文档库 最新最全的文档下载
当前位置:文档库 › 高中必修4两角和与差公式及倍角公式练习及答案

高中必修4两角和与差公式及倍角公式练习及答案

高中必修4两角和与差公式及倍角公式练习及答案
高中必修4两角和与差公式及倍角公式练习及答案

两角和与差公式及二倍角公式练习

一、选择题:

1、若)tan(,21tan ),2(53sin βαβπαπα-=<<=

则的值是 A .2 B .-2 C .211 D .-211

2、如果sin cos ,sin cos x x x x =3那么·的值是

A .16

B .15

C .29

D .310

3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-=

+ A .1318 B .322 C .1322 D .-1318

4、若f x x f (sin )cos ,=?? ??

?232则等于 A .-12 B .-32 C .12 D .32

5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是

A .锐角三角形

B .钝角三角形

C .直角三角形

D .等腰三角形

二、填空题:

6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ;

7、若αα23tan ,则=所在象限是 ;

8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ;

9、=??-?+?70tan 65tan 70tan 65tan · 10、化简3232sin cos x x +=

。 三、解答题:

11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+

13、已知求的值。cos ,sin cos 23544θθθ=+

14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x

·cos()αβ+的值。

两角和与差的三角函数及倍角公式答案

一、

1、B

2、D 提示: tan x = 3, 所求122sin x , 用万能公式。

3、B 提示: ()απαββπ+=+--?? ???44

4、A 提示: 把x =π3代入

5、B 提示: ∵cos(A + B ) > 0 ∴角C 为钝角。

二、

6、-22

7、分别用万能公式算出sin cos 22αα及。第二

8、-12 9、-1 10、2326sin()x +π

三、

11、-4 12、2 13、1725 14、-35

两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的 :两角和与差及其二倍角公式知识点及典例 知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )= T( a + 3 ): tan( a + 3 )= 2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2 h 例 2 设 cos a — 2 1 9’ T 2 : tan2 . a sin 2 — 2 3,其中 n 2, n 0, 2,求 cos( a+ 3). sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a = — — , 3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T( a± 3可变形为: tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B 、 tan 3 = 3, 7 11 变式2:已知0 3 . ncos(— 4 4 3 5,sin( 4 )—,求 sin( a + 3 )的值. 13 则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤: (1)确定角所在的范围; 值(要求该三角函数应在角的范围内严格单调 );(3)求出角。 1 1 例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值. (2)求角的某一个三角函数 n a — 6 + A —症 A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 4 3」 B 辺 B. 5 4 q 5 cosA = 5,cosB = 13, B 56 B.65 sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C. 65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( ) C . 0 或 3 4 D ?5 16 65 0或土 3 A . 0 B . ± 3 一.卜 2cos55 — j‘3sin5 5、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5 B. o ■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值? 1 1 变式3:已知tan a = , tan 3 =-,并且a , 3均为锐角,求a +23的值. 7 3 题型4辅助角公式的应用 J 2 2 asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定, 角的值由 b tan —确定)在求最值、化简时起着重要作用。 a 例4求函数f(x) 5sin xcosx ^3cos 2 x —V 3( x R)的单调递增区间? 2 变式4( 1)如果f x sin x 2cos(x )是奇函数,则tan 变式1 :化简求值: 题型2给值求值 2cos10 sin 20 cos20 (2)若方程si nx J3cosx c 有实数解,则c 的取值范围是 ____________________ 题型5公式变形使用 二倍角公式的升幕降幕 三角函数的给值求值问题解决的关键在于把 所求角 用“已知角”表示.

