically studied.The in 2place CBM resource was calculated using the f uzzy mathematics and stacking analysis of GIS (geographic information system )method.The results show that the in 2place CBM resources and the resources abundance in Pingdingshan coalfield are about 786.8×108m 3and 1.05×108m 3/km 2respectively ,which are very favorable for CBM exploration and development.The optimum target areas in this coalfield are the deep prediction districts of No.8and No.10coal districts ,where the coal reser 2voirs have higher coal thickness and CBM resource abundance ,good burial depth ,well connected pore 2cleat systems ,and higher permeability resulting f rom the tectonic stress. K ey w ords :coalbed methane ;Pingdingshan coalfield ;coal reservoir characteristics ;prospective and target area. 平顶山煤田位于河南省平顶山市,横跨宝、叶、襄、郏4县.东起洛岗正断层,西北至韩梁矿区,东北到襄郏正断层,南至煤层露头,整个煤田的勘探矿区和预测区面积约980km 2,煤炭探明储量和预测储量共计92亿t ,煤层气资源量786.8×108m 3,资源丰度平均为1.05×108m 3/km 2,具备良好的煤层气资源潜力.同时该区也是我国煤与瓦斯突发事故严重矿区,开发利用该区的煤层气具有充分利用资源、保

根际

根际[gēn jì] 英文名称:rhizosphere 定义: 由植物根系与土壤微生物之间相互作用所形成的独特圈带。它以植物的根系为中心聚集了大量的细菌、真菌等微生物和蚯蚓、线虫等土壤动物,形成了一个特殊的生物群落。 应用学科: 根际是指受植物根系活动的影响,在物理、化学和生物学性质上不同于土体的那部分微域土区。根际的范围很小,一般指离跟轴表面数毫米之内。根际的许多化学条件和生物化学过程不同于土体土壤。其中最明显的就是根际pH值、氧化还原电位和微生物活性的变化等。在根际土壤溶液中养分浓度的分布与土体土壤有明显差异。 生态学(一级学科);生态系统生态学(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 根际微生物(rhizosphere microbe) 植物根系直接影响的土壤范围内生长繁殖的微生物。有细菌、放线菌、真菌、藻类和原生动物等。一般数量比根际外多几倍至几十倍。它们和植物间是互生关系,与植物根系相互作用、相互促进。微生物大量聚集在根系周围,将有机物转变为无机物,为植物提供有效的养料;同时,微生物还能分泌维生素,生长刺激素等,促进植物生长。在植物生长过程中,死亡的根系和根的脱落物(根毛、表皮细胞、根冠等),以及根系向根外分泌的无机物和有机物是微生物重要的营养来源和能量来源;由于根系的穿插,使根际的通气条件和水分状况优于根际外,从而形成利于微生物的生态环境。根际微生物在同一植物的不同品种可表现出其特异性,如雀稗根际内的雀稗固氮菌(Azotobacter paspali)只在雀稗品种的根际内受到刺激,而在另一品种的根际内则发育不好。固氮螺菌(Azospirillas sp.)在玉米品种UR-1根际内固氮活性不强,而在UR-1的杂种S1根际内则固氮酶活性很高。 编辑本段特征 植物根表及近根土壤中的微生物。根际一词是希尔特纳于1904年提出的,指植物的根表以及受根系直接影响的土壤区域。根际微生物在数量和质量上都与根际以外的微生物不同。根际微生物数量常比根际以外的微生物数量高几倍至几十倍,个别的细菌群可高达上千倍(平板计数)。这两者的数量比称为根土比(R∶S),表示植物根系对微生物的影响程度,所以又称根际效应。 根际微生物以细菌为主,并且是革兰氏阴性菌占优势。 常见的有假单胞菌、黄杆菌、产碱杆菌、土壤杆菌和色杆菌等。 培养 根际中的革兰氏阳性短杆菌、球菌、芽孢杆菌反而比根际以外少。真菌、放线菌的根际效应一般不明显。原生动物于根际有增长,它们以细菌为食,数量高峰出现在细菌数量高峰之后。在表土以下的根际藻类很少。 根际细菌中需要氨基酸营养的菌数大,生长速度快。根际中氨化细菌较多,根土比可在100

相关文档