文档库 最新最全的文档下载
当前位置:文档库 › 功率

功率

功率
功率

“分组合作,自信高效”导学案

课题:功率课型新授 _八年级教者张玉琴

教学目标:

知识与能力:1、理解什么是功率及功率的计算公式。 2.知道功率的单位。

3.会应用功率公式进行计算。

过程与方法:通过演示实验来使学生初步认识科学研究方法的重要性,学习数据处理方法,并培养他们的分工协作能力和初步的数据处理能力。

情感态度价值观:渗透用类比的方法可以研究相似、相近问题的思想以及培养学

生的学习习惯和提高他们的物理素养。

教学重点:用功率的公式进行计算

教学难点:以三个演示及结合演示三的分析来引导学生接受功率这个概念。

教学过程:

一、课前展示(前奏版-5分钟)

(科代表主持,各小组答题,必答题有板答和口答,计分)

二、创境激趣(启动板—教师创设情境).

设置情境,导入新课

三、自主探究,展示汇报(核心板:教师明确目标——学生自学——小组交流讨论——分组展示和汇报——强化训练)

活动1:怎样比较做功快慢

1、起重机和人分别将1000块砖搬上5楼,它们对比:哪一个做功快因为做的功,用的时间

方法总结:当相同时,比时间,时间越,做功越快

2、起重机和人分别用5分钟往楼上搬砖,它们对比:哪一个做功快因

为用的时间,做的功

方法总结:当相同时,比时间,时间越,做功越快

3、起重机用2分钟将500块砖搬上4楼,人用10分钟将200块砖搬上4楼,它们对比:哪一个做功快,

方法总结:当和都不相同时,比较做功快慢的方法是

活动2:功率

1、物体做功分快慢的,在物理学中用表示做功的快慢,功率大意味着

物体做功

2、例举一个做功快的物体,它做功(快、慢),再举一个做

功慢的物体它做功(快、慢)

3、功率的定义:与的比叫做,符号是,

公式,单位是

4、单位换算:

1J/s= W 1kw= w

50 W的物理意义是

5、例题:

活动3:测量人上楼的功率

四、实践创新,知识反馈(升华板—拓展延伸训练)

1、在“J、 J/S、 N·m、 w、 kw、 w·s”中,属于功的单位是,

属于功率的单位的是。

2、拖拉机发动机功率是80kw,合____W=____J/S.其意义表示____ 。

3、某人在30sS内把60N的重物搬到12m高的楼房上,此人对重物做的功是 J,

做功的功率是 W。

4.甲、乙两台拖拉机的功率相等,它们在相等的时间内通过的路程之比是3∶1,则甲、乙两台拖拉机所完成的功之比是;受到的牵引力之比是.5、举重运动员把2000N的杠铃在2s内举高1.8m后又在空中保持 4S,则该运动员

前2s的功率是____W,后4S的功率是____W.

6、用40kW的拖拉机去犁地2h的工作量,若改用平均功率为500W的牛去犁

地,则需要____h.

7、春游时两个体重相同的学生分别沿缓坡和陡坡爬上同一座山,结果同时到达山顶,则两人爬山过程中所做的功和功率的大小关系是 [ ] A.爬缓坡的做功和功率都较小 B.爬缓坡的功率较小,但做功相等.C.两人做的功、功率都相等 D.爬缓坡的做功较小,功率相等

8、重300N的物体,沿水平面运动时受到阻力是物重的0.02倍.当它在外力作用下以 10m/s匀速运动0.5min,则在此过程中外力做功____J,功率是____W.

9、甲、乙两辆汽车在公路上匀速行驶.如果它们的功率相同,行驶速度之比V

V

=2:1,在相同的时间内,甲、乙两车牵引力做功之比为

10、起重机以0.2m/s的速度将一个重2000N的货物匀速提高10m,起重机的功率是 W,合 kW.

11、体育课上同学们进行爬杆比赛,质量为50kg的程坚同学以0.8m/s的速度匀速爬直立的杆,在爬杆过程中,他受到的摩擦力为N,爬杆的功率是 W.(取g=10N/kg)

5、某矿井在36m深处每小时要涌出200m3的水,为了不让矿井中积水,要用水泵把涌出的水抽出地面.(提示:水泵克服水的重力做功)求:

(1)水泵每小时做的功. (2)这台水泵的功率至少是多大?(取g=10N/kg)

五、板书设计:

六、课后反思?

