文档库 最新最全的文档下载
当前位置:文档库 › 三角函数图像与性质知识点总结和经典题型(已打)

三角函数图像与性质知识点总结和经典题型(已打)

三角函数图像与性质知识点总结和经典题型(已打)
三角函数图像与性质知识点总结和经典题型(已打)

三角函数图像与性质知识点总结和经典题型

1.正弦函数、余弦函数、正切函数的图像

2.三角函数的单调区间:

x y sin =的递增区间是?????

?

+-2222ππππk k ,)(Z k ∈,递减区间是??

????

++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,

-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是??? ?

?

+-22ππππk k ,)(Z k ∈,

3.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是ω

π

2=T ,频率是π

ω

2=

f ,相位是?ω+x ,初相是?;其图象的对称轴是直线)(2

Z k k x ∈+

=+π

π?ω,凡是该图象与直线B y =的

交点都是该图象的对称中心。

4.由y =sinx 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)

先将y =sinx 的图象向左(?>0)或向右(?<0=平移|?|个单位,再将图象上各点的横坐标变为原来的

ω

1

倍(ω>0),便得y =sin(ωx +?)的图象。

途径二:先周期变换(伸缩变换)再平移变换。 先将y =sinx 的图象上各点的横坐标变为原来的ω

1

倍(ω>0),再沿x 轴向左(?>0)

或向右(?<0=平移

ω

?|

|个单位,便得y =sin(ωx +?)的图象。

5.由y =Asin(ωx +?)的图象求其函数式:

给出图象确定解析式y=Asin (ωx+?)的题型,有时从寻找“五点”中的第一零点(-ω

?

,0)作为突破口,要从图象的升降情况找准..

第一个零点的位置。 6.对称轴与对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;

cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最

值点联系。

7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;

8.求三角函数的周期的常用方法:

经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。

9.五点法作y=Asin (ωx+?)的简图:

五点取法是设x=ωx+?,由x 取0、2π、π、2

π

3、2π来求相应的x 值及对应的y 值,再描点作图。 四.典例解析

题型1:三角函数的图象

例1.(2000全国,5)函数y =-xcosx 的部分图象是( )

解析:因为函数y =-xcosx 是奇函数,它的图象关于原点对称,所以排除A 、C ,当x ∈(0,

2

π)时,y =-xcosx <0。答案为D 。

题型2:三角函数图象的变换

例2.试述如何由y=31

sin (2x+3π)的图象得到y=sinx 的图象。

解析:y=3

1

sin (2x+3π)

)(纵坐标不变倍

横坐标扩大为原来的3

πsin 312+=?????????→?x y

x y sin 3

13π

=????????→?纵坐标不变个单位图象向右平移

x y sin 3=?????????→?横坐标不变

纵坐标扩大到原来的

另法答案:

(1)先将y=31sin (2x+3π)的图象向右平移6π个单位,得y=3

1

sin2x 的图象;

(2)再将y=31sin2x 上各点的横坐标扩大为原来的2倍(纵坐标不变),得y=3

1

sinx

的图象;

(3)再将y=3

1

sinx 图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到

y=sinx 的图象。

例3.(2003上海春,15)把曲线ycosx+2y -1=0先沿x 轴向右平移2

π

个单位,再沿y

轴向下平移1个单位,得到的曲线方程是( ) A .(1-y )sinx+2y -3=0 B .(y -1)sinx+2y -3=0 C .(y+1)sinx+2y+1=0 D .-(y+1)sinx+2y+1=0

解析:将原方程整理为:y=

x cos 21+,因为要将原曲线向右、向下分别移动2π

个单

位和1个单位,因此可得y=

)

2

cos(21

π

-+x -1为所求方程.整理得(y+1)sinx+2y+1=0.

