文档库 最新最全的文档下载
当前位置:文档库 › 半导体习题

半导体习题

半导体习题
半导体习题

补充习题

1, 原子中的电子和晶体中电子受势场作用情况及运动情况有何不同?原子中内层电子和

外层电子参与共有化运动有何不同?

(1)原子中的电子是受到原子核和其他电子的势场的作用下做圆周运动

晶体中的电子是在严格周期性排列的原子间做共有化运动

(2)外层电子轨道交叠程度大,共有化运动显著

内层电子轨道交叠程度小,共有化运动较弱

2, 描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯用质量m 0描述

能带中电子运动有何局限性?

有效质量概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

3, 以硅的本征激发为例,说明由价带导带构成的半导体能带图的物理意义、价带和导带中

能级与硅晶格结构中价键上电子和自由运动电子有何联系?为什么电子从其价键挣脱出来所需的最小能量就是半导体的禁带宽度?

4, 若体心立方晶格能带为0()8(cos cos cos )x y z E k E A J ak ak ak πππ=--,求:

(1) 体心立方晶格的能带宽度

(2) 能带底部和顶部电子的有效质量

(3) 画出沿k x 方向(k y =k z =0)E(k x )和v (k x )的曲线

5, 杂质能级为什么位于禁带之中?能带图上如何表示中性和电离杂质?杂质电离后在半

导体中产生些什么?

6, 说明杂质补偿在制作半导体器件中的重大作用。

7, 试解释重掺杂半导体使禁带变窄的原因。

8, 试述硅晶体经过辐照后产生的影响。

9, 说明费米能级E F 的物理意义。根据E F 位置,如何计算半导体中电子和空穴浓度?如何

理解费米能级EF 是掺杂类型和掺杂程度的标志?

10, 半导体的电阻温度系数是正的还是负的?为什么?分别说明本征和掺杂(非简并)

情况。

11, 半导体中如果同时存在着施主杂质和受主杂质并且杂质全部电离时,说明为什么

在室温下其载流子浓度为两者之差,而对迁移率的影响却是两者之和?

12, 半导体的平衡状态和非平衡状态有何不同?什么叫非平衡载流子?为什么说非平

衡载流子一般是指非平衡少数载流子?

常用半导体器件复习题

第1章常用半导体器件 一、判断题(正确打“√”,错误打“×”,每题1分) 1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。()3.本征半导体就是纯净的晶体结构的半导体。() 4.PN结在无光照、无外加电压时,结电流为零。() 5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。()6.晶体三极管的β值,在任何电路中都是越大越好。( ) 7.模拟电路是对模拟信号进行处理的电路。( ) 8.稳压二极管正常工作时,应为正向导体状态。( ) 9.发光二极管不论外加正向电压或反向电压均可发光。( ) 10.光电二极管外加合适的正向电压时,可以正常发光。( ) 一、判断题答案:(每题1分) 1.√; 2.×; 3.√; 4.√; 5.×; 6.×; 7.√; 8.×; 9.×; 10.×。

二、填空题(每题1分) 1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。2.由于浓度不同而产生的电荷运动称为。 3.晶体二极管的核心部件是一个,它具有单向导电性。 4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。7.PN结加正向电压时,空间电荷区将。 8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流围表现出稳压特性,且能保证其正常可靠地工作。 9.晶体三极管三个电极的电流I E 、I B 、I C 的关系为:。 10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。 二、填空题答案:(每题1分) 1.空穴 2.扩散运动 3.PN结 4.导通 5.反向 6.发射机e 7.变薄 8.反向 9.I E =I B +I C 10.材料 三、单项选择题(将正确的答案题号及容一起填入横线上,每题1分)

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

半导体器件参数(精)

《党政领导干部选拔任用工作条例》知识测试题(二) 姓名:单位: 职务:得分: 一、填空题(每题1分,共20分): 1、《党政领导干部选拔任用工作条例》于年月发布。 2、《党政领导干部选拔任用工作条例》是我们党规范选拔任用干部工作的一个重要法规,内容极为丰富,共有章条。 3、干部的四化是指革命化、知识化、年轻化、专业化。 4、,按照干部管理权限履行选拔任用党政领导干部的职责,负责《条例》的组织实施。 5、党政领导班子成员一般应当从后备干部中选拔。 6、民主推荐部门领导,本部门人数较少的,可以由全体人员参加。 7、党政机关部分专业性较强的领导职务实行聘任制△I称微分电阻 RBB---8、政协领导成员候选人的推荐和协商提名,按照RE---政协章程和有关规定办理。 Rs(rs----串联电阻 Rth----热阻 结到环境的热阻