论——分组展示和汇报——强化训练)

活动1:认识压力的作用效果

(1)、观察到的压力作用效果

(2)、感受到的压力作用效果

活动2:猜想压力的作用效果与哪些因素有关

(1)视频中人物对沙滩的压力作用效果是什么?

(2)谁的压力作用效果大?

猜想:压力的作用效果与、有关

活动3:探究压力的作用效果与哪些因素有关

(1)我的实验方法是:法。

(2)我选择的实验器材有:

(3)我的实验方案是:(汇报)

(4)我得到的实验结论是:

①在相同时,压力越,压力的作用效果越明显.

②在压力相同时,越小,压力的作用效果越.。

活动4:认识压强

(1)物理意义:压强是表示的物理量。

(2)定义:物体单位上受到的压力叫做压强。

恒压与恒功率变量泵要点

PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视 PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视 YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a、(b、(c进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),

功率MOS管的五种损坏模式详解

功率MOS管的五种损坏模式详解 第一种:雪崩破坏 如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。 在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。 典型电路: 第二种:器件发热损坏 由超出安全区域引起发热而导致的。发热的原因分为直流功率和瞬态功率两种。直流功率原因:外加直流功率而导致的损耗引起的发热 ●导通电阻RDS(on)损耗(高温时RDS(on)增大,导致一定电流下,功耗增加)●由漏电流IDSS引起的损耗(和其他损耗相比极小) 瞬态功率原因:外加单触发脉冲 ●负载短路 ●开关损耗(接通、断开) *(与温度和工作频率是相关的) ●内置二极管的trr损耗(上下桥臂短路损耗)(与温度和工作频率是相关的)器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。

第三种:内置二极管破坏 在DS端间构成的寄生二极管运行时,由于在Flyback时功率MOSFET的寄生双极晶体管运行, 导致此二极管破坏的模式。

第四种:由寄生振荡导致的破坏 此破坏方式在并联时尤其容易发生 在并联功率MOS FET时未插入栅极电阻而直接连接时发生的栅极寄生振荡。高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容Cgd(Crss)和栅极引脚电感Lg形成的谐振电路上发生此寄生振荡。当谐振条件(ωL=1/ωC)成立时,在栅极-源极间外加远远大于驱动电压Vgs(in)的振动电压,由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容Cgd和Vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

电力系统功率特性和功率极限实验

电力系统实验指导书

第四章 电力系统功率特性和功率极限实验 一、实验目的 1. 初步掌握电力系统物理模拟实验的基本方法; 2. 加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3. 通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实 际及分析问题的能力。 二、原理与说明 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d 和X q ,则发电机的功率特性为: δδ2sin 2sin 2∑ ∑∑ ∑∑?-?+= q d q d d q Eq X X X X U X U E P 当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。根据一般励磁调节器的性能,可认为保持发电机E q (或E )恒定。这时发电机的功率特 性可表示成: δδ2sin 2sin 2∑ ∑∑∑∑?'-'?+''='q d q d d q Eq X X X X U X U E P 或 δ'''='∑sin d q E X U E P 这时功率极限为 ∑ '='d Em X U E P 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从

简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相机或中继电力系统以稳定系统中继点电压等手段实现。 三、实验项目和方法 (一)无调节励磁时功率特性和功率极限的测定 1.网络结构变化对系统静态稳定的影响(改变x) 在相同的运行条件下(即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q),测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和达到功率极限时的功角值。同时观察并记录系统中其他运行参数(如发电机端电压等)的变化。将两种情况下的结果加以比较和分析。 实验步骤: (1)输电线路为单回线; (2)发电机与系统并列后,调节发电机使其输出的有功和无功功率为零; (3)功率角指示器调零; (4)逐步增加发电机输出的有功功率,而发电机不调节励磁; (5)观察并记录系统中运行参数的变化,填入表4-1中; (6)输电线路为双回线,重复上述步骤,填入表4-2中。 表4-1 单回线 020406080

(完整版)恒压与恒功率变量泵

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视 YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。当作用于伺服活塞下端环形面积上的液压推力大于弹簧的作用力时,则伺服活塞向上运动,堵塞通道(h),使(g)腔的油通过(i)腔而卸压,此时,变量活塞上移,变量头偏角减小,使泵的流量减小。 调节流量特性时,可先将限位螺钉拧至上端,根据所需的流量和压力变化范围,调节弹簧套,使其流量开始发生变化时的初始压力符合要求,然后将限位螺钉拧至终级压力时的流量不再发生变化,其中间的流量与压力变化关系由泵的本身设计所决定。