点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。如果对平移有深刻理解,可直接化为:(y+1)cos (x -

2

π

)+2(y+1)-1=0,即得C 选项。

题型3:三角函数图象的应用

例4.(2003上海春,18)已知函数f (x )=Asin (ωx+?)(A>0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线y=

3与函数f (x )图象的所有交点的坐标。

解析:根据图象得A=2,T=27π-(-2

π

)=4π,∴

ω=

21,∴y=2sin (2

x

+?), 又由图象可得相位移为-

2

π

,∴-

2

1?=-2π,∴?=

4

π.即y=2sin (

21x+4

π)。 根据条件

3=2sin (421π+x ),∴421π+x =2k π+3π(k ∈Z)或4

21π+x =2k π+32

π

(k ∈Z ),∴x=4k π+

6

π

(k ∈Z )或x=4k π+

6

5

π(k ∈Z )。 ∴所有交点坐标为(4k π+

3,6

π

)或(4k π+

3,6

)(k ∈Z )。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。

题型4:三角函数的定义域、值域

例5.(1)已知f (x )的定义域为[0,1],求f (cosx )的定义域; (2)求函数y=lgsin (cosx )的定义域; 分析:求函数的定义域:(1)要使0≤cosx ≤1,(2)要使sin (cosx )>0,这里的cosx 以它的值充当角。

解析:(1)0≤cosx <1?2k π-

2π≤x ≤2k π+2π

,且x ≠2k π(k ∈Z )。 ∴所求函数的定义域为{x |x ∈[2k π-

2π,2k π+2

π

]且x ≠2k π,k ∈Z}。 (2)由sin (cosx )>0?2k π<cosx <2k π+π(k ∈Z )。又∵-1≤cosx ≤1,∴0<cosx ≤1。故所求定义域为{x |x ∈(2k π-

2π,2k π+2

π),k ∈Z}。 点评:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函

数线。

题型5:三角函数的单调性 例6.求下列函数的单调区间: (1)y=

21sin (4π-3

2x );(2)y=-|sin (x+4π)|。 分析:(1)要将原函数化为y=-21sin (32x -4π)再求之。(2)可画出y=-|sin (x+4

π

)|的图象。解:(1)y=

21sin (4π-32x )=-21sin (3

2x -4π

)。 故由2k π-2π≤32x -4π≤2k π+2π。?3k π-8π3≤x ≤3k π+8

π9(k ∈Z ),为单调减区间;由2k π+

2π≤32x -4π≤2k π+2π3。?3k π+8π9≤x ≤3k π+8

π21(k ∈Z ),为单调增区间。∴递减区间为[3k π-

8π3,3k π+8

π

9], 递增区间为[3k π+8π9,3k π+8

π21](k ∈Z )。 (2)y=-|sin (x+4π)|的图象的增区间为[k π+4π,k π+4π3],减区间为[k π-4

π,k π+

4

π

]。

题型6:三角函数的奇偶性

例7.(2001上海春)关于x 的函数f (x )=sin (x+?)有以下命题: ①对任意的?,f (x )都是非奇非偶函数;

②不存在?,使f (x )既是奇函数,又是偶函数; ③存在?,使f (x )是奇函数;

④对任意的?,f (x )都不是偶函数。

其中一个假命题的序号是_____.因为当?=_____时,该命题的结论不成立。 答案:①,k π(k ∈Z );或者①,

2

π

+k π(k ∈Z );或者④,

2

π

+k π(k ∈Z )

解析:当?=2k π,k ∈Z 时,f (x )=sinx 是奇函数。当?=2(k+1)π,k ∈Z 时f (x )

=-sinx 仍是奇函数。当?=2k π+

2

π,k ∈Z 时,f (x )=cosx ,或当?=2k π-

2

π,k ∈Z

时,f (x )=-cosx ,f (x )都是偶函数.所以②和③都是正确的。无论?为何值都不能使f (x )恒等于零。所以f (x )不能既是奇函数又是偶函数。①和④都是假命题。

点评:本题考查三角函数的奇偶性、诱导公式以及分析问题的能力,注意k ∈Z 不能不写,否则不给分,本题的答案不惟一,两个空全答对才能得分。

题型7:三角函数的周期性

例8.设)0(cos sin )(>+=ωωωx b x a x f 的周期π=T ,最大值4)12

(

f ,

(1)求ω、a 、b 的值;

(2)的值终边不共线,求、、的两根,为方程、、若)tan(0)(βαβαβα+=x f 。

解析:(1) )sin()(22?ω++=

x b a x f , π=∴T , 2=∴ω,

又 )(x f 的最大值。4)12

(

f , 224b a +=∴ ① ,且

12

2cos b 122sin

a 4π

+π=②,由 ①、②解出 a=2 , b=3. (2) )3

2sin(42cos 322sin 2)(π

+=+=x x x x f , 0)()(==∴βαf f ,

)3

2sin(4)3

2sin(4π

βπ

α+

=+

∴, 3

223

βππ

α+

+=+

∴k , 或

)3

2(23

βπππ

α+

-+=+

k , 即 βπα+=k (βα、 共线,故舍去) , 或

6

π

πβα+

=+k ,3

3

)6

tan()tan(=

+

=+∴π

πβαk )(Z k ∈。 点评:方程组的思想是解题时常用的基本思想方法;在解题时不要忘记三角函数的周期性。

题型8:三角函数的最值

例9.(2000京、皖春理,10)函数y =

x

x cos sin 21

++的最大值是( )

A .

