文档库 最新最全的文档下载
当前位置:文档库 › ITO导电玻璃及相关透明导电膜之原理及应用

ITO导电玻璃及相关透明导电膜之原理及应用

ITO导电电极

ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。 ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500奥姆)、普通玻璃(电阻在60~150奥姆)、低电阻玻璃(电阻小于60奥姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm以下的主要用于STN液晶显示器产品。 ITO导电玻璃按平整度分,分为抛光玻璃和普通玻璃。 影响ITO玻璃性能的主要参数: 长度、宽度、厚度及允差(±0.20) 垂直度(≤0.10%) 翘曲度(厚度0.7mm以上≤0.10%,厚度0.55mm以下≤0.15%) 微观波纹度 倒边 C倒边(0.05mm≤宽度≤0.40mm) R倒边(0.20mm≤宽度≤1.00mm,曲率半径≤50mm)

金属氧化物透明导电材料地基本原理

金屬氧化物透明導電材料的基本原理 一、透明導電薄膜簡介 如果一種薄膜材料在可見光範圍內(波長380-760 nm)具有80%以上的透光率,而且導電性高,其比電阻值低於1×10-3 ·cm,則可稱為透明導電薄膜。Au, Ag, Pt, Cu, Rh, Pd, A1, Cr等金屬,在形成3-15 nm厚的薄膜時,都有某種程度的可見光透光性,因此在歷史上都曾被當成透明電極來使用。但金屬薄膜對光的吸收太大,硬度低而且穩定性差,因此人們開始研究氧化物、氮化物、氟化物等透明導電薄膜的形成方法及物性。其中,由金屬氧化物構成的透明導電材料(transparent conducting oxide, 以下簡稱為TCO),已經成為透明導電膜的主角,而且近年來的應用領域及需求量不斷地擴大。首先,隨著3C產業的蓬勃發展,以LCD為首的平面顯示器(FPD)產量逐年增加,目前在全球顯示器市場已佔有重要的地位,其中氧化銦錫(In2O3:Sn, 意指摻雜錫的氧化銦,以下簡稱為ITO)是FPD的透明電極材料。另外,利用SnO2等製成建築物上可反射紅外線的低放射玻璃(low-e window),早已成為透明導電膜的最大應用領域。未來,隨著功能要求增加與節約能源的全球趨勢,兼具調光性與節約能源效果的electrochromic (EC) window (一種透光性可隨施加的電壓而變化的玻璃)等也可望成為極重要的建築、汽車及多種日用品的材料,而且未來對於可適用於多種場合之透明導電膜的需求也會越來越多。 二、常用的透明導電膜

一些目前常用的透明導電膜如表1所示,我們可看出TCO佔了其中絕大部分。這是因為TCO具備離子性與適當的能隙(energy gap),在化學上也相當穩定,所以成為透明導電膜的重要材料。 表1 一些常用的透明導電膜 三、代表性的TCO材料 代表性的TCO材料有In2O3, SnO2, ZnO, CdO, CdIn2O4, Cd2SnO4,Zn2SnO4和In2O3-ZnO等。這些氧化物半導體的能隙都在3 eV以上,所以可見光(約1.6-3.3 eV)的能量不足以將價帶(valence band)的電子激發到導帶(conduction band),只有波長在350-400nm(紫外線)以下的光才可以。因此,由電子在能帶間遷移而產生的光吸收,在可見光範圍中不會發生,TCO對可見光為透明。