最全的功率计算公式

最全的功率计算公式 概述 ? ? ? ?功率包括电功率、机械功率。电功率又包括直流电功率、交流电功率和射频功率;交流功率又包括正弦电路功率和非正弦电路功率;机械功率又包括线位移功率和角位移功率,角位移功率常见于电机输出功率;电功率还可分为瞬时功率、平均功率(有功功率)、无功功率、视在功率。在电学中,不加特殊声明时,功率均指有功功率。在非正弦电路中,无功功率又可分为位移无功功率,畸变无功功率,两者的方和根称为广义无功功率。 本文列出了上述所有功率计算公式,文中p(t)指瞬时功率。u(t)、i(t)指瞬时电压和瞬时电流。U、I指电压、电流有效值,P指平均功率。 1普遍适用的功率计算公式 在电学中,下述瞬时功率计算公式普遍适用

在力学中,下述瞬时功率计算公式普遍适用 在电学和力学中,下述平均功率计算公式普遍适用 W为时间T内做的功。 在电学中,上述平均功率P也称有功功率,P=W/T作为有功功率计算公式普遍适用。 在电学中,公式(3)还可用下述积分方式表示 其中,T为周期交流电信号的周期、或直流电的任意一段时间、或非周期交流电的任意一段时间。电学中,公式(3)和(4)的物理意义完全相同。 电学中,对于二端元件或二端电路,下述视在功率计算公式普遍适用: 2直流电功率计算公式 已知电压、电流时采用上述计算公式。

已知电压、电阻时采用上述计算公式。 已知电流、电阻时采用上述计算公式。 针对直流电路,下图分别列出了电压、电流、功率、电阻之间相互换算关系。 ? 3正弦交流电功率计算公式 正弦交流电无功功率计算公式: 正弦交流电有功功率计算公式: 正弦电流电路中的有功功率、无功功率、和视在功率三者之间是一个直角三角形的关系: 当负载为纯电阻时,下式成立:

MATLAB仿真实现经典谱估计(采用周期图法)

数字信号处理 课程实验报告 实验指导教师:黄启宏 实验名称 MATLAB 仿真实现经典谱估计(采用周期图法) 专业、班级 电子与通信工程 姓 名 张帅 实验地点 仿古楼301 实验日期 2013.11.17 一、实验内容 采用周期图法(直接法)实现经典谱估计。 二、实验目的 (1)掌握周期图法(直接法)估计出功率谱的步骤和方法; (2)在实验的过程中找到影响经典谱估计的因素; (3)了解周期图法(直接法)估计功率谱的缺陷。 三、实验原理 把随机信号()x n 的N 点观察数据()N x n 视为一能量有限信号,直接取得()N x n 傅里叶变换,得()jw N x e ,然后再取其幅值的平方,并除以N ,作为对()x n 真实的功率谱()jw P e 的估计。即为: ^ 21()|()|PER N P X N ωω= ^ 21()|()|PER N P k X k N = 四、涉及实验的相关情况介绍(包含使用软件或实验设备等情况) 一台安装MATLAB 软件的电脑

五、实验记录 程序、相关的图形、相关数据记录及分析)( %采用直接法(周期图法)估计功率谱; clear Fs = 1000;%采样频率 n = 0:1 /Fs: .3;%产生含有噪声的序列 xn = cos(200*pi*n)+0.1*randn(size(n)); subplot(311);%输出随机信号xn; plot(n,xn);xlabel('时间');ylabel('幅度');title('输入信号x(n)'); axis([0 0.3 -2 2]); grid on; window = boxcar( length( xn) ) ;%矩形窗 nfft = 512; [Pxx f]= periodogram( xn,window,nfft,Fs) ;%直接法 subplot(312) plot( f,10* log10( Pxx) ) ; title('直接法经典谱估计,512点'); xlabel('频率(Hz)'); ylabel('功率谱密度'); grid on; window = boxcar( length( xn) ); nfft = 1024;