动态电阻 本机关单位或本系统 r δ---衰减电阻 r(th--- Ta---环境温度 Tc---壳温 td---延迟时间 、对决定任用的干部,由党委(党组)指定专人同本人 tg---电路换向关断时间 12 Tj---和不同领导职务的职责要求,全面考察其德能勤绩廉toff---。 tr---上升时间13、民主推荐包括反向恢复时间 ts---存储时间和温度补偿二极管的贮成温度 p---发光峰值波长 △λ η---

15、考察中了解到的考察对象的表现情况,一般由考察组向VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) 、正向压降(正向直流电压) △政府、断态重复峰值电压 VGT---门极触发电压 VGD---17、人民代表大会的临时党组织、人大常委会党组和人大常委会组成人员及人大代表中的党员,应当认真贯彻党委推荐意见 VGRM---门极反向峰值电压,带头(AV 履行职责交流输入电压 最大输出平均电压

半导体工艺与制造技术习题答案(第四章 离子注入)

第四章 离子注入与快速热处理 1.下图为一个典型的离子注入系统。 (1)给出1-6数字标识部分的名称,简述其作用。 (2)阐述部件2的工作原理。 答:(1)1:离子源,用于产生注入用的离子; 2:分析磁块,用于将分选所需的离子; 3:加速器,使离子获得所需能量; 4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入; 6:法拉第杯,收集束流测量注入剂量。 (2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式: 决定。最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。 2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系? 答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。 电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。 在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。 1 2 3 4 5 6

3.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么? 答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。 B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。 4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。 答:离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度要大于非损伤晶体,且存在大量间隙原子核其他缺陷,使扩散系数增大,扩散效应增强;故虽然热退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。 5.什么是离子注入中常发生的沟道效应(Channeling)和临界角?怎样避免沟道效应? 答:沟道效应,即当离子入射方向平行于主晶轴时,将很少受到核碰撞,离子将沿沟道运动,注入深度很深。由于沟道效应,使注入离子浓度的分布产生很长的拖尾;对于轻原子注入到重原子靶内是,拖尾效应尤其明显。 临界角是用来衡量注入是否会发生沟道效应的一个阈值量,当离子的速度矢量与主要晶轴方向的夹角比临界角大得多的时候,则很少发生沟道效应。临界角可用下式表示: 6.什么是固相外延(SPE)及固相外延中存在的问题? 答:固相外延是指半导体单晶上的非晶层在低于该材料的熔点或共晶点温度下外延再结晶的过程。热退火的过程就是一个固相外延的过程。 高剂量注入会导致稳定的位错环,非晶区在经过热退火固相外延后,位错环的最大浓度会位于非晶和晶体硅的界面处,这样的界面缺陷称为射程末端缺陷。若位错环位于PN结耗尽区附近,会产生大的漏电流,位错环与金属杂质结合时更严重。因此,选择的退火过程应当能够产生足够的杂质扩散,使位错环处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。 7.离子注入在半导体工艺中有哪些常见应用? 答:阱注入、VT调整注入,轻掺杂漏极(LDD),源漏离子注入,形成SOI结构。 8.简述RTP设备的工作原理,相对于传统高温炉管它有什么优势? 答:RTP设备是利用加热灯管通过热辐射的方式选择性加热硅片,使得硅片在极短的时间内达到目标温度并稳定维持一段时间。相对于传统高温炉管,RTP设备热处理时间短,热预算小,冷壁工艺减少硅片污染。 9.简述RTP在集成电路制造中的常见应用。 答:RTP常用于退火后损失修复、杂质的快速热激活、介质的快速热加工、硅化物和接触的形成等。 10.采用无定形掩膜的情况下进行注入,若掩膜/衬底界面的杂质浓度减少至峰值

