文档库 最新最全的文档下载
当前位置:文档库 › 微生物酶资源的开发和利用_缪晓平

微生物酶资源的开发和利用_缪晓平

微生物酶资源的开发和利用_缪晓平
微生物酶资源的开发和利用_缪晓平

脂肪酶的概述及应用

脂肪酶的概述与应用 一脂肪酶概述、 脂肪酶(Lipase,甘油酯水解酶)隶属于羧基酯水解酶类,能够逐步的将甘油三酯水解成甘油和脂肪酸。脂肪酶存在于含有脂肪的动、植物和微生物(如霉菌、细菌等)组织中。包括磷酸酯酶、固醇酶和羧酸酯酶。脂肪酸广泛的应用于食品、药品、皮革、日用化工等方面脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。 脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。 脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。迄今,已分离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同(Veeraragavan等)。总体而言,微生物脂肪酶具有比动植物脂肪酶更广的作用pH、作用温度范围,高稳定性和活性,对底物有特异性(Schmid等;Kazlauskas等)。 脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda和Desnnelv 就发现了这一现象。溶于水的酶作用于不溶于水的底物,反应是在2个彼此分离的完全不同的相的界面上进行。这是脂肪酶区别于酯酶的一个特征。酯酶(E C3.1.1.1)作用的底物是水溶性的,并且其最适底物是由短链脂肪酸(≤C8)形成的酯。 脂肪酶是重要的工业酶制剂品种之一,可以催化解脂、酯交换、酯合成等反应,广泛应用于油脂加工、食品、医药、日化等工业。不同来源的脂肪酶具有不同的催化特点和催化活力。其中用于有机相合成的具有转酯化或酯化功能的脂肪酶的规模化生产对于酶催化合成精细化学品和手性化合物有重要意义。 脂肪酶是一种特殊的酯键水解酶,它可作用于甘油三酯的酯键,使甘油三酯降解为甘油二酯、单甘油酯、甘油和脂肪酸。 酶是一种活性蛋白质。因此,一切对蛋白质活性有影响的因素都影响酶的活性。酶与底物作用的活性,受温度、pH值、酶液浓度、底物浓度、酶的激活剂或抑制剂等许多因素的影响。

脂肪酶的微生物生产技术综述

脂肪酶的微生物生产技术综述 By 夏远川 脂肪酶是一种普遍存在于动植物和微生物体内的酶,也是最早研究的酶类之一,早在1834年就有关于兔胰腺脂肪酶活性的报道。[1] 脂肪酶是一类特殊酯键水解酶,一般用于催化水解和合成反应,在油水界面上,它催化三酰甘油的酯键的水解,生成甘油一酯、甘油二酯或直接生成甘油和脂肪酸。[2]脂肪酶还可催化酯类化合物的醇解、酯化、酯交换等反应,且不需要辅酶,在工业生产和研究工作中均有广泛应用。[3] 脂肪酶按作用时的适应温度可分为高温脂肪酶、中温脂肪酶、低温脂肪酶;按适宜pH可分为碱性脂肪酶、中性脂肪酶、酸性脂肪酶。 脂肪酶的主要工业应用方向: 1、洗涤工业:在洗涤剂中添加脂肪酶可使洗涤剂对脂质类污渍的去除效果大大提高,并可减少表面活性剂及无机助剂(尤其是三聚磷酸钠)的用量,大大减少洗涤剂带来的环境污染。用于洗涤剂的脂肪酶为碱性脂肪酶,在碱性范围内有活性、活性不受表面活性剂影响、对氧系漂白剂稳定、热稳定性好,并且由于大多数加酶洗涤剂都适当配有蛋白酶,因此用于洗涤剂的脂肪酶还应具抗蛋白酶降解的能力。[4] 1988年,丹麦NOVO公司将碱性脂肪酶应用于洗涤剂中并推向市场。1992

年,这家公司构建了商业上第一株产脂肪酶菌株。[1] 2、食品工业:油脂改性是食品加工过程中的一个重要环节,脂肪酶可通过催化酯交换、酯转移、水解等反应,改变油脂的的物理化学性质,使便宜的、营养价值低的油脂升级为昂贵的、营养价值高的油脂;此外脂肪酶还可用于合成广泛应用于食品工业的糖酯类产品、合成不带副产物或毒性物质的芳香味酯类化合物、合成抗坏血酸酯类抗氧化剂如异抗坏血酸等。[5] 3、造纸工业:使用脂肪酶处理纸浆可减少胶黏物(绝大多数胶黏物都含有大量酯键)对造纸毛毯网间空隙的堵塞,提高纸机的运行效率和成纸品质,并降低环境污染,减少废水处理的负荷。 此外脂肪酶脱墨技术在废纸利用方面也起到非常大的作用,与传统脱墨技术相比脱墨效果更好环境污染更低,具有很大的优势。[6] 4、皮革生产:脂肪酶应用于制革和毛皮加工过程中的脱脂,相对于传统的脱脂方法具有脱脂均匀、脱脂废液中的油脂更易分离回收、减少甚至不使用表面活性剂、降低生产成本、提高成品质量等诸多优点,将碱性脂肪酶与脱脂剂在碱性条件下进行毛革两用皮革的脱脂,可大大提高脱脂效果。[7] 此外脂肪酶在饲料工业、生物表面活性剂、化妆品、生物传感、聚合物合成、手性化合物拆分、生物柴油等方面都具有重要的应用前景。 由于微生物生长繁殖快、所产脂肪酶种类多、微生物脂肪酶具有比动植物来源的脂肪酶更广的作用条件范围,且多为胞外酶,更适合于工业规模生产和获得高纯度产品,因此成为工业用脂肪酶的主要来源。[7]上世纪初,微生物学家