ITO导电玻璃检验标准

1.0范围 本标准准适用于正星光电科技有限公司生产的ITO 产品。 2.0规范性引用文件 2.1 JIS B0601—1994表面微观波纹度测量过程和方法的标准。 2.2 GB2828—2003计数抽样检验程序[第一部分 按照接收质量限(AQL )检索的逐批检验抽样计划]。 3.0玻璃基片的规格 3.1 长度及宽度的允许偏差、厚度允许偏差表 序号 检验项目 标准范围 测量方法 1 长度/宽度 ±0.20mm 数显游标卡尺 2 厚度 1.10mm ±0.1mm 0.70mm ±0.05mm 0. 55mm ±0.05mm 0.4/0.33mm ±0.05mm 千分尺 3 垂直度 ≤0.10% 宽座角尺和塞尺 3.2垂直度 玻璃基片的垂直度的公差等级a/L ≤0.1%(见图1,a 为公差带,L 为被测玻璃基片的相应边长)。 图1 玻璃基片的垂直度 3.3 弯曲度(h/L) 图2 玻璃基片的弯曲度,不允许S 形弯曲 3.4微观波纹度(玻璃的浮法锡面) 微观表面波纹度的数值Rt 的最大值应符合表2要求 序号 厚度 玻璃类型 弯曲度 微观波纹度 1 1.10mm 非强化 ≤0.10% ≤0.15um/20mm 强化 ≤0.20% 2 0.70mm 非强化 ≤0.15% ≤0.20um/20mm 强化 ≤0.25% 3 0.55mm 非强化 ≤0.15% ≤0.25um/20mm 强化 ≤0.30% 4 0.4/033mm 非强化 ≤0.15% ≤0.30um/20mm 强化 ≤0.30% 3.5磨边倒角: R 型边 编号 项目 标准要求 检验方法 1 C 型倒边 0.05mm ≤W ≤0.4mm 10倍放大镜 2 R 型倒边 宽度:0.1mm ≤W ≤1.0 曲半径: R ≤50 mm 10倍放大镜 3 标识角 b=2.0±1.0mm 10倍放大镜 b d*d 浮法方向 切角磨边示意图 a 0.3*45° C 型边

ITO导电玻璃检验标准

精心整理 1.0范围 本标准准适用于正星光电科技有限公司生产的ITO 产品。 2.0规范性引用文件 2.1JISB0601—1994表面微观波纹度测量过程和方法的标准。 2.2GB2828—2003计数抽样检验程序[第一部分按照接收质量限(AQL )检索的逐批检验抽样计划]。 3.0玻璃基片的规格 3.1长度及宽度的允许偏差、厚度允许偏差表 序号 检验项目 标准范围 测量方法 1 长度/宽度 ±0.20mm 数显游标卡尺 2 厚度 1.10mm ±0.1mm 0.70mm ±0.05mm 0.55mm ±0.05mm 0.4/0.33mm ±0.05mm 千分尺 3 垂直度 ≤0.10% 宽座角尺和塞尺 3.2垂直度 玻璃基片的垂直度的公差等级a/L ≤0.1%(见图1,a 为公差带,L 为被测玻璃基片的相应边长)。 图1玻璃基片的垂直度 3.3弯曲度(h/L) 图2玻璃基片的弯曲度,不允许S 形弯曲 3.4微观波纹度(玻璃的浮法锡面) 微观表面波纹度的数值Rt 的最大值应符合表2要求 序号 厚度 玻璃类型 弯曲度 微观波纹度 1 1.10mm 非强化 ≤0.10% ≤0.15um/20mm 强化 ≤0.20% 2 0.70mm 非强化 ≤0.15% ≤0.20um/20mm 强化 ≤0.25% 3 0.55mm 非强化 ≤0.15% ≤0.25um/20mm 强化 ≤0.30% 4 0.4/033mm 非强化 ≤0.15% ≤0.30um/20mm 强化 ≤0.30% 3.5磨边倒角: R 型边 b 向 切角磨边示意图 a