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

半导体基础知识学习

我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。所以我们在学习电子电路之前, 一定要了解半导体的一些基本知识。 这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好在学习时我们把它的内容分为三节,它们分别是: 1、1 半导体的基础知识 1、2 PN结 1、3 半导体三极管 1、1 半导体的基础知识 我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。一:本征半导体 纯净晶体结构的半导体我们称之为本征半导体。常用的半导体材料有:硅和锗。它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。 共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。 在外电场作用下,自由电子产生定向移动,形成电子电流; 同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。 因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。二:杂质半导体 在本征半导体中两种载流子的浓度很低,因此导电性很差。我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。 1.N型半导体 在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。在N型半导体中自由电子是多数载流子,空穴是少数载流子。 2.P型半导体 在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。在P型半导体中,自由电子是少数载流子,空穴使多数载流子。 1、2 P—N结

半导体器件复习题与参考答案

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm,求零偏压下的总耗尽层宽度、建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 + = I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区存

集成电路制造技术-原理与技术试题库

填空题(30分=1分*30)(只是答案) 半导体级硅 、 GSG 、 电子级硅 。CZ 法 、 区熔法、 硅锭 、wafer 、硅 、锗、单晶生长、整型、切片、磨片倒角、刻蚀、(抛光)、清洗、检查和包装。 100 、110 和111 。融化了的半导体级硅液体、有正确晶向的、被掺杂成p 型或n 型、 实现均匀掺杂的同时并且复制仔晶的结构,得到合适的硅锭直径并且限制杂质引入到硅中 、拉伸速率 、晶体旋转速率 。 去掉两端、径向研磨、硅片定位边和定位槽。 制备工业硅、生长硅单晶、 提纯) 。卧式炉 、立式炉 、快速热处理炉 。干氧氧化、湿氧氧化、水汽氧化。工艺腔、硅片传输系统、气体分配系统、尾气系统、温控系统。 局部氧化LOCOS 、浅槽隔离STI 。 掺杂阻挡、表面钝化、场氧化层和金属层间介质。热生长 、淀积 、薄膜 。石英工艺腔、加热器、石英舟。 APCVD 常压化学气相淀积、LPCVD 低压化学气相淀积、PECVD 等离子体增强化学气相淀积。晶核形成、聚焦成束 、汇聚成膜。同质外延、异质外延。膜应力、电短路、诱生电荷。导电率、高黏附性、淀积 、平坦化、可靠性、抗腐蚀性、应力等。CMP 设备 、电机电流终点检测、光学终点检测。平滑、部分平坦化、局部平坦化、全局平坦化。 磨料、压力。使硅片表面和石英掩膜版对准并聚焦,包括图形);(通过对光刻胶曝光,把高分辨率的投影掩膜版上图形复制到硅片上);(在单位时间内生产出足够多的符合产品质量规格的硅片)。化学作用、物理作用、化学作用与物理作用混合。介质、金属 。在涂胶的硅片上正确地复制 掩膜图形。 被刻蚀图形的侧壁形状、各向同性、各向异性。气相、液相、 固相扩散。间隙式扩散机制、替代式扩散机制、激活杂质后。一种物质在另一种物质中的运动、一种材料的浓度必须高于另一种材料的浓度 )和( 系统内必须有足够的能量使高浓度的材料进入或通过另一种材料。 热扩散 、离子注入。预淀积 、推进、激活。时间、温度 。扩散区、光刻区 、刻蚀区、注入区、薄膜区、抛光区。硅片制造备 )、( 硅片制造 )、硅片测试和拣选、( 装配和封装 、终测。 微芯片。第一层层间介质氧化物淀积、氧化物磨抛、第十层掩模、第一层层间介质刻蚀。 钛淀积阻挡层、氮化钛淀积、钨淀积 、磨抛钨。 1. 常用的半导体材料为何选择硅?(6分) (1)硅的丰裕度。