脂肪酶特性与应用

饲料研究FEED RESEARCH NO .6,2011 5 脂肪酶特性与应用 陈倩婷广州博仕奥集团 饲料资源不足一直是我国养殖业面临的一个大问题,在耕地和水资源严重紧缺的情况下,粮食产量很难提高。我国动物生产中饲料转化率低,猪、鸡和奶牛等的饲料转化率均比国际先进水平低0.3 %~0.6 %,使饲料资源不足的问题更加严峻。饲料用酶制剂的开发和应用极大的缓解了饲料资源的不足,酶制剂在饲料工业中的有效应用使得饲料工业和养殖业安全、高效、环保和可持续发展成为可能。 目前研究较多的饲用酶制剂有蛋白酶、甘露聚糖酶、β-葡聚糖酶、木聚糖酶、纤维素酶及植酸酶等。脂肪酶也是一种重要的酶制剂,它能够水解脂肪(三脂酰甘油或三酰甘油)为一酰甘油、二酰甘油和游离脂肪酸,最终产物是甘油和脂肪酸。 产物脂肪酸为动物体生长和繁殖提供能量,部分中链脂肪酸能抑制肠道有害微生物,改善肠道菌落环境,从而促进消化,起到类似抗生素的作用,脂肪酶在常温常压下反应,反应条件温和,转化率高,具有优良的立体选择性,不易产生副产物,避免因化学催化法而带来的有害物质,不会造成环境污染,因此,在食品、皮革、医药、饲料和洗涤剂等许多工业领域中均有广泛的应用。 1 脂肪酶的特性 1.1 脂肪酶的来源 脂肪酶按其来源主要分为3类:1)动物源性脂肪酶,如:猪和牛等胰脂肪酶提取物;2)植物源脂肪酶,如:蓖麻籽和油菜等;3)微生物源性脂肪酶。由于微生物种类多、繁殖快且易发生遗传变异,具有比动植物更广的作用pH、作用温度范围及底物专一性,且微生物来源的脂肪酶一般都是分泌性的胞外酶,所以,微生物脂肪酶是主要的研究对象。产微生物脂肪酶菌种的研究主要集中在真 菌包括,根霉、黑曲霉、镰孢霉、红曲霉、黄曲霉、毛霉、犁头霉、须霉、白地霉、核盘菌、青霉和木霉;其次是细菌,如:假单胞菌、枯草芽抱杆菌、大肠杆菌工程菌、无色杆菌、小球菌、发光杆菌、黏质赛氏杆菌、无色杆菌、非极端细菌和洋葱伯克霍尔德菌等;另外还有解酯假丝酵母和放线菌。1.2 特性1.2.1 催化特性 脂肪酶不同活性的发挥依赖于反应体系的特点,在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。其催化特性在于:在油水界面上其催化活力最大,溶于水的酶作用于不溶于水的底物,对均匀分散的或水溶性底物不作用,反应在2个彼此分离的完全不同的相的界面上进行。Macrae 等研究表明:在油水界面上油脂量决定脂肪酶活性,增加乳化剂量,可提高油水界面饱和度,从而提高脂肪酶活性,增加油水界面面积,可承载更多脂肪酶分子,也可增加催化反应速率。而在水体系中,大多数脂肪酶活性很低或没有活性。 由于脂肪酶在非均相体系中表现出的高催化活性,且在酶催化反应中不需要辅酶,所以可利用非水相中的脂肪酶催化完成各种有机合成及油脂改性反应,如:酯化、酸解、醇解、转酯、羟基化、甲基化、环氧化、氨解、酰基化、开环反应和聚合等反应。 1.2.2 底物特异性 不同来源脂肪酶对底物不同碳链长度和饱和度脂肪酸表现出不同反应性,圆弧青霉和金黄色葡萄球菌脂肪酶水解短链(低于C 8)脂肪酸所形成的三脂酰甘油,黑曲霉和根霉对中等长链(C 8~C 12)脂肪酸形成的三脂酰甘油有强烈特异性,猪葡萄球菌脂肪酶偏爱磷脂为底物,也可以水解脂肪酸链长短不一的各种油脂。解脂无色杆菌对饱和脂肪酸表现出 收稿日期:2011 - 05 - 09

菌种诱变方法

微生物诱变育种的方法 摘要:介绍了几种常用的物理诱变和化学诱变育种方法的原理、特点以及成功案例等,为微生物诱变育种提供了一个总体的方法框架。 关键词:诱变; 微生物育种 微生物与酿造工业、食品工业、生物制品工业等的关系非常密切,其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以选育优质、高产的微生物菌株十分重要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导,或者促使细胞内发生基因的重新组合优化遗传性状,人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为育种途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。 1 物理诱变 1.1紫外照射 紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA和RNA的嘌呤和嘧啶最大的吸收峰260nm,因此在260nm的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。 马晓燕[3]等以紫外诱变原生质选育法筛选发酵乳清高产酒精菌株马克斯克 鲁维酵母菌株ZR-20,比优化前的酒精产率提高10.5%,较出发菌株提高了68%。顾蕾[4]等通过紫外诱变红酵母ns-1原生质体,获得类胡萝卜素产量明显提高的突变株,其生物量、色素产量分别为6.15g/L、6.41mg/L,分别比原始菌株提高了67.6%、54.1%。 紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。 1.2电离辐射 γ-射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖-磷酸相连接的化学键。其间接效应是能使

微生物资源的开发与利用

微生物资源的开发与利用

微生物资源的开发与利用 摘要:微生物资源的开发利用前景将会在解决人类社会面临的人口剧增、资源匮乏、环境恶化问题和实现可持续发展等方面发挥不可替代的作用。本文综述了微生物资源以及其开发利用过程这两个方面。 关键词:微生物资源,放线菌,开发,利用 1.引言 当今,人类的工业是建立在化石能源基础之上的,而其特点必然要导致大量不可再生资源的消耗,大量温室气体的排放以及伴随着生态环境的破坏。导致人类社会面临着人口剧增、资源匮乏、能源危机、环境恶化等一系列问题,而人类又要求不停的发展,解决这些问题的关键在于寻求一条可持续发展的道路。 生物技术正在推动着以化石能源为基础的经济向以知识经济、循环经济为主的经济结构转型,是实现人类可持续发展的关键技术。因此大力发展生物技术对经济的发展以及人类社会的发展有着巨大而深远的影响,而作为生物技术的核心技术,微生物工程技术的发展将要涉及到微生物资源的开发与利用问题[1]。 微生物资源利用的核心是在于利用其产生的生物活性物质,目前,微生物活性物质绝大部分来源于普通环境中的微生物,因此从普通环境微生物中寻找新的活性物质难度越来越大。新的基因有很大的可能产生新的生物活性物质,因此通过寻找新的基因来寻找新的生物活性物质。基于该思路,稀有放线菌、海洋微生物、极端 环境微生物等过去很少触及的微生物资源已越来越受重视[2]。 2.微生物资源 2.1微生物资源的特点 环境中存在着大量的微生物, 据估计, 每克土壤样品中可含有高达1000种