2

2

-1 B .

22

+1 C .1-

2

2

D .-1-

2

2

解析:B ;22

1221)4

sin(221cos sin 21+

=-≤+++++=

πx x x y

三角函数图像与性质知识点总结和经典题型

三角函数图像与性质经典题型 题型1:三角函数的图象 例1.(2000全国,5)函数y =-xc os x 的部分图象是( ) 解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所 以排除A 、C ,当x ∈(0, 2 π )时,y =-xc os x <0。 题型2:三角函数图象的变换 例2.试述如何由y =31sin (2x +3 π )的图象得到y =sin x 的图象。 解析:y =31sin (2x +3π))(纵坐标不变倍 横坐标扩大为原来的3 πsin 312+=?????????→?x y x y sin 313 π =????????→?纵坐标不变个单位图象向右平移 x y sin 3=?????????→?横坐标不变 倍 纵坐标扩大到原来的 例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移 2 π 个单位,再沿y 轴向下平移1个单位,得到的曲 线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0 解析:将原方程整理为:y = x cos 21+,因为要将原曲线向右、向下分别移动2π 个单位和1个单位,因此可得 y = ) 2 cos(21π -+x -1为所求方程.整理得(y +1)sin x +2y +1=0. 题型3:三角函数图象的应用 例4.(2003上海春,18)已知函数f (x )=A sin (ωx +?)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线 y =3与函数f (x )图象的所有交点的坐标。 解析:根据图象得A =2,T = 27π-(-2π)=4π,∴ω=21,∴y =2sin (2 x +?),又由图象可得相位移为-2π,∴-2 1? = - 2 π,∴?= 4π.即y =2sin (21x +4π)。根据条件3=2sin (4 21π+x ),∴421π+x =2k π+ 3π(k ∈Z )或 4 21π+x =2k π+32 π(k ∈Z ),∴x =4k π+ 6 π (k ∈Z )或x =4k π+ 65π(k ∈Z )。∴所有交点坐标为(4k π+3,6 π)或(4k π+3,65π )(k ∈Z )。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 题型4:三角函数的定义域、值域 例5.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;(2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。 解析:(1)0≤c os x <1?2k π- 2π≤x ≤2k π+2π,且x ≠2k π(k ∈Z )∴所求函数的定义域为{x |x ∈[2k π-2 π ,2 k

四边形知识点总结归纳大全

四边形知识点总结归纳 大全 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

望牛墩中学四边形知识点总结大全

※1.关于中心对称的两个图形是全等形. ※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点 对称. 三 公式: 1.S 菱形 =2 1ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2 1(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识: ※1.若n 是多边形的边数,则对角线条数公式是: 2 ) 3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系. 正方形、矩形、菱形和平行四边形四者知识点串联汇总

正方形一组邻边相等的矩形叫做正方形 平行四边形、菱形、矩形、正方形的有关性质 图形边角对角线平行四边形对边平行且相等对角相等对角线互相平分 菱形对边平行,四条边相等对角相等两对角线互相垂直平分,每一条对角线平分一组对角 矩形对边平行且相等四个角都是直角对角线互相平分且相等 正方形对边平行、四条边都相 等 四个角都是直角 两条对角线互相平分、垂 直、相等,每一条对角线 平分一组对角 平行四边形、菱形、矩形、正方形的判别方法图形判别方法 平行四边形两组对边分别平行的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形 菱形一组邻边相等的平行四边形是菱形四条边都相等的四边形是菱形 对角线互相垂直的平行四边形是菱形 矩形一个内角是直角的平行四边形是矩形对角线相等的平行四边形是矩形 正方形一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形对角线相等的菱形是正方形 1.延长两腰交于一点 作用:使梯形问题转化为三角形问题。 若是等腰梯形则得到等腰三角形。 2.平移一腰 作用:使梯形问题转化为平行四边形及三角形问题。 3.作高 作用:使梯形问题转化为直角三角形及矩形问题。 4.平移一条对角线 作用:(1)得到平行四边形ACED,使CE=AD,BE等于上、下底的和 (2)S 梯形ABCD =S △DBE 5.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。 作用:可得△ADE≌△FCE,所以使S 梯形ABCD =S △ABF 。