硅是地球上第二丰富的元素,占地壳成分的25%;经合理加工,硅能够提纯到半导体制造所需的足够高的纯度而消耗更低的成本; (2)更高的熔化温度允许更宽的工艺容限。硅1412℃>锗937℃ (3)更宽的工作温度。用硅制造的半导体件可以用于比锗更宽的温度范围,增加了半导体的应用范围和可靠性; (4)氧化硅的自然生成。氧化硅是一种高质量、稳定的电绝缘材料,而且能充当优质的化学阻挡层以保护硅不受外部沾污;氧化硅具有与硅类似的机械特性,允许高温工艺而不会产生过度的硅片翘曲; 2. 晶圆的英文是什么?简述晶圆制备的九个工艺步骤。(6分) Wafer 。 (1) 单晶硅生长: 晶体生长是把半导体级硅的多晶硅块转换成一块大的单晶硅。生长后的单晶硅被称为硅锭。可用CZ 法或区熔法。 (2) 整型。去掉两端,径向研磨,硅片定位边或定位槽。 (3) 切片。对200mm 及以上硅片而言,一般使用内圆切割 机;对300mm 硅片来讲都使用线锯。 (4) 磨片和倒角。切片完成后,传统上要进行双面的机械磨片以去除切片时留下的损伤,达到硅片两面高度的平行及平坦。硅片边缘抛光修整,又叫倒角,可使硅片边缘获得平滑的半径周线。 (5) 刻蚀。在刻蚀工艺中,通常要腐蚀掉硅片表面约20微米的硅以保证所有的损伤都被去掉。 (6) 抛光。也叫化学机械平坦化(CMP ),它的目标是高平整度的光滑表面。抛光分为单面抛光和双面抛光。 (7) 清洗。半导体硅片必须被清洗使得在发给芯片制造厂之前达到超净的洁净状态。 (8) 硅片评估。 (9) 包装。 3. 硅锭直径从20世纪50年代初期的不到25mm 增加到现在的300mm 甚至更大,其原因是什么?(6分) (1) 更大直径硅片有更大的表面积做芯片,能够减少硅片的浪费。 (2) 每个硅片上有更多的芯片,每块芯片的加工和处理时间减少,导致设备生产效率变高。 (3) 在硅片边缘的芯片减少了,转化为更高的生产成品率。 (4) 在同一工艺过程中有更多芯片,所以在一块芯片一块芯片的处理过程中,设备的重复利用率提高了。 氧化 4.立式炉出现的主要原因,其主要控制系统分为哪五个部分?(6分) (1) 立式炉更易于自动化、可改善操作者的安全以及减少颗粒污染。与卧式炉相比可更好地控制温度和均匀性。 (2) 工艺腔,硅片传输系统,气体分配系统,尾气系统,温控系统。 5.试写出光刻工艺的基本步骤。(6分) (1)气相成底膜;(2)旋转涂胶;(3)软烘 ;(4)对准和曝光;( 5)曝光后烘焙(PEB); (6) 显影; (7)坚膜烘焙; (8)显影检查。 4. 已知曝光的波长 为365nm ,光学系统的数值孔径NA 为0.60,则该光学系统的焦深DOF 为多少?(6分) 5. 简述扩散工艺的概念。(6分) 扩散是物质的一个基本属性,描述了一种物质在另一种物质中运动的情况。扩散的发生需要两个必要的条件:(1)一种材料的浓度必须高于另一种材料的浓度;(2)系统内必须有足够的能量使高浓度的材料进入或通过另一种材料。 气相扩散:空气清新剂喷雾罐 液相扩散:一滴墨水滴入一杯清水 固相扩散:晶圆暴露接触一定浓度的杂质原子(半导体掺杂工艺的一种) 6. 名词解释:离子注入。(6分) 离子注入是一种向硅衬底中引入可控制数量的杂质,以改变其电学性能的方法。它是一个物理过程,即不发生化学反应。离子注入在现代硅片制造过程中有广泛应用,其中最主要的用途是掺杂半导体材料。 四、综合题:(30分=15分*2,20题)2题/章 1. 对下图所示的工艺进行描述,并写出工艺的主要步骤。(15分) 描述:图示工艺:选择性氧化的浅槽隔离(STI )技术。(用于亚0.25微米工艺) STI 技术中的主要绝缘材料是淀积氧化物。选择性氧化利用掩膜来完成,通常是氮化硅,只要氮化硅膜足够厚,覆盖了氮化硅的硅表面就不会氧化。掩膜经过淀积、图形化、刻蚀后形成槽。 在掩膜图形曝露的区域,热氧化150~200埃厚的氧化物后,才能进行沟槽填充。这种热生长的氧化物使硅表面钝化,并且可以使浅槽填充的淀积氧化物和硅相互隔离,它还能作为有效的阻挡层,避免器件中的侧墙漏电流产生。 步骤:1氮化硅淀积 2氮化硅掩蔽与刻蚀 3侧墙氧化与沟槽填充 4氧化硅的平坦化(CMP) 5氮化硅去除。 浅槽隔离(STI)的剖面 2. 识别下图所示工艺,写出每个步骤名称并进行描述,对其特有现象进行描述。(15分) 答:一 )此为选择性氧化的局部氧化LOCOS (0.25微米以 上的工艺 ) 二 )步骤名称及描述: 1 氮化硅淀积。 2 氮化硅掩蔽与刻蚀 3 硅的局部氧化 LOCOS 场氧化层的剖面 4 氮化硅去除 用淀积氮化物膜作为氧化阻挡层,因为淀积在硅上的氮化物 不能被氧化,所以刻蚀后的区域可用来选择性氧化生长。热 氧化后,氮化物和任何掩膜下的氧化物都将被除去,露出赤 裸的硅表面,为形成器件作准备。 三)特有现象描述:当氧扩散穿越已生长的氧化物时,它是 在各个方向上扩散的(各向同性)。 一些氧原子纵向扩散进入硅,另一些氧原子横向扩散。这意 味着在氮化物掩膜下有着轻微的侧面氧化生长。由于氧化层 比消耗的硅更厚,所以在氮化物掩膜下的氧化生长将抬高氮 化物的边缘,我们称为“鸟嘴效应” 金属化 3. 