不同的微生物[3], 这些微生物产生多种多样的活性物质(包括酶与次生代谢产物两部分) , 对人类有实用意义的抗生素—青霉素、链霉素、抓霉素、金霉素、土霉素、红霉素、新霉家、万古霉素、庆大霉素等都是从微生物中发现并开发出来的; 基因工程中各种工具酶几乎都来自多种不同的微生物[4] 微生物是一类物种丰富的生物资源和基因资源,迄今为止我们所分离到的微生物主要有:真菌70000多种、细菌5000多种、放线菌3000多种。而这些人类所知道的微生物估计仅占自然界存在的微生物不到10%,而被利用的还不到1%。 微生物具有很快的生长繁殖速度,有的细菌的时代时间仅仅20分钟,而且微生物可以再人工控制的条件下大规模培养,并且几乎不受地域、气候等条件的影响。 相比于动、植物品种遗传基因结构,微生物的基因组小得多,基因拷贝数比较少,比较容易进行基因操作,微生物改良易于操作,改造性能、提高产率相对容易。 微生物资源丰富,微生物资源的开发与利用不会导致微生物物种的减少和环境的破坏。部分动植物资源的不合理开发利用导致物种的减少甚至灭绝,造成严重的环境的恶化和污染问题,而微生物资源的开发利用不会存在此类问题。但我们必须注意到并引起重视的现实问题是由于环境的改变和恶化,如原始森林开发成旅游区等现象,造成的天然微生物的破坏,使得许多在该类环境中赖以生存的微生物在人类还没有认识它之前就悄悄灭绝了[1]。 微生物资源是新抗菌剂的主要来源之一,然而即使采用先进的方法, 绝大部分微生物也仍然不可培养、只能用分子指纹图谱来描述[5]。 2.2稀有放线菌 目前大部分生物活性物质来自链霉菌,所以从链霉菌中发现性的活性物质的几率已经大大降低。自20世纪50年代以来, 已从部分稀有放线菌代谢产物中得到许多已经临床应用的重要活性物质, 如红霉素B、利福霉素、庆大霉素、其它放线菌素类、安莎类、肽类、酶抑制剂等活性物质。 尽管新的种、属不断被发现, 但据估计, 目前分离到的放线菌种类, 仅为实

微生物资源开发与利用

水产饲料微生物添加剂的主要菌种及其作用机理 刘国迪生物工程2班20082720 水产饲料微生物添加剂因具有安全、环保、无副作用和抗病、促生长等特点,而受到广大学者的重视,并已从微生态学理论、作用机理、菌种的筛选及应用等多方面进行了大量的研究,取得了可喜的成果。作为抗生素类添加剂的替代品,水产饲料微生物添加剂在国内外都已得到广泛的应用,取得了非常理想的效果,是最有前途的水产饲料添加剂之一。 水产饲料微生物添加剂属于微生态制剂或益生素的范畴。其研制开发以水产动物微生态学(包括微生态平衡理论,微生态失调理论,微生态营养理论和微生态防治理论)为理论依据,选用鱼虾类水产动物正常有益微生物菌种经培养、发酵、干燥、加工等特殊工艺而制成含有活菌并用于水产动物的生物制剂或活菌制剂。它是单一或复合的菌株,它能添加在水产养殖体系中或是直接用于水产动物。通过减少或者去除病原菌,提高宿主原有菌群特性,维持肠道微生物平衡,或通过提供维生素、蛋白质、酶、有机酸等物质,调节宿主免疫机能,降解饲料,达到防病、促生长、提高宿主存活率的目的。 一、水产饲料微生物添加剂的主要菌种及其特性 理想的水产饲料微生物添加剂的菌种一般应具备如下条件: 1、具有良好的安全性。所用菌种不会使人和动物致病,不与病原微生物在自然条件下产生杂交种。 2、易于培养,繁殖速度快。 3、有良好的定植能力,在低pH值和胆汁中可以存活,并能植入肠粘膜。 4、在发酵过程中能产生酸和过氧化氢等物质。 5、能合成对大肠杆菌、弧菌、气单胞菌等水产动物肠道致病菌的抑制物而不影响自己的活性,有利于促进宿主的生长发育及提高抗病能力。 6、应是宿主应用部位的常在菌,最好来自水产动物自身肠道中。 7、在整个制备和保存过程中能保持生命活力,经加工后存活率高,混入饲料后稳定性好。 8、有利于降低水产动物排泄物及残饵对水体环境的污染。 目前用于水产饲料微生物添加剂的菌种主要是芽孢杆菌类、乳酸菌类、酵母菌类三大类。 芽孢杆菌类(Racillus)用于饲料添加剂的芽孢杆菌是一种需氧的非致病菌。它在肠道或贮藏过程中都以内生孢子的形式存在,不消耗饲料养分,可保持饲料的质量。进入肠道后,在肠道上部迅速复活,复活率接近100%。它能使空肠内的pH值下降,氨浓度降低,并消耗大量的氧,维持肠道厌氧环境,抑制病菌的生长,维持肠道正常生态平衡,并有平衡和稳定乳酸菌的作用。它能产生活性很高的蛋白酶、淀粉酶、脂肪酶以及多种氨基酸。芽孢杆菌抗逆性强,具有耐高温、耐酸碱、耐挤压等特点,可耐受颗粒饲料加工的影响。根据李卓佳等(2002年)对筛选的5株有益芽孢杆菌对温度、对虾饲料制粒工艺流程和pH值的耐受性试验表明,在对虾饲料中添加5株芽孢杆菌,经过整个生产工艺流程,制粒后饲料中芽孢杆菌存活95%,烘干后饲料中芽孢杆菌存活93%,损失率仅为5%和7%。将5株芽孢杆菌经低pH值2.2-4.6处理1小时,接种在pH值7.2的培养基上可以良好生长。另据有关资料报道,地衣芽孢杆菌内生芽孢可耐受121℃高温4-5分钟而保持活性。