四边形知识点总结(已整理)

四边形知识点总结 第一部分、特殊四边形的性质与判定 1.四边形的基础知识: ①.过多边形的一个顶点可画(n-3)条对角线. ②.多边形的对角线条数公式是:2) 3n (n -条. ③.n 边形内角和是(n-2)*180° ④.任意多边形的外角和是360° 2.平行四边形的性质: 因为ABCD 平行四边形????????????.54321点对称中心是对角线的交 )中心对称图形,()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 平行四边形的判定: 是平行四边形 )对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD ????? ? ? ? ?? 54321 3.矩形的性质: 因为ABCD 是矩形?????? ????.4.3;2;1有两条对称轴 形,)中心对称和轴对称图()对角线相等 ()四个角都是直角(有性质)具有平行四边形的所 ( 矩形的判定: ??? ? ? ?? +四边形)对角线平分且相等的(边形)对角线相等的平行四(边形)三个角都是直角的四(一个直角 )平行四边形(4321?ABCD 是矩形. 4.菱形的性质: 因为ABCD 是菱形??? ?? ?? ? ??????.)5(24321亦可)(对角线垂直的四边形算面积可用对角线乘积的一半条对称轴有形)中心对称和轴对称图 (角)对角线垂直且平分对()四条边都相等; (有性质;)具有平行四边形的所 ( 菱形的判定: ??? ? ? ?? +四边形)对角线平分且垂直的(边形)对角线垂直的平行四(形)四条边都相等的四边(一组邻边相等)平行四边形(4321?ABCD 是菱形. 5.正方形的性质: 因为ABCD 是正方形 ??? ? ??.321分对角)对角线相等垂直且平(角都是直角;)四条边都相等,四个 (有性质;)具有平行四边形的所 ( 正方形的判定: ?? ? ? ? ?? ++++对角线互相垂直矩形一组邻边相等矩形一个直角)菱形(对角线相等 )菱形()4()3(21?ABCD 是正方形.

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

四边形知识点经典总结

四边形知识点: 一、 关系结构图: 二、知识点讲解: 1.平行四边形的性质(重点): ABCD 是平行四边形??? ? ? ? ????.54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行; ( 2.平行四边形的判定(难点): A B D O C

C D A B A B C D O . 3. 矩形的性质: 因为ABCD 是矩形???? ??. 3;2; 1)对角线相等()四个角都是直角 (有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: 矩形的判定方法:(1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 5. 菱形的性质: 因为ABCD 是菱形???? ??. 321角)对角线垂直且平分对 ()四个边都相等; (有通性; )具有平行四边形的所 ( 6. 菱形的判定: ?? ? ?? +边形 )对角线垂直的平行四 ()四个边都相等(一组邻边等 )平行四边形(321?四边形四边形ABCD 是菱形. 7.正方形的性质: ABCD 是正方形???? ??. 321分对角)对角线相等垂直且平 (角都是直角;)四个边都相等,四个 (有通性;)具有平行四边形的所( 8. 正方形的判定: ?? ? ?? ++++一组邻边等 矩形)(一个直角)菱形(一个直角一组邻边等 )平行四边形 (321?四边形ABCD 是正方形. A B D O C A D B C A D B C O C D B A O C D B A O

平行四边形知识点总结及对应例题.