编号项目标准要求检验方法 1 C型倒边0.05mm≤W≤0.4mm 10倍放大镜 2 R型倒边宽度:0.1mm≤W≤1.0曲半径:R≤50mm 10倍放大镜 3 标识角b=2.0±1.0mm c=5.0±1.0mm 10倍放大镜 4 相同角A=1.5±0.5mm10倍放大镜 5 崩边长≤1mm,宽≤0.3mm 深度≤1/2基片厚度 10倍放大镜 6 破裂不允许目测 7 边、角未磨不允许目测 3.6表面质量 包括内部气泡、夹杂物、表面凹坑、异色点等。 点状缺陷的直径d定义为:d=(L+W)/2,见图5。划伤缺陷的定义为:L3mm,W0.03-0.07mm见图6:图5点状缺陷的尺寸图6划伤图形的尺寸 3.6.1双面ITO产品表面质量检验标准 No 缺陷分类A品标准范围B品测量方法 1 内部气泡、杂质 点、针眼、污点、 锡斑、亮点、表 面凹凸点、颗粒 d=(W+L)/2 d≤0.05mm不计 0.050.20mm不允许 D≤0.2mm,10个/片,允 许;D>0.2mm,不允许. 裸眼≥ 1000LUX (30W日 光灯) 光照条 件 距离玻 璃30cm (注:客 户有特 别要求 的,以客 户要求 为准) 2 玻筋日光灯下不可见 3 划伤宽度W≤0.03mm,不计;0.03mm≤W≤ 0.07mm,单个长度≤3mm,1条/片允 许;W>0.07mm,不允许. W≤1mm,单个长度≤100mm,1条/片 允许.单个长度≤50mm,2 条/片允许.单个长度≤ 10mm,5条/片允许.单个 长度≤5mm,不计.间隔距 离100mm以上W>1mm,不 允许. 4 污染使用专用清洗剂经过正常清洗过程后清洗不干净的沾污不允许 5 膜层针孔 d=(L+W)/2 d≤0.05mm不计 0.050.20mm不允许 d≤0.05mm不计 0.050.20mm不允许 6 毛边.锡斑. 发霉 批量性.表面看比较明显不允许 7 手指印超出边缘5mm,批量性可擦拭不允许 8 亮道划伤.污渍. 手指印.轮印 偶尔1-2片日光灯不可见允许,批量性日光灯不可见不允许。 9 颜色日光灯检验有异色不允许

透明导电膜知识培训

新业务知识教材—透明导电膜部分 一、触摸屏发展的背景 二、触摸屏的原理以及发展历程 1、触摸屏—绝对定位元件 2、触摸屏的种类以及工作原理 3、各种方式触摸屏的特点比较以及应用的领域 三、透明导电膜的功能以及材料组成 1、透明导电膜在触摸屏中的作用 2、透明导电膜的材料特点 四、透明导电膜的技术要求 1、透明导电膜的技术要求 2、透明导电膜的技术指标 五、透明导电膜的生产工艺 1、溅射法生产工艺介绍 2、涂布法生产工艺介绍 3、其他方法简介 六、触摸屏的发展趋势以及面临的问题

触摸屏及透明导电膜知识简介 前言 随着计算机技术的快速发展,人机界面的沟通成了计算机技术的一个热点,触摸 屏凭着优秀的人机沟通方式,成为了当今发展最快的技术。 触摸屏主要应用于个人便携式信息产品(如使用手写输入技术的PC、PDA、AV 等)之外,应用领域遍及信息家电、公共信息(如电子政务、银行、医院、电力等部 门的业务查询等)、电子游戏、通讯设备、办公室自动化设备、信息收集设备及工业设备等等。2009年全球触摸屏产值达43亿美元,估计2016年将成长到140 亿美元,年复合成长率达18%。国内市场约占全球市场的20%,约为8.6亿美元。 第一章:触摸屏发展的背景 在人类渴求讯息实时联系与传递的欲望下,个人化电子用品未来将有爆发性的需求。然而,在机动与方便性的诉求下,个人化的电子工具通常使用在不安稳的场合, 如何快速简便的使用随身的电子工具,是使用者最大期待。其中最大的障碍在于人与 机器间的沟通。所以,是否具有快速简便的人机沟通接口,将是未来电子化产品最重 要的功能。 如果说1964年鼠标的发明,把电脑操作带入了一个新的时代,那么触摸屏的出现,则使图形化的人机交互界面变得更为直观易用。1971 年,美国人SamHurst发明了世界上第一个触摸传感器。虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触 摸屏技术研发的开端。 当年,SamHurst 在肯尼迪大学当教师,因为每天要处理大量的图形数据而不胜其烦,就开始琢磨怎样提高工作效率,用最简单的方法搞定这些该死的图形。他把自己 的三间地下室改造成了车间,一间用来加工木材,一间制造电子元件,一间用来装配这些零件,并最终制造出了最早的触摸屏。这种最早的触摸屏被命名为“AccuTouch”,由于是手工组装,一天生产几台设备。不久,SamHurst 成立了自己的公司,并和西门 子公司合作,不断完善这项技术。这个时期的触摸屏技术主要被美国军方采用,直到1982 年,Sam Hurst的公司在美国一次科技展会上展出了33 台安装了触摸屏的电视机,平民百姓才第一次亲手“摸”到神奇的触摸屏。触摸屏早期多被装于工控计算机、