微生物脂肪酶应用及研究进展

微生物脂肪酶应用及研究进展 摘要微生物脂肪酶主要来源于真菌和细菌,它是一类能够催化酯的水解反应以及在非水相体系中催化脂肪酸和醇类发生酯化反应的酶类。因其具有高底物专一性、区域选择性和对映选择性,而被广泛应用。本文主要论述了脂肪酶的结构、脂肪酶的理化性质以及脂肪酶在食品行业、医药工业、纺织和化工工业方面的应用,并对其未来的发展进行了展望。 关键词脂肪酶,酯化,应用,研究进展 Progress in research and application of microbial lipase Abstract Microbial lipases are mainly derived from fungi and bacteria, it is a kind of can catalyze hydrolysis of ester and enzyme catalyzed esterification of fatty acids and alcohols in non aqueous system. Because of its high substrate selectivity, regioselectivity and enantioselectivity, and is widely used. This paper mainly discusses the structure, properties and application of lipase in food industry, medicine, industry, and the future of its development was prospected. Key words lipase, esterification, application, research progress of 脂肪酶( EC 3.1.1.3) 又称三酰基甘油酰基水解酶,广泛存在于动植物和微生物体内。脂肪酶不仅可水解三脂酰甘油生成二脂酰甘油和脂肪酸(其中的二脂酰甘油可进一步被水解为一脂酰甘油、甘油和游离脂肪酸),并且能催化水解反应的逆反应——酯化反应(张数政,1984)。目前脂肪酶生产主要有提取法和微生物发酵法。由于微生物脂肪酶种类多,作用温度及范围比动植物脂肪酶广、底物专一性高,并且便于工业生产和获得较高纯度的酶制剂,因此微生物脂肪酶已成为工业生产脂肪酶的主要来源,关于脂肪酶在工业应用的研究也越来

微生物资源开发与利用实验指导(定)

微生物资源开发与利用 实验指导 适用于森林资源保护与游憩专业 北京林业大学森林保护学科 二零零二年8月 实验一培养基的配制及灭菌 培养基是人工配制的适于微生物生长、繁殖或保存的营养基质。培养基的种类繁多,但一般应具备以下几个条件:1.含有适宜的碳源、氮源、无机盐类、生长因素等营养成分;2.含有适量的水分;3.适宜的酸碱度。 根据培养基的成分来源不同可分为合成培养基、天然培养基和半合成培养基。环境微生物学中,常用废水或废水补加少量氮、磷等无机盐来培养微生物,可认为是天然培养基或半合成培养基。 根据培养基的物理性状可分为液体、固体和半固体培养基。液体培养基中加一定量的凝固剂(常加琼脂 1.5—2%)。溶化冷凝后即成固体培养基。半固体培养基含琼脂0.2—0.5%。某些工农业生产废渣及生活废渣可视为天然的固体培养基。 根据培养基的特殊用途可分为选择培养基、鉴别培养基等。选择培养基在环境微生物学中应用较广,它是根据待培养微生物的特殊营养要求或生物特征而设计的培养基,利用这种培养基可将所需要的微生物从环境混杂的微生物中分离出来。如以石油作碳源的培养基可以分离到降解石油的微生物;以纤维素为唯一碳源的培养基可以分离到纤维素分离菌。 本实验介绍培养基配制及灭菌的一般原则和方法步骤。 培养基配制的方法和步骤 1.称量:先按配方计算培养基各成分的需要量,称量时用1/100粗天平即可。在烧杯或搪瓷杯中先放少量水,依次加入培养基各组分,溶解后补足至所需的总水量。对于肉膏之类

粘、胶状物,可盛在小烧杯或表面皿内称量,以便用水移入培养基中。蛋白胨等极易吸潮物质,在盛取时应动作迅速。某些无机盐类如磷酸盐和镁盐相混合时易产生沉淀,必要时应分别灭菌后再混合。此外,生长因素及微量元素等成分因用量极少,可预先配成较浓的储备液,使用时按要求取一定量加入培养液中即可。 2.溶化:各成分必须溶解在培养液中。最好溶解一种组分后,再加第二种,有时需要加热使其溶解。如果配方中有淀粉,则应先将其用少量冷水调成糊状,再兑入其他已溶解的成分中,边加热边搅拌,至完全融化即溶液由混浊转为清亮后,补水至所需总量。 溶化琼脂时,应注意控制火力使不至溢出或烧焦,并要不断搅拌。因加热过程中水分损耗较多,最后应补足至原体积。 根据需要,有时需将溶化后的培养基用脱脂棉或纱布过滤,已使培养基清亮透明。 3.调pH值:以10% HCI或10% NaOH调节培养基至所需pH值。一般用广泛pH试纸矫正,必要时亦可用酸度计。调时需注意逐步滴加,勿使过酸或过碱而破坏培养基中某些组分。 4.分装:将矫正pH后的培养基按需要趁热分装于三角瓶或试管内,以免琼脂冷凝。分装时应注意勿使培养基粘附于管口与瓶口部位,以免沾染棉塞而滋生杂菌或影响接种操作。可以通过下边套有橡皮管及管夹的普通漏斗进行分装。 分装量视需要而定。一般分装入三角瓶以不超过其容积的一半为宜。分装试管时,斜面培养基以试管高度的1/5左右为宜,半固体培养基以试管高度的1/3左右为宜。 5.加棉塞:试管和三角瓶口需用棉花堵塞,主要目的是过滤除菌,避免污染。 做棉塞所用的棉花应是普通长纤维棉花,不要用脱脂棉,因为脱脂棉易吸水变湿而滋长杂菌。棉塞制作方法有多种,主要的要求是不宜过松或过紧,应宜塞拔方便而又不易脱落为准。正确的棉塞其头部应较大,约有1/3在试管外,2/3在试管内(示范),试管以内部分不应有缝隙。 6.灭菌:在装培养基的三角瓶或试管的棉塞外面包一层牛皮纸,即可灭菌。应用铅笔注明培养基名称、配制日期等。 如制斜面培养基时,灭菌后趁热将试管斜放(示范),注意勿使培养基沾染棉塞。 如制平板培养基时,灭菌后待培养基温度降至50℃左右时以无菌操作将培养基倒入无菌培养皿内,每皿约15-20ml,平放冷凝即成平板培养基,简称平板。 若制半固体深层培养基,灭菌后垂直放置,冷凝即成。 二、灭菌与消毒 灭菌指杀死或消灭所有微生物体。消毒则是指破坏或消灭病原微生物,只能杀死微生物的营养细胞,而不能杀死全部芽孢。 灭菌与消毒的方法很多,可概分为物理和化学的两类。如湿热灭菌、间歇灭菌、煮沸消毒、干热灭菌、紫外线灭菌和化学灭菌与消毒等。实验室常用的方法介绍如下。 高压蒸汽灭菌:高压蒸汽灭菌是一种湿热灭菌法。在湿热情况下,菌体吸收水分,使蛋白质易于凝固;同时,湿热的穿透力强,而且当蒸汽与被灭菌物体接触冷凝成水时,又可放出热量,使温度迅速升高,从而增加灭菌效力;另一方面,随着压力增高,达到饱和蒸汽时所具有的温度也高。这样,高压蒸汽灭菌时微生物体受热、湿及压力的作用而被杀死。 由于高压蒸汽灭菌具有灭菌效果好,适用面广的特点,因此,是实验室最常用的消毒灭菌方法。适于消毒在高温高压下不易分解变压的培养基。将配制好的培养基放入高压蒸汽灭菌锅中,使其压力增至15磅后/吋2(相当于121℃)。维持半小时。即可达到灭菌目的。 高压蒸汽灭菌器分为立式,卧式及手提式等几种。但原理都是相同的,使用时必须注意以下几点: 1.使用前必须首先注意将器内加入足够的水。 2.将需要灭菌的器物放在灭菌器中,将盖密闭,打开气门。 3.加热,待器内冷空气完全排除后(蒸汽从气门有力地冲出),才可关闭气门,因为空气本身有压力,如不完全赶出,则压力表上所指示的压力便不准确,达不到灭菌要求。 4.当压力上升到所需要的指标后,开始计算时间,灭菌过程中保持压力不变。 5.达到需要灭菌时间后,停止加热,使器内压力自然下降,如欲使压力下将快些,可将气门稍稍打开,使蒸汽徐徐放出(愈慢愈好),切勿将气门立即全部打开放气,不然因器内压力骤然降低,引起瓶内和管内的培养基沸腾外溢,沾污棉塞,不但增加以后操作的困难,而且培养基也易污染。