两角和与差的正弦公式的有趣证明

两角和与差的正弦公式的有趣证明 江苏省泰州市朱庄中学曹开清 225300 一、勾股定理的一个证明与两角和的正弦公式 如图1(a),在一个边长为a+b的大正方形中,放置了4个两直角边长分别为a、b,斜边长为c的直角三角形,显然图中小正方形的面积等于c2.现在我们将图1(a)中的 4 个直角三角形移位,拼成图1(b),显然图1(b)中两个较小的正方形的面积之和等于a2+b2.因为图1(a)与图1(b)中空白部分的面积相等,所以有a2+b2=c2,亦即证明了勾股定理. 我觉得这是勾股定理众多证明方法之中,最简单的一个证明了.不仅如此,它其实还有着另外一个用途,并不是每一个人都能发现的.现在将上面两个图“压扁”,成为图2: 如图2(a),原来的正方形变成了一个平行四边形,它的面积是mnsin(α+β),其中m 、n 分别是相邻两个直角三角形斜边的长度.如图2(b),原来的两个正方形变成了两个矩形,其

面积之和是msin α·ncos β+mcos α·nsin β.与上面一样,图2(a)与图2(b)中空白部分的面积相等,所以有mnsin(α+β)=msin α·ncos β+mcos α·nsin β,化简得sin(α+β)=sin αcos β+sin αcos β,这就是三角学中最重要的两角和的正弦公式.在这里,勾股定理和两角和的正弦公式竟来自相同的证明方法! 二、无意中导出两角差的正弦公式 邻居有个小孩,一次拿了他的作业本来问我.题目是这样的:如图,AD ⊥BD ,∠ACD =α,∠ABD =β,BC =a ,则AD =___________. 他的答案是)sin(sin sin βαβ α-?a ,但他的老师给他打了个“×”.我问他是怎么做的?他马上写了起来: 在ΔABC 中,BC =a ,∠ABC =β,∠BAC =α―β,根据正弦定理,得 )sin(sin βαβ-=a AC , 即)sin(sin βαβ-=a AC . 在RtΔACD 中,) sin(sin sin sin βαβαα-=?=a AC AD . 我说对啊!他却说老师的正确答案是:αβcot cot -= a AD .解题过程如下: 在RtΔABD 中,βcot ?=AD BD ;在RtΔACD 中,αcot ?=AD CD , 所以a CD BD AD =-=-)cot (cot αβ, 即α βcot cot -=a AD .

三角函数和差公式练习题

第12课时 三角函数和差公式及辅助角公式 1.函数y=sin (2x+6π)+cos (2x+3 π)的最小正周期和最大值分别为( ) A π,1 B π,2 C 2π,1 D 2π,2 2、)4sin(2cos παα -=-22,则cos α+sin α的值为( ) 3.函数y=sin (x+3π)sin (x+2 π)的最小正周期T 是( ) 4、函数的最小正周期是________ . 5.函数的最大值为 _________________-。 6.已知函数()cos(2)2sin()sin()344 f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域 7.已知函数f (x )=)0,0)(cos()sin(3><<+-+ω??ω?ωπx x 本小题满分12分)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为 .2π (Ⅰ)美洲f (8 π)的值; (Ⅱ)将函数y =f (x )的图象向右平移 6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 8.已知函数。 (Ⅰ)求 的最小正周期: (Ⅱ)求在区间上的最大值和最小值。 2()sin(2)4f x x x π =--sin()cos()26y x x ππ=+-()4cos sin()16f x x x π=+-()f x ()f x ,64ππ??-????

9.已知函数 (1)求 的值; (2)设求的值. 10、已知函数 (1)求的最小正周期和最小值; 11.已知函数f (x )=2cos (x+ 4π)cos (x-4 π)+3sin2x ,求它的值域和最小正周期 12.已知cos ? ???α- π4=14,则sin2α的值为 ( ) A.78 B .-78 C.34 D .-34 13.已知sin ????α-π3=13,则cos ????π6+α的值为 ( ) A.13 B .-13 C.233 D .-233 14.函数f (x )=sin ? ???2x -π4-22sin 2x 的最小正周期是________. 15.y =sin(2x -π3 )-sin2x 的一个单调递增区间是( ) A .[-π6,π3]B .[π12,712π]C .[512π,1312 π] D .[π3,5π6 ] 16.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期; (2)写出函数f (x )的单调递增区间. 18.已知函数 ()cos cos()3f x x x π=?-. (1)求2()3f π的值; (2) 求对称轴和对称中心; (3) 求使1()4f x <成立的x 的取值集合. 1()2sin(),.36f x x x R π=-∈5()4f π106,0,,(3),(32),22135f a f ππαββπ??∈+=+=???? cos()αβ+73()sin()cos(),44f x x x x R ππ=++-∈()f x