电机的恒功率和恒转矩的区别

电机的恒功率和恒转矩 的区别 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电机的恒功率和恒转矩的区别 电机恒功率和恒转矩是用在电机调速中的性能指标; 恒功率调速是指电机低速时输出转矩大,高速时输出转矩小,即输出功率是恒定的; 恒转矩调速是指电机高速、低速时输出转矩一样大,即高速时输出功率大,低速时输出功率小。 首先要记住一点,我们出厂设计的电机,都是按照在工频电压下(380V,50HZ)的给定下,所得到的额定转速值,如果我们在实际工况当中,没有达到380V,比如说只有 300V,50HZ,那么这是一个欠压的情况,肯定是不能达到额定的转速值,因为按照这个电机的设计,50HZ的频率下,一定要有380V的电压来励磁,如今没有在额定电压下,没有达到应有的磁场强度,磁通偏小,那么肯定会影响速度的,不能因为那个60f/p这个公式来看速度的变化。又比如说在380V的40HZ的输入的情况下,根据公式E=K*F*Q,E不变,f 降低了,那么Q磁通变大了,这是一种过压的情况,过大的励磁,磁通在长时间下,会使电机发热并有可能烧毁的。所以说磁通这个值不能过大,这个值是根据我们电机在设计的时候就决定了其承载磁通能力。我们通常在恒转矩调速时(50HZ以下),此时的磁通为额定磁通,也称为满磁,如果电压/频率变大,则会超过这个磁通值,造成电机发热。 下面说恒转矩调速和恒功率调速

恒转矩调速,就是说让磁通保持一个不变的值,V/F=Q(磁通)是一个不变的值,为什么叫恒转矩调速,就是说负载的转矩是个定值,我们要求电机输出的转矩值也是个定值,看公式:T=K*I*Q,如今Q不变,那么电机输出转矩就和I成正比,因为Q这个值我们通过铭牌就可以计算出来的V(额定电压)/50HZ,所以在Q确定且不变的情况下,我们线圈的额定电流(不论有无负载,最大通过电流)确定的情况下,该电机能输出的最大力矩也就能够确定(也就能确定电机能带动多大转矩的恒负载),所以我们电机的过流能力就体现了电机的过载(转矩)能力。 在恒转矩调速下,我们也只需要通过变频器向电机输送经过调制的一定频率的电压(这个比是磁通,是个定值),负载的转矩也是个定值,那么N一定,T一定,输入的功率P 也就定了。如果F增大,转速N增大,那么功率P也就变大了,因为转矩T是不会因为速度增大而变大的(这个也叫恒转矩负载,如传送带。恒转矩负载的特点是负载转矩与转速无关,任何转速下转矩总保持恒定或基本恒定。应用的场合比如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载) 还有一点,额定转速这个值是电机空转时所得到的值,这个值对于我们的意义来说,在达到额定电压的情况下,在达到额定功率的情况下,这个值越大,输出转矩就越小,这个就是恒功率调速的一个特点。公式T=9550*P/N(额定转速)。所以在F>50HZ的情况下,(这个时候已经输出为最大功率了),我们在使N变大的时候,要注意T在变小,要避免T太小而小于负载转矩引起事故。在恒功率调速时,我们是通过减小磁通来达到减小输出转矩从而提高速度的这样的过程来调速,所以这个也叫弱磁调速。