微生物资源的开发与利用

微生物资源的开发与利用 摘要:微生物资源的开发利用前景将会在解决人类社会面临的人口剧增、资源匮乏、环境恶化问题和实现可持续发展等方面发挥不可替代的作用。本文综述了微生物资源以及其开发利用过程这两个方面。 关键词:微生物资源,放线菌,开发,利用 1.引言 当今,人类的工业是建立在化石能源基础之上的,而其特点必然要导致大量不可再生资源的消耗,大量温室气体的排放以及伴随着生态环境的破坏。导致人类社会面临着人口剧增、资源匮乏、能源危机、环境恶化等一系列问题,而人类又要求不停的发展,解决这些问题的关键在于寻求一条可持续发展的道路。 生物技术正在推动着以化石能源为基础的经济向以知识经济、循环经济为主的经济结构转型,是实现人类可持续发展的关键技术。因此大力发展生物技术对经济的发展以及人类社会的发展有着巨大而深远的影响,而作为生物技术的核心技术,微生物工程技术的发展将要涉及到微生物资源的开发与利用问题[1]。 微生物资源利用的核心是在于利用其产生的生物活性物质,目前,微生物活性物质绝大部分来源于普通环境中的微生物,因此从普通环境微生物中寻找新的活性物质难度越来越大。新的基因有很大的可能产生新的生物活性物质,因此通过寻找新的基因来寻找新的生物活性物质。基于该思路,稀有放线菌、海洋微生物、极端环境微生物等过去很少触及的微生物资源已越来越受重视[2]。 2.微生物资源 2.1微生物资源的特点 环境中存在着大量的微生物, 据估计, 每克土壤样品中可含有高达1000种不同的微生物[3], 这些微生物产生多种多样的活性物质(包括酶与次生代谢产物两部分) ,

对人类有实用意义的抗生素—青霉素、链霉素、抓霉素、金霉素、土霉素、红霉素、新霉家、万古霉素、庆大霉素等都是从微生物中发现并开发出来的; 基因工程中各种工具酶几乎都来自多种不同的微生物[4] 微生物是一类物种丰富的生物资源和基因资源,迄今为止我们所分离到的微生物主要有:真菌70000多种、细菌5000多种、放线菌3000多种。而这些人类所知道的微生物估计仅占自然界存在的微生物不到10%,而被利用的还不到1%。 微生物具有很快的生长繁殖速度,有的细菌的时代时间仅仅20分钟,而且微生物可以再人工控制的条件下大规模培养,并且几乎不受地域、气候等条件的影响。 相比于动、植物品种遗传基因结构,微生物的基因组小得多,基因拷贝数比较少,比较容易进行基因操作,微生物改良易于操作,改造性能、提高产率相对容易。 微生物资源丰富,微生物资源的开发与利用不会导致微生物物种的减少和环境的破坏。部分动植物资源的不合理开发利用导致物种的减少甚至灭绝,造成严重的环境的恶化和污染问题,而微生物资源的开发利用不会存在此类问题。但我们必须注意到并引起重视的现实问题是由于环境的改变和恶化,如原始森林开发成旅游区等现象,造成的天然微生物的破坏,使得许多在该类环境中赖以生存的微生物在人类还没有认识它之前就悄悄灭绝了[1]。 微生物资源是新抗菌剂的主要来源之一,然而即使采用先进的方法, 绝大部分微生物也仍然不可培养、只能用分子指纹图谱来描述[5]。 2.2稀有放线菌 目前大部分生物活性物质来自链霉菌,所以从链霉菌中发现性的活性物质的几率已经大大降低。自20世纪50年代以来, 已从部分稀有放线菌代谢产物中得到许多已经临床应用的重要活性物质, 如红霉素B、利福霉素、庆大霉素、其它放线菌素类、安莎类、肽类、酶抑制剂等活性物质。 尽管新的种、属不断被发现, 但据估计, 目前分离到的放线菌种类, 仅为实际存在种类的0.1%~1%。因此, 放线菌还有极其丰富多样的未知种群等待人们去发现 [6]。如日本Takahashi 等[7] 报道, 从不同的环境, 利用特殊的分离方法分离到放线 菌的新种、新属,并从这些放线菌发酵产物中得到许多新结构的活性物质。