ITO导电玻璃检验标准

名称ITO导电玻璃检验标准制定日期2014-09-4 生效日期2014-09-4 1.0范围 本标准准适用于正星光电科技有限公司生产的ITO产品。 2.0规范性引用文件 2.1 JIS B0601—1994表面微观波纹度测量过程和方法的标准。 2.2 GB2828—2003计数抽样检验程序[第一部分按照接收质量限(AQL)检索的逐批检验抽样计划]。 3.0玻璃基片的规格 3.1 长度及宽度的允许偏差、厚度允许偏差表 序号检验项目标准范围测量方法 1 长度/宽度±0.20mm 数显游标卡尺 2 厚度1.10mm±0.1mm 0.70mm±0.05mm 0. 55mm±0.05mm 0.4/0.33mm±0.05mm 千分尺 3 垂直度≤0.10% 宽座角尺和塞尺 3.2垂直度 玻璃基片的垂直度的公差等级a/L≤0.1%(见图1,a为公差带,L为被测玻璃基片的相应边长)。 图1 玻璃基片的垂直度 3.3 弯曲度(h/L) 图2 玻璃基片的弯曲度,不允许S形弯曲 3.4微观波纹度(玻璃的浮法锡面)

名称 ITO 导电玻璃检验标准 制定日期 2014-09-4 生效日期 2014-09-4 微观表面波纹度的数值Rt 的最大值应符合表2要求 序号 厚度 玻璃类型 弯曲度 微观波纹度 1 1.10mm 非强化 ≤0.10% ≤0.15um/20mm 强化 ≤0.20% 2 0.70mm 非强化 ≤0.15% ≤0.20um/20mm 强化 ≤0.25% 3 0.55mm 非强化 ≤0.15% ≤0.25um/20mm 强化 ≤0.30% 4 0.4/033mm 非强化 ≤0.15% ≤0.30um/20mm 强化 ≤0.30% 3.5磨边倒角: R 型边 编号 项目 标准要求 检验方法 1 C 型倒边 0.05mm ≤W ≤0.4mm 10倍放大镜 2 R 型倒边 宽度:0.1mm ≤W ≤1.0 曲半径: R ≤50 mm 10倍放大镜 3 标识角 b=2.0±1.0mm c=5.0±1.0mm 10倍放大镜 4 相同角 A=1.5±0.5mm 10倍放大镜 5 崩边 长≤1mm,宽≤0.3mm 深度≤1/2基片厚度 10倍放大镜 6 破裂 不允许 目测 7 边、角未磨 不允许 目测 3.6表面质量 b d*d 浮法方向 切角磨边示意图 a 0.3*45° C 型边

ITO导电玻璃入门知识

I T O导电玻璃入门知识 SANY GROUP system office room 【SANYUA16H-

I T O导电玻璃入门知识ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。

ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm 以下的主要用于STN液晶显示器产品。 ITO导电玻璃按平整度分,分为抛光玻璃和普通玻璃。 影响ITO玻璃性能的主要参数: 长度、宽度、厚度及允差(±0.20) 垂直度(≤0.10%) 翘曲度(厚度0.7mm以上≤0.10%,厚度0.55mm以下≤0.15%)