功率与扭矩的区别

功率与扭矩的区别 马力和扭矩是发动机的重要参数,在各公司的产品目录上,都标明了各种发动机的最大马力和扭矩。下面首先介绍一下扭矩. 扭矩又叫转矩,是使轴旋转的力矩。在日本,扭矩的常用单位是kg·m,国际标准单位是N·m。为了更好地理解扭矩的概念,下面举几个例子。例如用扭力板力拧紧螺钉,如果钮力扳手的长度为1m的话,在扭力扳手一端加上1kg的力,则螺钉的拧紧扭矩为lkg·m。如果扭力扳手的长度为0.5m的话,为了得到1kg·m的扭矩,必须施加2kg的力。反过来也是一样,如果驱动扭矩相同,距离旋转中心越远的位置,产生的力越小。 扭矩这一术语用于各种场合,在技术文件上常常可以看到这样一些规定,如“本螺钉的拧紧扭矩应为××kg·m”。在摩托车上,常使用扭矩来表示曲轴的驱动力矩大小,曲轴的扭矩是摩托车驱动力的源泉。 在各种转速下,发动机产生的扭矩都各不一样。在发动机运转过程中,发动机输出扭矩和发动机的各个参数有关,如进气效率,燃烧情况、排气效率、配气相位、化油器尺寸等。而这些参数大都与发动机的转速有关,所以发动机的扭矩和转速关系十分密切。在摩托车转弯时,许多技术熟练的摩托车骑手,都能利用身体感受到的发动机扭矩变化,巧妙地加速并使摩托车后轮适当地打滑,从而减小摩托车的转弯半径。 在发动机实际运转过程中,使发动机转速变化能相应地引起扭矩的变化,并使输出的扭矩值产生变化。发动机型号不同,发动机扭矩和转速的相互关系也各不相同,一般常把钮矩和转速的关系叫做发动机的扭矩特性。 ●最大扭矩在油门全开时,发动机能产生最大扭矩。当然,在汽车和摩托车发动机油门全开时,发动机根本不可能保持某一固定转速。例如在油门全开加速时,发动机的转速将不断上升。从整车来看,这相当于摩托车从正常行驶转为加速超车,当然,这时发动机的运转工况因具体条件而异,也不一定是从最大扭矩的转速开始加速。在摩托车起步加速时,开始加速的转速将更低。 扭矩特性曲线大体可分为如下二大类,一种是平坦型,一种为陡峭型。如果在很大的转速范围内,发动机的扭矩变化不大,则这种发动机的扭矩特性曲线比较平坦,最大扭矩值相对较低。如果发动机最大扭矩的转速越高,与发动机最大功率点的转速越近,则这种发动机的功率转速范围就越窄,转速一旦降低,输出功率也随之而急剧下降,这种发动机的扭矩特性曲线比较陡娟。当然,大排量的发动机在各种转速都能获得很高的扭矩,排量越小的发动机扭矩越小,而且只能在进排气效率最高的转速条件下得到最大扭矩。也就是说,小排量发动机的扭矩持性比较敏感,扭矩的转速特性曲线比较陡峭。和汽车发动机相比,摩托车发动机排量较小,低速扭矩偏小。在小排量的条件下,为了获得较大的马力,必须提高最大扭矩的转速,所以摩托车扭矩特性曲线往往比较陡峭。 尽管摩托车的低速扭矩较低,但由于摩托车重量很轻,所以其加速性能大部分十分优异。当然,油门开度不同发动机的扭矩也不同。在转速相同的条件下,油门开度越大,发动机的扭矩也越大。实际上,油门开度变化之后,发动机的扭矩并不能立刻发生变化,二者之间总有一个时间差,这个时间差越大,说明该摩托车的油门响应性越差。和汽车不同,摩托车是一

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

容量和功率的区别

1.电动机的容量就是电动机的功率。 电动机的容量与功率没有区别。 电动机可以小于额定功率(容量)工作,不可以大于额定功率(容量)工作。 2.要想使电动机在使用中效率最高,必须根据负载的不同性质来合理选择电动机的容量和型号。如电动机容量选择往往偏大。不仅造成投资的浪费,而且效率和功率因数也都不高,使电能浪费很大。电动机的容量选得过小,就会难于起动,或者勉强起动起来,工作电流也会超过电动机的额定电流,导致电动机绕组过热乃至烧毁。选择电动机容量时,还要考虑到供电变压器容量的大小。一般来说,直接起动的最大1台异步电动机的容量,不宜超过供电变压器容量的1/3。对连续运行的电动机,如与水泵、风机等配套的电动机,从节能的观点出发,电动机约在80%左右负载率运转时,效率最高。对农用电动机,其平均负载率运转时,效率最高。所以;对农用电动机,其平均负载为电动机额定存量的70%以上时.即可认为电动机容量的选择是合理的。对短时间运行的电动机,例如,与电动闸门配套的电动机,可以允许在比额定功率偏大的情况下运行,这应该依电动机的转矩是否能满足负载转矩的要求来确定。 1)如果电动机功率选得过小.就会出现“小马拉大车”现 象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动 机被烧毁。 (2)如果电动机功率选得过大.就会出现“大马拉小车”现 象.其输出机械功率不能得到充分利用,功率因数和效率都不 高(见表),不但对用户和电网不利。而且还会造成电能浪 费。 要正确选择电动机的功率,必须经过以下计算或比较: (1)对于恒定负载连续工作方式,如果知道负载的功率 (即生产机械轴上的功率)Pl(kw).可按下式计算所需电动机 的功率P(kw): P=P1/n1n2 式中 n1为生产机械的效率;n2为电动机的效率。即传动效 率。 按上式求出的功率,不一定与产品功率相同。因此.所选 电动机的额定功率应等于或稍大于计算所得的功率。 例:某生产机械的功率为3.95kw.机械效率为70%、如 果选用效率为0.8的电动机,试求该电动机的功率应为多少 kw? 解:P=P1/ n1n2=3.95/0.7*0.8=7.1kw 由于没有7.1kw这—规格.所以选用7.5kw的电动机。 (2)短时工作定额的电动机.与功率相同的连续工作定额 的电动机相比.最大转矩大,重量小,价格低。因此,在条件许 可时,应尽量选用短时工作定额的电动机。 (3)对于断续工作定额的电动机,其功率的选择、要根据 负载持续率的大小,选用专门用于断续运行方式的电动机。负