脂肪酶的技术开发及其应用

脂肪酶的技术开发及其应用 一.脂肪酶 脂肪酶(LipaseEC3.1.1.3甘油水解酶)是一类特殊的酰基水解酶,其天然底物是油脂,主要水解由甘油和12碳原子以上的不溶性长链脂肪酸形成的甘油三酯,生成脂肪酸、甘油和甘油单酯或二酯。同时还催化其他一些水性酯类的水解(Hydrolyze)、醇解(Alchoholysis)、氨解(Aminolysis)、酯化(Esterification)、转酯化(Transesterification)以及酯类逆向合成反应。 (1)水解反应: RCOOR’+H20¨RCOOH-4-R’OH (2)合成反应: A 酯化:RCOOH+R’OH----RCOOR’+H20 B 酯交换:RCOOR'+R”COOR----RCOOR+R”COOR’ C 醇解:RCOOR’+R”OH---- RCOOR7’+R’0H D 酸解:RCOOR%R”COOH----R”COOR“RCOOH 脂肪酶广泛存在于动植物与微生物当中。动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织等。而植物中含脂肪酶较多的是油料作物种子。 目前脂肪酶的生产方法有提取法和微生物发酵法。 由于微生物脂肪酶具有种类多、比动物脂肪酶具有更广的作用pH和作用温度范围、便于进行工业生产和获取高纯度制剂等优点而得到广泛应用,特别是在油脂化工和有机合成工业中,酶催化的反应具有条件温和、耗能低、原料要求低、成品质量高等优点。尤其是l,3专一脂肪酶可用于特殊脂肪酸、单甘酯的合成及立体选择性化学合成和拆分,具有巨大应用潜力。因此微生物脂肪酶已经成为生产脂肪酶的主要来源,关于微生物脂肪酶在工业上的生产也越来越多。 二.微生物脂肪酶 微生物脂肪酶的生产: 以微生物为来源生产脂肪酶较动植物更具有巨大的潜力和优势。目前,国内外微生物脂肪酶的研究、生产和应用都取得很大的进展。 产脂肪酶的微生物共65个属,其中纲菌28个属,放线菌4个属,酵母菌10个属,其他真菌23个属(Jaeger 1994)。随着发现范圈的不断扩大,脂肪酶获得和制备的手段也产生了显著变化,从动植物提取到微生物纯种培养再到目前新兴的体外设计,重组表达。 经近20年来的深入研究,能应用于工业生产的微生物脂肪酶种类不断增加,目前已遍及细菌、酵母及霉菌各大类中,最近公布的36种不同来源的商业化脂肪酶中有19种来源于真菌,8种来源于细菌。我国微生物脂肪酶的生产,就目前而言,碱性脂肪酶仅绿微康独家生产,假丝酵母产中性脂肪酶也仅l、2家,绿微康碱性脂肪酶罐上发酵单位可稳定在6000u/ml左右,产品酶活可由几千吨到几万吨,甚至更高。我国微生物脂肪酶已实现产业化,虽然目前生产量还低,但已在诸多产业中逐步推广使用。由于价低质优,在国际市场中极具竞争力,绿微康已首次实现我国碱性脂肪酶的出口,而且份额正在逐步扩大之中. 三.提高脂肪酶产量 要提高脂肪酶的产量的途径主要有两个:育种改良和发酵工艺优化。 (1)育种改良 育种改良主要途径有:育种驯化、诱变育种和基因工程菌改造等。

微生物资源开发与利

土壤微生物资源开发与利用 摘要:从土壤微生物生态和资源开发利用、土壤生物化学、生物固氮、土壤微生物多样性和应用现代生物技术手段实现土壤微生物资源的生理活性物质的开发研究及其产业化等方面,阐述了我国土壤微生物研究成就,今后在这一领域的研究和发展方向,主要涉及到微生物资源的认识、特点、开发与利用步骤以及微生物资源开发利用的重大研究课题等内容。 关键词:土壤微生物;资源;开发利用;前景展望 前言:微生物是一类重要的自然资源。微生物资源的开发利用已产生了巨大的社会和经济效益。微生物生产的青霉素是20世纪重大的发明之一,她带动了其它抗生素及生物活性物质的寻找和发现,促使抗生素工业的形成。目前全世界青霉素的年产量达5万吨左右。制剂产值约40亿美元。青霉素和其他抗生素对人类保健事业的贡献,无论怎样形容都不为过。我们很难想象,没有青霉素类药物,世界将是什么样子。但是,我们不能不看到,对微生物资源的重要性的认知远远不及对动植物资源那样普及,保护微生物资源的意识更是和者甚寡。 1.中国土壤生物学的主要研究内容与进展 1.1土壤微生物多样性 土壤具备微生物生活所需的各种条件,是微生物生活和繁殖的良好场所。土壤中广泛分布着数量众多的微生物,重要的类群有细菌、放线菌、真菌、藻类和原生动物。土壤微生物多样性包括物种多样性、遗传多样性和生态系统多样性,其与土壤中的主要生态过程与功能密切相关。中国的土壤微生物学多样性研究早期主要借助于平板培养方法,通过对微生物区系分析反映土壤微生物与土壤肥力之间的关系Biolog微平板法是20世纪90年代建立起来的一套用于研究土壤微生物群落结构和功能多样性的方法,这种方法是根据微生物对单一碳源底物的利用能力的差异,来表征土壤微生物代谢功能多样性或结构多样性一种方法。采用Biolog体系能够较好地评价我国不同耕地、草地、森林等土壤中的微生物群落结构[1]。 随着分子生物技术的广泛引入,通过非培养方法研究土壤微生物多样性的报道不断增加,这些方法包括磷脂脂肪酸)方法、脂肪酸甲酯方法、限制性片段长度多态性方法[2]以及DGGE/TGGE方法等,通过这些方法已经揭示出土壤环境中存在高度的微生物多样性。 我国作为世界微生物资源大国,微生物资源开发利用具有重要的科研和经济价值。在根结线虫生防真菌、有机污染物降解微生物、根瘤菌、黏细菌、放线菌等方面均开展了大量的研究,分离、筛选出一批重要的微生物菌种资源。近年来,国家科技部启动“环境微生物菌种资源整理、整合”项目,必将极大地推动微生物资源开发的进程[3]。 1.2微生物资源的特点 物种繁多:迄今我们所认识的真菌达7万多种,细菌5,000多种,放线菌3,000多种。可见,微生物是一类物种丰富的生物资源和基因资源。生长繁殖速度极快:有的细菌繁殖一代,仅需20min。由于这一特点,微生物产品可以在人工控制条件下,实现大规模生产。这是目前栽培的任何农作物都无法比拟的。比较容易大幅度提高产率:相对而言,微生物的基因组小得多,