按照下图,解释化学机械平坦化工艺。(15分) CMP 是一种表面全局平坦化的技术,它通过硅片和一个抛光 头之间的相对运动来平坦化硅片表面,在硅片和抛光头之间 有磨料,并同时施加压力。CMP 设备——抛光机 光刻 4. 识别下图所示工艺,写出每个步骤名称并进行描述。 (15分) 答:1 气相成底膜:清洗、脱水,脱水烘焙后立即用HMDS 进行成膜处理,起到粘附促进剂的作用。 2 采用旋转涂胶的方法涂上液相光刻胶材料。 3 软烘:其目的是除去光刻胶中的溶剂。 4 对准和曝光:掩模板与涂了胶的硅片上的正确位置对准。然后将掩模板和硅片曝光。 5 曝光后烘焙:深紫外(DUV )光刻胶在100-110℃的热板上进行曝光后烘焙。 6 显影:是在硅片表面光刻胶中产生图形的关键步骤。 7 坚模烘焙:要求会发掉存留的光刻胶溶剂,提高光刻胶对硅片表面的粘附性。 8 显影后检查:目的是找出光刻胶有质量问题的硅片,描述光刻胶工艺性能以满足规范要求。 刻蚀 5. 等离子体干法刻蚀系统的主要部件有哪性?试举出三种主要类型,并对圆筒式等离子体刻蚀机作出介绍。(15分) 答:一个等离子体干法刻蚀系统的基本部件包括:(1)发生刻蚀反应的反应腔;(2)产生等离子体的射频电源;(3)气体流量控制系统;(4)去除刻蚀生成物和气体的真空系统。 圆桶式反应器是圆柱形的,在0.1~1托压力下具有几乎完全相同的化学各向同性刻蚀。硅片垂直、小间距地装在一个石英舟上。射频功率加在圆柱两边的电极上。通常有一个打孔的金属圆柱形刻蚀隧道,它把等离子体限制在刻蚀隧道和腔壁之间的外部区域。硅片与电场平行放置使物理刻蚀最小。等离子体中的刻蚀基扩散到刻蚀隧道内,而等离子体中的带能离子和电子没有进入这一区域。 这种刻蚀是具有各向同性和高选择比的纯化学过程。因为在硅片表面没有物理的轰击,因而它具有最小的等离子体诱导损伤。圆桶式等离子体反应器主要用于硅片表面的去胶。氧是去胶的主要刻蚀机。 离子注入 6. 对下图中的设备进行介绍,并对其所属的工艺进行描述。(15分) 离子注入工艺在离子注入机内进行,它是半导体工艺中最复杂的设备之一。离子注入机包含离子源部分,它能从原材料中产生带正电荷的杂质离子。离子被吸出,然后用质量分析仪将它们分开以形成需要掺杂离子的束流。束流中的离子数量与希望引入硅片的杂质浓度有关。离子束在电场中加速,获得很高的速度(107cm/s 数量级),使离子有足够的动能注入到硅片的晶格结构中。束流扫描整个硅片,使硅片表面均匀掺杂。注入之后的退火过程将激活晶格结构中的杂质离子。所有注入工艺都是在高真空下进行的。 离子注入设备包含以下5 个部分: (1)离子源;(2)引出电极(吸极)和离子分析器;(3)加速管;(4)扫描系统;(5)工艺室 离子注入是一种向硅衬底中引入可控制数量的杂质,以改变其电学性能的方法。它是一个物理过程,即不发生化学反应。离子注入在现代硅片制造过程中有广泛应用,其中最主要的用途是掺杂半导体材料。每一次掺杂对杂质的浓度和深度都有特定的要求。离子注入能够重复控制杂质的浓度和深度,因而在几乎所有应用中都优于扩散。它已经成为满足亚0.25μm 特征尺寸和大直径硅片制作要求的标准工艺。热扩散的5个问题对先进的电路生成的限制:(1)横向扩散(2)超浅结(3)粗劣的掺杂控制(4)表面污染的阻碍(5)错位的产生。 亚0.25μm 工艺的注入过程有两个主要目标: (1)向硅片中引入均匀、可控制数量的特定杂质。 (2)把杂质放置在希望的深度。 7.离子注入工艺的主要优缺点。(15分) 答:优点:(1)精确控制杂质含量。 (2)很好的杂质均匀性。(扫描方法) (3)对杂质穿透深度有很好的控制。(控制能量) (4)产生单一离子束。(质量分离技术) (5)低温工艺。(中等温度小于125℃,允许使用不同的光刻掩膜,包括光刻胶) (6)注入的离子能穿过薄膜。 (7)无固溶度极限。 缺点:(1)高能杂质离子轰击硅原子将对晶体结构产生损伤。当高能离子进入晶体并与衬底原子碰撞时,能量发生转移,一些晶格上的硅原子被取代,这个反应被称为辐射损伤。大多数甚至所有的的晶体损伤都能用高温退火进行修复。 (2)注入设备的复杂性。然而这一缺点被离子注入机对剂 量和深度的控制能力及整体工艺的灵活性弥补 7. 依照下图,对硅片制造厂的六个分区分别做一个简 短的描述,要求写出分区的主要功能、主要设备以及显著特 点。(15分) (1) (1)扩散区。扩散区一般认为是进行高温工艺及薄膜淀积的 区域。 主要设备:高温扩散炉:1200℃,能完成氧化、扩散、淀积、 退火以及合金等多种工艺流程。湿法清洗设备 。 (2) (2)光刻。把临时电路结构复制到以后要进行刻蚀和离子注 入的硅片上。 主要设备:涂胶/显影设备,步进光刻机。 (3) (3)刻蚀。用化学或物理方法有选择地从硅片表面去除不需 要材料,在硅片上没有光刻胶保护的地方留下永久的图形。 主要设备:等离子体刻蚀机,等离子去胶机,湿法清洗设备 。 (4)离子注入。主要功能是掺杂。 主要设备:离子注入机、等离子去胶机、湿法清洗设备 。