平行四边形、矩形、菱形、正方形知识点总结 定义:两组对边分别平行的四边形是平行四边形 平行四边形的性质: (1):平行四边形对边相等(即:AB=CD,AD=BC); (2):平行四边形对边平行(即:AB//CD,AD//BC); (3):平行四边形对角相等(即:∠A=∠C,∠B=∠D); (4):平行四边形对角线互相平分(即:O A=OC,OB=OD); 判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法); 2. 一组对边平行且相等的四边形是平行四边形; 3. 两组对边分别相等的四边形是平行四边形; 4. 对角线互相平分的四边形是平行四边形; 5.两组对角分别相等的四边形是平行四边形; 考点1 特殊的平行四边形的性质与判定 1.矩形的定义、性质与判定 (1)矩形的定义:有一个角是直角的平行四边形是矩形。 (2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。 (3)矩形的判定 有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。 温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。 2.菱形的定义、性质与判定 (1)菱形的定义:有一组邻边相等的平行四边形是菱形。 (2)菱形的性质 菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形,对称轴有____条。 (3)菱形的面积

四边形知识点总结大全

四边形知识点总结大全 3.平行四边形的性质: 因为ABCD 是平行四边形 ?????????. 54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( A B D O C

5.矩形的性质: 因为ABCD 是矩形 ?? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( A D B C A D B C O

6. 矩形的判定: ?? ? ?? +边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形 ?? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 8.菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形 ?? ? ??.321 分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( C D B A O C D B A O A D B C A D B C O

10.正方形的判定: ?? ? ? ? ++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD 是正方形. (3)∵ABCD 是矩形 又∵AD=AB ∴四边形ABCD 是正方形 11.等腰梯形的性质: 因为ABCD 是等腰梯形 ?? ? ??.321)对角线相等(; )同一底上的底角相等(两底平行,两腰相等; )( 12.等腰梯形的判定: ??? ??+++对角线相等)梯形(底角相等)梯形(两腰相等 )梯形(321四边形ABCD 是等腰梯形 (3)∵ABCD 是梯形且AD ∥BC ∵AC=BD ∴ABCD 四边形是等腰梯形 A B C D O A B C D O C D A B

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

三角函数图像与性质知识点总结和经典题型

函数图像及性质知识点总结和经典题型 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; x y sin =的递增区间是)(Z k ∈,递减区间是)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是)(Z k ∈, 3.对称轴及对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; tan y x =无对称轴,对称中心为k 2 (,0)π ; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心及零点相联系,对称轴及最值点联系。 4.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是,频率是,相位是?ω+x ,初 相是?;其图象的对称轴是直线)(2 Z k k x ∈+ =+π π?ω,凡是该图象及直线 B y =的交点都是该图象的对称中心。 y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2 ; ②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定 φ即可,例如由函数y =A sin(ωx +φ)+K 最开始及x 轴的交点(最靠近原点)的横坐标为-φ ω (即 令ωx +φ=0,x =-φ ω )确定φ. 5.三角函数的伸缩变化 先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0)???ω >

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

人教版八年级上册数学四边形知识点总结大全

四边形知识点总结大全 1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质: 因为ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行 (ABCD 54321??? ? ? ? ? ?? . 5.矩形的性质: 因为ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( A B C D 1 23 4 A B C D A B D O C A B D O C A D B C A D B C O

6. 矩形的判定: ?? ? ?? +边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321?四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形 ??? ???.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 8.菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形 ??? ???.321 分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( C D A B (1) A B C D O (2)(3) C D B A O C D B A O A D B C A D B C O

平行四边形全章知识点总结 已整理好

平行四边形 【基础知识】 一. 平行四边形 (1)平行四边形性质 1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形. 2)平行四边形的性质(包括边、角、对角线三方面) : A B D O C 边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等; 角:③平行四边形的两组对角分别相等,邻角互补; 对角线:④平行四边形的对角线互相平分. (2)平行四边形判定 1)平行四边形的判定(包括边、角、对角线三方面): A B D O C 边:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; 角:④两组对角分别相等的四边形是平行四边形; 对角线:⑤对角线互相平分的四边形是平行四边形. 2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线. 3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 4)平行线间的距离: 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。 两条平行线间的距离处处相等。 二. 矩形 (1)矩形的性质 1)矩形的定义:有一个角是直角的平行四边形叫做矩形.