导电玻璃

NSG玻璃:FTO导电玻璃,厚度为2.2mm,透光率大于90%,电阻为15欧,大小为200mm*150mm,也可以根据用户要求订做。导电玻璃为掺杂氟的SnO2导电玻璃(SnO2:F),简称为FTO,其综合性能常用直属FTC来评价:FTC=T10/RS。T是薄膜的透光率RS是薄膜的方阻值;在光学应用方面,则要求其对可见光有好的透射性和对红外有良好的反射性。对其基本要求是:①表面方阻低,②透光率高,③面积大、重量轻,④易加工、耐冲击。 Characteristics of NSG TCO TCO Tvis (%) Haze (%) Sheet Resistance(ohms/sq) High Transmission Type(for tandem) 80 to 82 11 to 16 11 to 14 High Transmission Type(for a-Si) 80 to 82 8 to 13 8 to 11 Normal TCO(for a-Si) 79 to 81 8 to 12 8 to 11 TCO镀膜玻璃的特性及种类 在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。薄膜太阳能电池是在玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。 透明导电氧化物的镀膜原料和工艺很多,通过科学研究进行不断的筛选,目前主要有以下三种TCO玻璃与光伏电池的性能要求相匹配。 ITO镀膜玻璃是一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。铟为稀有元素,在自然界中贮存量少,价格较高。ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。 SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。 氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。预计会很快成为新型的光伏TCO产品。目前主要存在的问题是工业化大面积镀膜时的技术问题。 光伏电池对TCO镀膜玻璃的性能要求 1.光谱透过率为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。 2.导电性能TCO导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显著变化。这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体。氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,提高导电率,它的导电性能在目前是最好的,最低电阻率达10-5Ωcm量级。 3.雾度为了增加薄膜电池半导体层吸收光的能力,光伏用TCO玻璃需要提高对透射光的散射能力,这一能力用雾度(Haze)来表示。雾度即为透明或半透明材料的内部或表面由于光漫射造成的云雾状或混浊的外观。以漫射的光通量与透过材料的光通量之比的百分率表示。 一般情况下,普通镀膜玻璃要求膜层表面越光滑越好,雾度越小越好,但光伏用TCO玻璃则要求有一定的光散射能力。目前,雾度控制比较好的商业化TCO玻璃是AFG的PV-TCO玻璃,雾度值一般为

透明导电薄膜

透明导电薄膜 引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。目前广泛研究和应用的透明导电薄膜主要为In2O3∶Sn(ITO)、Sb∶SnO2(ATO)和ZnO∶A1(ZAO)等无机氧化物透明导电薄膜。氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。这些缺点限制了它们的进一步应用。例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。 薄膜的组成,设备和制作工艺 首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合.并搅拌5 h后得到无机前驱体溶液。然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h;然后混合聚苯胺溶液和无机前驱体溶液。搅拌并陈化6 h后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS的物质的量比为0.1~1.0,定义为H1~H10:间甲酚与MPTMS的物质的量比为3~7,定义为M3~M7:聚苯胺和二氧化硅的质量比为15/85~50/50,定义为P15~P50。其中,溶胶溶液的浓度为0.5mol.L-1。 实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉.控制提拉速度为1mm.s-1。然后将沉积有薄膜的载玻片在80℃烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80℃烘箱中干燥。 薄膜分析方法、结果及性能 图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA—PANI)和H4M5P30干凝胶样品的红外光谱图。在MPTMS的红外图谱中,2850和810 cm一分别为硅氧烷的C,H和SiO,C振动吸收峰 1 084 cm一为Si,O基团的吸收峰。在2566 cm处的一个小吸收峰为MPTMS有机链中SH 的吸收峰。同时在DBSA.PANI的红外谱图中,1575和l471 cm一处的吸收峰分别对应聚苯胺中C=C吸收的醌式和苯式结构。为导电聚苯胺的特征吸收峰。此外l 122、l 327和l026 em一处的吸收峰分别为N-Q=N、C—N和S=O吸收峰。当导电聚苯胺和无机前驱体反应杂化后.聚苯胺链中C=C吸收的醌式和苯式结构所对应的峰位移至1580和1454.1 327 cm一所对应的C.N双峰红移至1 249 Cm.同时MPTMS中2 566 cm 所对应的SH吸收峰消失.说明3一巯丙基三甲氧基硅烷中的SH基团已和聚苯胺中氨基基团形成键合.得到杂化结构。另外在杂化干凝胶的红外谱图中,1 149和1 031 cm处出现了一个较大的双峰结构,主要为Si.0.Si结构的振动吸收峰此峰覆盖了聚苯胺的N=Q=N吸收峰原MPTMS 在810 cm 处的SiO—C吸收峰消失。Si.0一si峰的出现和SiO.C峰的消失充分说明硅的网络结构的形成从红外谱图分析看出,用溶胶一凝胶法可以得到无机网络完整的PANI—SiO 杂化材料。