两角和与差及倍角公式(一)

两角和与差及倍角公式(一) 【考点导读】 1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系; 2.能运用上述公式进行简单的恒等变换; 3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系; 4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】 1.sin163sin 223sin 253sin313+= ___________. 2. 化简2cos 6sin x x -=_____________ . 3. 若f (sin x )=3-cos2x ,则f (cos x )=___________ . 4.化简: sin sin 21cos cos 2αααα +=++___________ . 【范例解析】 例 .化简:(1) 4221 2cos 2cos 22tan()sin () 44 x x x x ππ-+ -+; (2) (1sin cos )(sin cos ) 22(0)22cos θθ θθθπθ ++-<<+. (1)分析一:降次,切化弦. 解法一 : 原 式 = 2221 (2cos 1)2 2sin() 4cos () 4cos()4 x x x x π ππ----22 (2cos 1)4sin()cos() 44 x x x ππ -= --2cos 22sin(2)2 x x π = -1 cos 22 x =. 分析二:变“复角”为“单角”. 解法二 :原式 221 (2cos 1)21tan 222(sin cos ) 1tan 22 x x x x x -= -?++2 2c o s 2c o s s 2(s i c o s s x x x x x x x =- ?++ 1c o s 2 x =. ( 2 ) 原 式 = 22 (2sin cos 2cos )(sin cos )2 22224cos 2 θ θ θθθθ+-22cos (sin cos )cos cos 2222cos cos 22θθθθ θθθ--?== 12 3+cos2x 22cos()3x π + tan α

两角和与差及二倍角公式经典例题及答案

:两角和与差及其二倍角公式知识点及典例 知识要点: 1、两角和与差的正弦、余弦、正切公式 C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式 2S α:sin2α= ; 2T α:tan2α= ; 2C α:cos2α= = = ; 3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T(α±β)可变形为: tan α±tan β=___________________; tan αtan β= = . 考点自测: 1、已知tan α=4,tan β=3,则tan(α+β)=( ) 711 A 、 711 B 、- 713 C 、 7 13D 、- 2、已知cos ????α-π6+ sin α=4 5 3,则 sin ????α+7π6的值是( ) A .-235 B.235 C .-45 D.4 5 3、在△ABC 中,若cos A =45,cos B =5 13 ,则cos C 的值是( ) A.1665 B.5665 C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( ) A .0 B .±3 C .0或 3 D .0或 ±3 5、三角式2cos55°-3sin5° cos5° 值为( ) A.3 2 B. 3 C .2 D .1 题型训练 题型1 给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]???++. 变式1:化简求值:2cos10sin 20.cos 20 ?? ? - 题型2给值求值 三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如 ()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()() αβαβα=+--, 22αβαβ++=? ,()( ) 222αββ ααβ+=--- 例2 设cos ????α-β2=-19 ,sin ????α2-β=2 3,其中α∈????π2,π,β∈????0,π2,求cos(α+β). 变式2:π3π33π5 0π,cos(),sin(),4445413 βααβ<< <<-=+=已知求sin(α+β)的值. 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。 例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-1 7 ,求 2α-β的值. 变式3:已知tan α= 17,tan β= 1 3 ,并且α,β 均为锐角,求α+2β的值. 题型4辅助角公式的应用 ()sin cos a x b x x θ+= + (其中θ角所在的象限由a , b 的符号确定,θ角的值由tan b a θ= 确定) 在求最值、化简时起着重要作用。 例4求函数25f (x )sin xcos x x =-x R )∈的单调递增区间? 变式4(1)如果()()sin 2cos()f x x x ??=+++是奇函数,则tan ?= ; (2)若方程sin x x c =有实数解,则c 的取值范围是___________. 题型5公式变形使用 二倍角公式的升幂降幂