B D 2)矩形的性质: ①矩形具有平行四边形的所有性质; ②矩形的四个角都是直角; ③矩形的对角线相等; 3)直角三角形斜边中线定理:(如右图) 直角三角形斜边上的中线等于斜边的一半. . (2)矩形的判定 1)矩形的判定: ①有一个角是直角的平行四边形是矩形; ②对角线相等的平行四边形是矩形; ③有三个角是直角的四边形是矩形. 2)证明一个四边形是矩形的步骤: 方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等; 方法二:若一个四边形中的直角较多,则可证三个角为直角. 三. 菱形 (1)菱形的性质 1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质: ①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式: 菱形的两条对角线的长分别为b a ,,则ab S 2 1 菱形 (2)菱形的判定 1)菱形的判定: ①有一组邻边相等的平行四边形是菱形; ②对角线互相垂直的平行四边形是菱形; ③四条边都相等的四边形是菱形. 2)证明一个四边形是菱形的步骤: 方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

三角函数图像变换顺序详解全面

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2 中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结 知识点讲解 1.“五点法”作图原理 在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是 )0,2(),1,2 3(),0,(),1,2(),0,0(ππ ππ-. 在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是 )1,2(),0,2 3(),1,(),0,2(),1,0(ππ ππ-. 2.

3.)sin(?+=wx A y 与)0,0)(cos(>>+=w A wx A y ?的图像与性质 (1)最小正周期:w T π2= . (2)定义域与值域:)sin(?+=wx A y ,)?+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ???-∈+-=+∈+=+; )(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππ ?ππ? ②对于)?+=wx A y cos(, ? ? ?-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值 当ππ?π? (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(?+=wx A y ,

? ????? ? +==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2 000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为 时,,即当的对称轴为时,,即当??π???ππ? ②对于)?+=wx A y cos(, ??? ?? ? ?+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1 )cos()(0000 00x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当??ππ???π? 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置. (5)单调性. 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ??? ?∈++∈+?∈++-∈+. )](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππ?ππππ? ②对于)?+=wx A y cos(, ? ? ??∈+∈+?∈+-∈+.)](2,2[)](2,2[减区间增区间; Z k k k wx Z k k k wx πππ?πππ? (6)平移与伸缩 由函数x y sin =的图像变换为函数3)3 2sin(2++=π x y 的图像的步骤; 方法一:)3 22 (π π + →+ →x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想 欺负”(相一期一幅)三角函数图像,使之变形. ?????→?=个单位 向左平移的图像3 sin π x y 的图像)3 sin(π + =x y 12 ????????→所有点的横坐标变为原来的 纵坐标不变 的图像)3 2sin(π + =x y 2?????????→所有点的纵坐标变为原来的倍 横坐标不变 的图像)3 2sin(2π +=x y ?????→?个单位 向上平移33)3 2sin(2++=πx y 方法二:)3 22(π π+→+→x x x .先周期变换,后相位变换,再振幅变换. 的图像x y sin =1 2 ????????→所有点的横坐标变为原来的 纵坐标不变 ?????→?=个单位 向左平移的图像6 2sin π x y

四边形知识点总结大全

望牛墩中学四边形知识点总结大全

※1.关于中心对称的两个图形是全等形. ※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三公式: 1ab=ch.(a、b为菱形的对角线 ,c为菱形的边长,h为c边上的1.S菱形 = 2 高) 2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)

3.S 梯形 =2 1(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识: ※1.若n 是多边形的边数,则对角线条数公式是: 2 ) 3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系. 正方形、矩形、菱形和平行四边形四者知识点串联汇总 平行四边形、菱形、矩形、正方形的有关性质 平行四边形、菱形、矩形、正方形的判别方法

一组对边平行且相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 两组对角分别相等的四边形是平行四边形 对角线互相平分的四边形是平行四边形 菱形 一组邻边相等的平行四边形是菱形 四条边都相等的四边形是菱形 对角线互相垂直的平行四边形是菱形 矩形 一个内角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形 正方形 一组邻边相等的矩形是正方形 对角线互相垂直的矩形是正方形 有一个角是直角的菱形是正方形 对角线相等的菱形是正方形 1.延长两腰交于一点 作用:使梯形问题转化为三角形问题。 若是等腰梯形则得到等腰三角形。 2.平移一腰 作用:使梯形问题转化为平行四边形及三角形问题。 3.作高 作用:使梯形问题转化为直角三角形及矩形问题。 4.平移一条对角线 作用:(1)得到平行四边形ACED ,使CE=AD ,BE 等于上、下底的和 (2)S 梯形ABCD =S △DBE 5.当有一腰中点时,连结一个顶点与一腰中点并延长交 一个底的延长线。 ? 作用:可得△ADE ≌△FCE ,所以使S 梯形ABCD =S △ABF 。

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

相关文档
相关文档 最新文档