ito导电玻璃简介以及基础知识.doc

TTO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化锢锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离了向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显不器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此, 最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象; 右?些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化锢锡。在厚度只有儿千埃的情况下,氧化锢透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”, 因此在存放时要防潮。 ITO层在活性正价离了溶液中易产生离了置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离了溶液中。 ITO层由很多细小的品粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高, 电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150?500奥姆)、普通玻璃(电阻在60?150 奥姆)、低电阻玻璃(电阻小于60奥姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用; 普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃?般用于STN液晶显示器和透明线路板。

氧化物透明导电薄膜研究进展综述

本科毕业设计说明书 氧化物透明导电薄膜研究进展综述Development of Transparent Conductive Oxide Films 学院(部): 专业班级: 学生姓名: 指导教师: 年月日

氧化物透明导电薄膜研究进展综述 摘要 通过介绍TCO薄膜的功能原理和制备工艺以及现实应用,了解TCO薄膜的特点、作用、研究现状,并由此对TCO的发展前景和研究方向做出总结。 关键词: 透明导电机理;制备工艺;发展前景;TCO

DEVELOPMENT OF TRANSPARENT CONDUCTING OXIDE FILMS ABSTRAC In this paper, Across to describe the transparent conducting mechanism and the latest researching progress in preparation methods of TCO thin films, to look into the distance the future and acton of TOC. Furthermore summarized the progress and research of TCO thin films. KEYWORDS:thin oxide films,transparent,preparation methods,TCO

目录

绪论 TCO薄膜分为P型和N型两种。TCO现如今被广泛应用于高温电子器件、透明导电电极等领域,如太阳能电池、液晶显示器、光探测器、窗口涂层等多个领域。 目前,已经商业化应用的TCO薄膜主要是In O :Sn(ITO)和SnO :F(FTO)2类,ITO 因为其透明性好,电阻率低,易刻蚀和易低温制备等优点,一直以来是显示器领域中的首选TCO薄膜。然而FTO薄膜由于其化学稳定性好,生产设备简单,生产成本低等优点在节能视窗等建筑用大面积TCO薄膜中,在应用方面具有很大的优势。 1 TCO薄膜的特性及机理研究 1.1 TCO薄膜的特性 一般意义上的TCO薄膜具有以下两种性质:(1)电导率高σ,>103Ω-1?cm-1。TCO 主要包括In、Sb、Zn、Cd、Sn等金属氧化物及其复合多元氧化物,以氧化铟锡(Indium Tin Oxide简称ITO)和氧化锌铝(Alum inum doped Zin cum Oxide简称AZO)为代表,其具有显著的综合光电性能。(2)在可见光区(400~800nm)透射率高,平均透射率Tavg>80%; TCO薄膜综合了物质的透明性与导电性的矛盾。透明材料的禁带宽度大(Eg>3eV)而载流子(自由电子)少,导电性差;而另一方面,导电材料如金属等,因大量自由电子对入射光子吸收引发内光电效应,呈现不透明的状态。为了使金属导电氧化物更好的呈现一定的透明性,必须使材料费米半球的中心偏离动量的空间原点。按照能带理论,在费米能级附近的能级分布是很密集的,被电子占据的能级(价带)和空能级(导带)之间不存在能隙(禁带)。入射光子很容易被吸收从而引起内光电效应,使其可见光无法透过。克服内光电效应必须使禁带宽度(Eg)大于可见光光子能量才能够使导电材料透明。利用“载流子密度”的杂质半导体技术能够制备出既有较低电阻率又有良好透光性的薄膜。现有TCO薄膜的制备原理主要有2种:替位掺杂和制造氧空位。 TCO薄膜为晶粒尺寸几十至数百纳米的多晶层,晶粒择优取向。晶粒尺寸变大,载流子迁移率因晶界散减少而增大,导电性增强;同时晶粒长大会导致薄膜表面粗糙度增大,光子散射增强,透光性下降。目前研究较多的有ITO(Sn∶In2O3)、AZO(Al∶ZnO)与FTO(F∶SnO2)。半导体机理为化学计量比偏移和掺杂,禁带宽度大并随组分的不同而变化。光电性能依赖金属的氧化态以及掺杂的特性和数量,具有高载流子浓度(1018~1021cm-3)和低载流子迁移率(1~50cm2V-1s-1),可见光透射率可高达80%~90%。 1.2 TCO薄膜的机理 1.2.1TCO薄膜的光学机理