功率MOS管的五种损坏模式详解

功率M O S管的五种损坏 模式详解 This manuscript was revised on November 28, 2020

功率MOS管的五种损坏模式详解 第一种:雪崩破坏 如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压 V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。 在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。典型电路: 第二种:器件发热损坏 由超出安全区域引起发热而导致的。发热的原因分为直流功率和瞬态功率两种。 直流功率原因:外加直流功率而导致的损耗引起的发热 ●导通电阻RDS(on)损耗(高温时RDS(on)增大,导致一定电流下,功耗增加) ●由漏电流IDSS引起的损耗(和其他损耗相比极小) 瞬态功率原因:外加单触发脉冲 ●负载短路 ●开关损耗(接通、断开) *(与温度和工作频率是相关的) ●内置二极管的trr损耗(上下桥臂短路损耗)(与温度和工作频率是相关的) 器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。 第三种:内置二极管破坏 在DS端间构成的寄生二极管运行时,由于在Flyback时功率MOSFET的寄生双极晶体管运行, 导致此二极管破坏的模式。 第四种:由寄生振荡导致的破坏 此破坏方式在并联时尤其容易发生 在并联功率MOS FET时未插入栅极电阻而直接连接时发生的栅极寄生振荡。高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容Cgd(Crss)和栅极引脚电感Lg形成的谐振电路上发生此寄生振荡。当谐振条件(ωL=1/ωC)成立时,在栅极-源极间外加远远大于驱动电压Vgs(in)的振动电压,由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容Cgd和Vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。 第五种:栅极电涌、静电破坏 主要有因在栅极和源极之间如果存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏

电力系统功率特性和功率极限实验

电力系统自动化设计报告设计课题:电力系统功率特性和功率极限试验 专业班级: 学生姓名:刘袁伟 学生学号: 指导教师: 成绩: 二○一一年四月

一、设计目的 1.初步掌握电力系统物理模拟实验的基本方法; 2.加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3.通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分 二、设计要求 通过电力系统物理模拟实验的基本方法,加深理解功率极限的概念,在试验中体会各种提高功率极限措施的作用;通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 三、方案所需设备 1.WDT-III电力系统综合自动化试验台 四、设计原理 (一)发电机的功率特性方程 发电机输出的电磁功率和功率角的关系,称为发电机的功率特性。这是分析电力系统稳定性问题的一个重要方法。 1.隐极式发电机的功率特性方程 隐极式发电机的转子是对称的,因而它的纵轴同步电抗和横轴同步电抗是相等的,当不计各元件的电阻及对地导纳支路时,发电机至系统总电抗为Xd。 ①以空载电动势和同步电抗表示的功率特性方程 当发电机与无限大容量母线相连时,母线电压U=定值,如果发电机有自动调节励磁装置,并保持Eq=定值,则式(5-1)中将只有一个变量——功率角,可做出发电机的功率特性曲线,如图5-1所示。由图可见,发电机功率特性曲线为一正弦曲线,其最大值为称功率极限。功率角 在电力系统稳定问题的研究中占有特别重要的地位。它除了表示电动势和电压之间的相位差,即表征系统的电磁关系之外,还表示了各发电机转子之间的相对空间位置。 角随时间的变化描述了各发电机转子间的相对运动。如两个发电机电气角速度相同,则 角保持不变。如增大送端发电机的原动机功率,使PT1>PT0,则由于发电机转子上的转子平衡遭到破坏,发电机转子加速,发电机转子间的相对空间位置便要发生变化,功率角 增大,直至达到新的平衡点。 ②以暂态电动势和暂态电抗表示的功率特性方程 在分析暂态稳定或近似地分析某些有自动调节励磁装置的静态稳定时,往往以横轴暂态电动势和纵轴暂态电抗表示发电机。在这种情况下的功率特性方程为: 当发电机与无限大容量母线相连时,U=定值,且发电机装有自动调节励磁装置,并能保持q E =定值。取不同的 值代入式(6-8)中,可绘制出这种情况下发电机的功率特性曲线. 由于纵轴暂态电抗和其同步电抗不等,出现了一个按两倍功率角正弦sin2 变化的功率分量,一般称暂态磁阻功率。由于它的存在,使功率特性曲线发生了畸变,而使功率极限略有增加,