微生物诱变育种研究进展

微生物诱变育种研究进展 摘要:本文综述了国内外微生物诱变育种领域的研究新进展,对生物学效应及诱变微生物的机理进行了总结。从物理诱变、化学诱变及复合诱变三个方面介绍了诱变效应、作用机制及在实践中的应用,并对微生物诱变育种的研究进展进行了概述。 关键词:微生物;诱变育种;机制;研究进展 常规的诱变育种方法主要为物理诱变育种和化学诱变育种。微生物的诱变育种,是以人工诱变手段诱发微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异菌体中筛选出产量高、性状优良的突变株,并且找出发挥这个突变株最佳培养基和培养条件,使其在最适的环境条件下合成有效产物。以人工诱发突变为基础的微生物诱变育种,具有速度快、收效大和方法简单等优点,是菌种选育的1个重要途径,在发酵工业菌种选育上具有卓越的成就,迄今为止国内外发酵工业中所使用的生产菌种绝大部分是人工诱变选育出来的。诱变筛选方法相对简便,是菌种选育的基本、常规和经典方法。特别是对遗传背景不很清楚的对象,诱变育种更是必不可少。近年来,随着新诱变因子的不断发现和筛选体系的进一步完善,微生物诱变育种有了长足的发展。 1 微生物诱变育种的作用 从自然界分离的野生菌种,不论是在产量上还是在质量上,均难适合工业化生产的要求。理想的工业化菌种必须具备遗传性状稳定、纯净无污染、能产生许多繁殖单位、生长迅速、能于短时间内生产所要的产物、可以长期保存、能经诱变产生变异和遗传、生产能力具有再现性、具有高产量和高收率等特性。微生物发酵工业中,诱变育种主要有以下作用: 提高有效产物的产量;改善菌种特性,提高产品质量;简化工艺条件;开发新品种,产生新物质;用于研究推测产物的生物合成途径;与其他育种方法相结合[1]。 2诱变育种的过程 诱变育种包括三个重要环节:突变的诱发、突变株的筛选突变基因的表达。 2.1突变的诱发 突变的诱发受到菌种的遗传特性、诱变剂、菌种的生理状态以及诱变处理时环境条件的影响。出发菌株就是用来进行诱变试验的菌株。出发菌株的选择是诱变育种工作成败的关键。功的经验。诱变作用不但决定于诱变剂,还与出发菌株的遗传背景有关。菌种的生理状态、被处理菌株诱变前的预培养和诱变后的培养条件以及诱变处理时的外界条件等都会影响诱变效果。

脂肪酶

脂肪酶催化药物合成 院系:化工学院 班级: 2009级制药工程2班学号: 20009650818 姓名:李红霞

脂肪酶催化药物合成 摘要:将脂肪酶固定化可提高酶的选择性、稳定性等,已广泛应用于手性拆分 等研究。常用的高分子固定化载体有聚丙烯酸多孔树脂及带功能基团的共聚物等。从脂肪酶结构的角度介绍其手性拆分机理,并具体讨论了一些商品化固定化脂肪酶在手性拆分中的应用及固定化载体材料对手性拆分的影响。 关键词:脂肪酶;酶催化;手性拆分;药物合成;应用 一、综述 脂肪酶(Triacylglycerol lipase E C3.1.1.3)是广泛存在的一种酶,在脂质代谢中发挥重要的作用。在油水界面上,脂肪酶催化三酰甘油的酯键水解,释放更少酯键的甘油酯或甘油及脂肪酸。脂肪酶结构有2个特点:(1) 脂肪酶都包括同源区段:His-X-Y-Gly-Z-Ser- W-Gly或Y-Gly-His-Ser-W-Gly (X、Y、W、Z是可变的氨基酸残基);(2) 活性中心是丝氨酸残基,正常情况下受1个α-螺旋盖保护。脂肪酶的特性脂肪酶底物专一性酶的底物专一性取决于酶分子结构,脂肪酶分子由亲水、疏水两部分组成。活性中心靠近分子疏水端。不同来源的脂肪酶存在着结构上的差异,使得不同的来源的脂肪酶有不同的底物专一性。 1.1来源 脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。在动物体内,各类脂肪酶控制着消化、吸收、脂肪重建和脂蛋白代谢等过程;细菌、真菌和酵母中的脂肪酶含量更为丰富(Pandey等)。由于微生物种类多、繁殖快、易发生遗传变异,具有比动植物更广的作用p H、作用温度范围以及底物专一性,且微生物来源的脂肪酶一般都是分泌性的胞外酶,适合于工业化大生产和获得高纯度样品,因此微生物脂肪酶是工业用脂肪酶的重要来源,并且在理论研究方面也具有重要的意义。 1.2性质