导电玻璃(ITO)行业分析

目前,国内 ITO导电玻璃生产线约 50条,产品以 TN/STN为主,主要生产厂商包括长信科技、南玻 A、莱宝高科、蚌埠华益等。 图表、国内主要 ITO导电玻璃厂商产能情况 (1)LCD-ITO导电玻璃 长信科技是国内规模最大的 LCD用 ITO导电玻璃生产企业,产销量均居同行业之首。公司所生产的 LCD-ITO导电玻璃产品主要以 TN、STN为主。国际上生产LCD-ITO导电玻璃的企业主要有韩国三星康宁、日本 Geomatic公司,但其主要面向本国市场。国内批量生产 LCD-ITO导电玻璃的企业主要有本公司、南玻 A、莱宝高科和蚌埠华益。 2009长信科技 ITO导电玻璃产量(TN、STN)占市场总量的 20%以上,居 ITO 行业第一位。其中 STN玻璃产品产量位居南玻、莱宝之后位于第三位,占 STN市场份额的 14%左右,因此有较大的提升空间。 全球 ITO导电玻璃生产主要集中在中国大陆。而国内生产厂商中,莱宝高科ITO导电玻璃主要集中在彩色滤光片 CF的生产,募集资金主要投向 TFT空盒项目。南玻 A主要精力放在新能源和工程玻璃( low-e玻璃)方面。因此,发行人目前的竞争对手主要是国内厂家,基本情况如下表:

STN导电膜玻璃产品是发行人重点发展的产品之一,尽管目前已初步打开市场,但与行业内优势企业南玻 A、莱宝高科等相比,发行人在产能规模、市场占有率以及资金上没有优势,但近年来,随着公司对 STN产品生产研发技术的投入,使公司掌握了这一产品的先进生产技术,得到了客户的广泛认可。公司下一步的发展目标将围绕扩大和提升触摸屏玻璃和 STN导电玻璃的市场占有率,将其做精做细。为进一步满足市场的需求,计划用两年的时间,优化公司产品结构,逐步提高 STN的比例,进一步增强公司产品的盈利能力和市场竞争力,成为国内 STN导电玻璃优势企业之一。 LCD需求领域根据其技术和市场特点,可以分为消费品和工业品两大类。其中消费品由于消费者对视觉效果的要求和受消费支出的影响,产品技术类型以TFT-LCD为主,需求波动较大。而工业品则更追求特定情况下性能的稳定性和耐用性,对视觉效果要求低,低成本诉求强,所以技术类型以 TN-LCD和 STN-LCD为主,需求也较稳定。TN-LCD和 STN-LCD与 ITO导电膜玻璃之间存在一对一的搭配关系。 通过核查,保荐机构认为:发行人坚持以持续的设备研制和产品创新为主导,以市场需求为导向,在巩固 TN市场优势地位的同时,以改善和优化产品结构为目标。通过近几年的市场拓展,发行人 STN、TP产品竞争力得到了快速提升。 (2)TP-ITO导电玻璃 目前触摸屏用 ITO导电玻璃的国际生产厂商主要集中在电子产品较为发达的日本、韩国和我国台湾地区,国内主要生产厂商为南玻 A、蚌埠华益、康达克和万德宏。具体情况如下表所示:

ITO导电膜玻璃简介

ITO导电膜玻璃 ITO导电膜玻璃 氧化铟锡(Indium-Tin Oxide)透明导电膜玻璃,多通过ITO导电膜玻璃生产线,在高度净化的厂房环境中,利用平面磁控技术,在超薄玻璃上溅射 氧化铟锡导电薄膜镀层并经高温退火处理得到的高技术产品。 产品广泛地用于液晶显示器(LCD)、太阳能电池、微电子ITO导电膜玻璃、光电子和各种光学领域。 ITO导电膜的主要参数有:表面电阻、表面电阻的均匀性、透光率、热稳定性、加热收缩率、加热卷曲等。其中光透过率主要与ITO膜所用的基底材料和ITO膜的表面电阻有关。在基底材料相同的情况下,ITO膜的表面电阻越小,ITO膜层的厚度越大,光透过率相应的会有一定程度的减小。 透明导电氧化膜TCO中,以掺Sn的In2O3(ITO)膜的透过率最高和导电性能最好,而且容易在酸液中蚀刻出细微的图形,其中透光率达90%以上。ITO中其透光率和阻值分别由In2O3与Sn2O3之比例来控制,通常 Sn2O3:In2O3=1:9。 以下是两种不同的ITO导电膜的参数: 高阻抗ITO导电膜(PET-ITO) 高阻抗ITO导电薄膜PET-ITO主要应用于移动通讯领域的触摸屏生产。 产品参数: 面电阻:300~500 Ω/□ 面电阻均匀性:MD≤±3%,TD≤±6% ITO薄膜厚度:0.188±10% 线性度(MD):≤1.5% 全光线透过率:≥86% 表面硬度(铅笔硬度):≥3H 热稳定性:(R-R0)/R: ±20%

热收缩率:MD≤1.0%,TD≤0.8% 加热卷曲:≤10mm 低阻抗柔性ITO导电膜(PET-ITO) 适用于柔性电致变色器件、柔性薄膜太阳能电池、柔性EL发光器件的制备和生产。 薄膜厚度:0.175±10 mm 雾度:<2% 宽度:406/360±2 mm 粘附:100/100 卷曲:≤10 mm 透过率:≥ 80% 表面电阻:90±15 Ω/□ 面电阻均匀性:<7% 热收缩:MD≤1.3,TD≤1.0 热稳定性: 高温:80oC,120hr ≤1.3 低温:-40oC,120hr ≤1.3 热循环:-30oC—80oC ≤1.3 热/湿度:60oC, 90% RH,120hr ≤1.3

ITO导电玻璃入门知识

I T O导电玻璃入门知识 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

I T O导电玻璃入门知识ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO 导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中

的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。 ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO 层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm以下的主要用于STN液晶显示器产品。

导电玻璃TCO(影响ITO玻璃性能的主要参数、测试方法及判定标准)

TCO镀膜玻璃的特性及种类、测试方法及判定标准 NSG玻璃: FTO导电玻璃,厚度为2.2mm,透光率大于90%,电阻为15欧,大小为200mm*150mm,也可以根据用户要求订做。导电玻璃为掺杂氟的SnO2导电玻璃(SnO2:F),简称为FTO,其综合性能常用直属FTC来评价:FTC=T10/RS。T是薄膜的透光率 RS是薄膜的方阻值;在光学应用方面,则要求其对可见光有好的透射性和对红外有良好的反射性。对其基本要求是:①表面方阻低,②透光率高,③面积大、重量轻,④易加工、耐冲击。 TCO镀膜玻璃的特性及种类 在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。薄膜太阳能电池是在玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。 透明导电氧化物的镀膜原料和工艺很多,通过科学研究进行不断的筛选,目前主要有以下三种TCO 玻璃与光伏电池的性能要求相匹配。 ITO镀膜玻璃是一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。铟为稀有元素,在自然界中贮存量少,价格较高。ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。 SnO2(二氧化锡)镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。 氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。预计会很快成为新型的光伏TCO产品。目前主要存在的问题是工业化大面积镀膜时的技术问题。 光伏电池对TCO镀膜玻璃的性能要求 1.光谱透过率为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。 2.导电性能TCO导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显著变化。这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体。氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,提高导电率,它的导电性能在目前是最好的,最低电阻率达10-5Ωcm量级。 3.雾度为了增加薄膜电池半导体层吸收光的能力,光伏用TCO玻璃需要提高对透射光的散射能力,

ITO导电玻璃入门知识

ITO导电玻璃入门知识 ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。 ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO 导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm 以下的主要用于STN液晶显示器产品。 ITO导电玻璃按平整度分,分为抛光玻璃和普通玻璃。 影响ITO玻璃性能的主要参数:

相关文档
相关文档 最新文档