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

1章 常用半导体器件题解

第一章 常用半导体器件 自 测 题 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。( √ ) (2)因为N 型半导体的多子是自由电子,所以它带负电。( × ) (3)PN 结在无光照、无外加电压时,结电流为零。( √ ) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 ( ×) (5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S 大的特点。( ) (6)若耗尽型N 沟道MOS 管的U G S 大于零,则其输入电阻会明显变小。( ) 解:(1)√ (2)× (3)√ (4)× (5)√ (6)× 二、选择正确答案填入空内。 (1)PN 结加正向电压时,空间电荷区将 A 。 A. 变窄 B. 基本不变 C. 变宽(加上正向电压时,内电场被削弱,空间电荷区变窄) (2)设二极管的端电压为U ,则二极管的电流方程是 C 。 A. I S e U B. T U U I e S C. )1e (S -T U U I (3)稳压管的稳压区是其工作在 C 。 A. 正向导通 B.反向截止 C.反向击穿 (4)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (5)U G S =0V 时,能够工作在恒流区的场效应管有 。 A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:(1)A (2)C (3)C (4)B (5)A C

三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。 图T1.3 解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V, U O6≈-2V。 四、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z m i n=5mA。求图T1.4所示电路中U O1和U O2各为多少伏。 图T1.4 解:U O1=6V,U O2=5V。

相关文档