电机的恒功率和恒转矩的区别(已看2)

电机的恒功率和恒转矩的区别 出厂设计的电机,都是按照在工频电压下(380V,50HZ)的给定下,所得到的额定转速值,如果我们在实际工况当中,没有达到380V,比如说只有300V、50HZ,那么这是一个欠压的情况,肯定是不能达到额定的转速值,因为按照这个电机的设计,50HZ的频率下,一定要有380V的电压来励磁,如今没有在额定电压下,没有达到应有的磁场强度,磁通偏小,那么肯定会影响速度的,不能因为n=60f/p这个公式来看速度的变化。又比如说在380V的40HZ的输入的情况下,根据公式E=K*F*Q,E不变,f降低了,那么Q磁通变大了,这是一种过压的情况,过大的励磁,磁通在长时间下,会使电机发热并有可能烧毁的。所以说磁通这个值不能过大,这个值是根据电机在设计的时候就决定了其承载磁通能力。我们通常在恒转矩调速时(50HZ以下),此时的磁通为额定磁通,也称为满磁,如果电压/频率变大,则会超过这个磁通值,造成电机发热。 下面说恒转矩调速和恒功率调速 恒转矩调速,就是说让磁通保持一个不变的值,V/F=Q(磁通)是一个不变的值,为什么叫恒转矩调速,就是说负载的转矩是个定值,我们要求电机输出的转矩值也是个定值,看公式:T=K*I*Q,如今Q不变,那么电机输出转矩就和I成正比,因为Q这个值我们通过铭牌就可以计算出来的V(额定电压)/50HZ,所以在Q确定且不变的情况下,我们线圈的额定电流(不论有

无负载,最大通过电流)确定的情况下,该电机能输出的最大力矩也就能够确定(也就能确定电机能带动多大转矩的恒负载),所以我们电机的过流能力就体现了电机的过载(转矩)能力。 在恒转矩调速下,我们也只需要通过变频器向电机输送经过调制的一定频率的电压(这个比是磁通,是个定值),负载的转矩也是个定值,那么n一定,T一定,输入的功率P也就定了。如果f增大,转速N增大,那么功率P也就变大了,因为转矩T 是不会因为速度增大而变大的(这个也叫恒转矩负载,如传送带。恒转矩负载的特点是负载转矩与转速无关,任何转速下转矩总保持恒定或基本恒定。应用的场合比如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载) 还有一点,额定转速这个值是电机空转时所得到的值,这个值对于我们的意义来说,在达到额定电压的情况下,在达到额定功率的情况下,这个值越大,输出转矩就越小,这个就是恒功率调速的一个特点。公式T=9550*P/N(额定转速)。所以在F>50HZ 的情况下,(这个时候已经输出为最大功率了),我们在使N变 大的时候,要注意T在变小,要避免T太小而小于负载转矩引 起事故。在恒功率调速时,我们是通过减小磁通来达到减小输出转矩从而提高速度的这样的过程来调速,所以这个也叫弱磁调速。 恒转矩负载的特点是负载转矩与转速无关,任何转速下转矩总保持恒定或基本恒定。应用的场合比如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载。