2微生物的诱变育种

微生物的诱变育种 一、教学目标及基本要求: 1. 理解诱变剂对微生物的杀菌和诱变双重生物学效应; 2. 学习紫外线诱变的方法和测定诱变剂最适剂量的方法。 二、实验原理 紫外线的生物学效应主要是它能引起DNA结构的变化而造成的。 紫外线具有杀菌和诱变双重生物学效应,随着紫外线照射时间的增加,杀菌率和突变率随之提高。但当照射时间延长到某一程度时,继续延长照射时间,其杀菌率虽然增加,突变率却下降。 紫外线的强度单位(剂量)为尔格/mm2,由于测定困难,在实际诱变育种中,常用紫外线照射时间或细胞的死亡率表示相对剂量,其中以细胞死亡率表示具有实际意义。 本实验以枯草芽孢杆菌为出发菌株,以营养缺陷的突变作为诱变效应的指标,测定紫外线诱变剂的最适剂量。以照射时间为横坐标,以细胞存活率或死亡率和突变率为纵坐标作图,突变率最高值相对应的照射时间即为最适剂量。 三、实验材料 1. 菌种枯草芽孢杆菌(Bacillus subtilis) 2. 培养基肉汤培养基(附录Ⅱ-1.1),细菌基本培养基(附录Ⅱ-1.9) 3. 其它生理盐水,诱变箱,磁力搅拌器,涂布棒,离心管,离心机,培养皿等。 四、方法与步骤 1. 菌体的培养取斜面菌种1环,接种于盛有20ml肉汤培养基的250ml三角瓶中,37℃振荡培养(120r/min)16~18h。取1ml培养液转接于另一只盛有20ml肉汤培养基的250ml三角瓶中,37℃振荡培养(120r/min)6~8h。 2. 细胞悬浮液的制备取10ml培养液,3500/min离心10min,收集菌体,沉淀用10ml 生理盐水洗涤离心2次,之后将菌体充分悬浮于12ml生理盐水中。 3. 活菌计数法测定细胞悬浮液的浓度取1ml细胞悬浮液,逐步稀释为10-1、10-2、10-3……。取最后3个稀释度的菌液各1ml,置于无菌空平皿中,然后倾注15ml融化并冷却至45~50℃的肉汤固体培养基,轻轻充分混匀,凝固后于37℃倒置培养1~2天,计数每皿的菌落数(每个稀释度作三个平行)。按下式计算每毫升细胞悬浮液菌体的浓度(N0)。 菌体浓度(个/ml) = 菌落数(按杂菌总数计数原则)×稀释倍数 4. 诱变处理 (1) 取10ml菌液于φ90mm的培养皿中(带有磁棒),将皿放置于诱变箱内的磁力搅拌器上。 (2) 开启紫外灯,预热20min,开启磁力搅拌器,打开皿盖,分别照射15、30、45、60、75、90s。 (3) 取不同时间诱变处理的菌液1ml,以肉汤固体培养基平板,按照上述菌落计数的方法进行适当稀释后,采用肉汤固体培养基倾注法测定处理液中存活的细胞浓度(每个照射剂量做三个稀释度,每一稀释度平行做三个平皿)。将结果填入表1。 表1 紫外线对枯草芽孢杆菌存活率的影响

微生物脂肪酶的研究与应用 (1)

DOI:CNKI:11-1759/TS.20120210.1743.006 网络出版时间:2012-02-10 17:43 网络出版地址:https://www.wendangku.net/doc/ad5459865.html,/kcms/detail/11.1759.TS.20120210.1743.006.html 微生物脂肪酶的研究与应用 刘虹蕾,缪铭,江波 ,张涛 (江南大学食品科学与技术国家重点实验室,江苏无锡214122) 摘要:脂肪酶是一类能够催化酯的水解反应以及在非水相体系中催化脂肪酸和醇类发生酯化反应的酶类。 随着酶学技术的快速发展,微生物脂肪酶也受到了越来越多的关注。作为生物催化剂,脂肪酶一直以来都 是生物技术领域中最重要的一类酶。本文探讨了脂肪酶的来源、理化性质、脂肪酶活力测定,同时对脂肪 酶的非水相催化特性以及脂肪酶在食品工业,医药、洗涤剂、皮革、造纸和生物柴油工业领域中的应用进 行了讨论。 关键词:脂肪酶;酶活测定;非水相;食品工业应用 Research and applications of microbial lipases Liu Hong-lei, Miao Ming, Jiang Bo, Zhang Tao (State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China) Abstract: lipases are a class of enzymes which catalyse the hydrolysis of esters and esterification of fatty acid and alcohol. Lipases constitute the most important group of biocatalysts for biotechnological applications. This review describes physicochemical origin and properties of lipases, lipase activity determination, catalytic properties of lipases in nonaqueous phase and various industrial applications of microbial lipases in the food, pharmaceuticals, detergent, leather, papermaking and biodiesel. Key words: lipases; lipase actiity determination; Nonaqueous phase; food industrial applications 脂肪酶(三酰甘油酯水解酶,EC 3.1.1.3),是一类广泛存在于多种微生物中的生物催化剂。脂肪酶最早被发现可追溯至1901年,其天然作用底物为三脂酰甘油酯,能够将酯键水解,释放甘油二酯,甘油一酯, 甘油以及游离脂肪酸。随着非水酶学的发展,研究者发现,脂肪酶在非水相中能够催化酯化、酯交换以及 转酯化反应,并且具有高度的选择性和专一性,已广泛应用于食品、医药、洗涤剂等行业。特别是在食品 行业中得到了大量的应用,并逐渐成为食品领域中应用最为广泛的酶类之一。但是,由于目前脂肪酶相对 于传统的化学催化剂的生产成本仍然偏高,这是制约脂肪酶工业化应用的主要问题,因此,在了解脂肪酶 催化特性的基础上,通过筛选高产菌株,或者改变脂肪酶催化环境等方法提高脂肪酶的产率和利用率,降 低利用脂肪酶进行工业化生产的成本是目前急需解决的主要问题。 1 脂肪酶简介 1.1 脂肪酶的来源 脂肪酶是一种普遍存在于生物体的酶类,具有重要的生理学意义,同时也具有工业化应用的潜在可能性。脂肪酶能够催化三酰甘油酯水解成为甘油和游离脂肪酸。而在有机相中,脂肪酶则催化酯化,酯交换 以及转酯化反应。在真核生物体内,脂肪酶参与许多类脂化合物的代谢过程,包括脂肪的消化、吸收、利 用以及脂蛋白的代谢。在植物中,脂肪酶存在于储存能量的组织中。脂肪酶在微生物界分布很广,大约65 个属微生物可产脂肪酶,其中细菌有28个属、放线菌4个属、酵母菌10个属、其它真菌23个属,但实际 上微生物脂肪酶分布远远超过这个数目[1]。 收稿日期:2011-08-29 *通讯联系人 作者简介:刘虹蕾(1987-),女,硕士研究生,主要从事应用酶技术研究。

相关文档
相关文档 最新文档