低功率设计中不同功率格式的应用

低功率设计中不同功率格式的应用 对于低功率设计,既然存在两种相互竞争的获取功率目的的行业格式——共同功率格式(CPF)和统一功率格式(UPF)——设计组必须理解这两种格式之间的相似点和不同点。有些设计公司可能会忽视其中的一种格式,但是大部分设计公司将同时使用两种格式。 CPF文件格式的第一个参考文献出现在2006年早期,Cadence宣布了它的Power Forward Initiative。2006年后期,Cadence和Silicon Integration Initiative公司(Si2)在 Si2的资助下创建了低功率联盟(LPC),专注于发展CPF格式。 2007年1月,LPC公布了包含CPF格式定义的第一个公开文件。该文件可在https://www.wendangku.net/doc/aa5112801.html, 网站下载。Cadence的软件组支持CPF,多个EDA卖主也支持LPC文件中定义的格式。在DAC 2006年,在德州仪器和诺基亚公司带领下,许多其他公司通过会议创建了由泛EDA公司支持的第二种格式。这一格式称作统一功率格式,而Accellera组建了一个委员会来敲定所有的细节。 2007年1月,Accellera公布了它的UPF 1.0说明书。这一文件公布在https://www.wendangku.net/doc/aa5112801.html, 网站。2008年1月Magma,Mentor,以及Synopsys公司联合宣称在他们的软件中支持UPF。并且再次,许多其他EDA卖家也支持这一格式。 在2007年间,IEEE组建了一个工作组来开发一种行业标准的以功率为目的的格式。这个标准将叫做IEEE-P1801。该工作组接受以现有格式的贡献为起点。Accellera公司贡献了UPF,但是Cadence却没有贡献CPF。 格式的相似点 CPF和UPF格式采用完全不同的句法,却有90%相同的概念。但是在任意一格式中,都有用于低功率设计的功率目的的所有主要特征。两种格式都基于Tcl——嵌入多数EDA软件的软件控制语言。因此,我们可以把任意一种格式当作一组Tcl的程序定义,而不是一种新的独特的语言。特别是,两种格式提供一种方法来描述: - 电压域或模块,在不同的电压下运行,要求在所有的域交叉处都有电平开关; - 功率域或模块,带有独立电源的电源,可关闭; - 若干供应网,有不同名称和不同连接;在这种设计形式中,不存在任何单个的全程功率连接; - 绝缘逻辑,安放于功率域的输出端,该处只有一个逻辑结点,能保持功率开启; - 存储寄存器,是功率域中的触发器,当域关闭时,有一个“保持开启”的供应连接来保持状态; - 功率域中用于逻辑的保持开启元件和通道(与存储寄存器相邻),当包含它们的模块关闭时必须保持功率开启; - 功率开关,是大的芯片级开关晶体管,用来断开进入一个功率域的功率。 除了一些非常小的方面,任何采用以上特征的设计都完全可以用CPF或UPF表示。但是,CPF表示的句法与UPF表示的句法完全不同。每个文件都会有许多命令及对每个命令的选择,来获取功率目的。

恒功率调速

恒转矩调速的实质在于电机的轴功率控制 滑环电机无刷无环液阻起动器、磁控(磁饱和)软启动器、高低压电机液 阻起动器与液阻调速器 关键字:电机调速功率控制原理 引言: 电机调速实质的探讨,是关系到近代交流调速发展的重要理论问题。随着近代变频调速矢量控制及直接转矩控制等调速控制理论的提出和实践,很多有关文献和论著都把调速的转矩控制确认为调速的普遍规律,并提出调速的实质和关键在于电磁转矩控制。然而,这种观点尚缺乏理论和实践的证明,值得商榷。 本文根据电机功率转换的普遍原理,提出并证明恒转矩调速的实质在于电机的轴功率控制,转速调节是功率控制的响应,其关键为如何通过电功率控制轴功率。 转矩控制仅适于恒功率调速,它只是电机调速的局部,而不是调速的普遍规律。变频调速所依据的是转矩控制,实际执行的却是功率控制,因此才没有影响到应用的正确性。 一、功率控制与转矩控制 根据机电能量转换原理,凡电动机都可划分为主磁极和电枢两个功能部分。主磁极的作用是建立主磁场,电枢则是与磁场相互作用将电磁功率转换为轴功率。 直流电动机的主磁极和电枢不仅结构鲜明,而且功能独立,无疑符合以上定义。而交流(异步)电动机通常以定子、转子划分构成,需加说明。 根据所述电枢定义,异步机的轴功率产生于转子,因此,异步机真正的电枢是转子。问题在于定子,一方面定子励磁产生主磁场,故定子是主磁极。另一方面,定子又通过电磁感应为电枢(转子)输送电磁功率,却不产生轴功率,因此定子又具有电枢的部分特征,这里我们把它称为伪电枢。定子的这种复合功能,是异步机区别于直流机的主要特征。 从电枢输出角度观察,电动机的轴功率与电磁转矩机械转速的关系为:PM=MΩ (1)

功率谱图应用

1.基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

相关文档