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

两角和与差的正弦余弦正切公式练习题

两角和差的正弦余弦正切公式练习题 知 识 梳 理 1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(αβ)=cos_αcos_β±sin_αsin_β. tan(α±β)=tan α±tan β 1tan αtan β. 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α 1-tan 2α . 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1tan_αtan_β). (2)cos 2α= 1+cos 2α2,sin 2α=1-cos 2α2 . (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α= 2sin ? ?? ?? α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+≠ππβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2

两角和与差的正切公式

第4课时 两角和与差的正切公式 【教学目标】 1、掌握用同角三角函数关系式推导出两角和与差的正切公式. 2、会用两角和与差的正切公式求非特殊角的正切值. 3、应用两角和与差的正切公式进行计算、化简、证明. 【教学重点与难点】 重点:两角和与差的正切公式的推导;两角和、差公式的灵活应用. 难点:两角和与差的正切公式的逆向使用;实际问题抽象为数学问题,恰当寻找解题思维的起点. 【教学过程】 导入 我们已经学习了正弦公式,余弦公式,本节课我们一起学习正切公式.这样对于一些非特殊角的正切,我们也能计算,如tan75?. 在推导正切公式之前,能否用已学知识来计算tan75?的值. 问题引入 两角和、差的正弦公式: =+)sin(βα________________________,=-)sin(βα_________________________ 两角和、差的余弦公式: =+)cos(βα_______________________,=-)cos(βα_______________________ 构建新知 推导过程 sin() tan()cos() αβαβαβ++= + sin cos cos sin cos cos sin sin αβαβ αβαβ += - 分子分母同时除以cos cos αβ,得 t a n t a n t a n ()1t a n t a n αβαβαβ++=-

两角和、差的正切公式: =+)tan(βα________ tan tan 1tan tan αβ αβ +-________________________ 用β-代替β,就可得到 =-)tan(βα___________ tan tan 1tan tan αβ αβ -+_____________________ 例题分析 例1 求值 (1)0 75tan ;(2)0 00043 tan 17tan 143tan 17tan -+ ;(3) 00 75tan 175tan 1-+ 解 (1)0 tan 75tan(4530)=?+? tan 45tan 301tan 45tan 30?+? = -?? = (2)00 00 tan17tan 43tan(1743)1tan17tan 43+=?+?= - (3)00 1tan 75tan 45tan 75tan(4575)1tan 751tan 45tan 75+?+?==?+?=--?? 特殊角的三角函数值 例2 已知7 tan ,5)tan(== -ββα,求αtan . 解 []t a n t a n ()ααββ=-+ tan()tan 1tan()tan αββ αββ -+= -- 1=

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

两角和与差的正弦余弦正切公式教学设计

《两角和与差的正弦、余弦、正切公式》教学设计 一、教学分析 1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等. 2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义. 3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 二、三维目标 1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力. 2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.

两角和与差的正弦公式教案(高教版拓展模块)

1.1.2 两角和与差的正弦公式 一、教学目标 ⒈掌握两角和与差的正弦公式的推导过程; ⒉培养学生利用公式求值、化简的分析、转化、推理能力; ⒊发展学生的正、逆向思维能力,构建良好的思维品质。 二、教学重、难点 1. 教学重点:两角和与差的正弦公式的应用; 2. 教学难点:公式的的推导及逆用 三、教学设想: (一)复习式导入: 大家首先回顾一下两角和与差的余弦公式: ()cos cos cos sin sin αβαβαβ+=-; ()cos cos cos sin sin αβαβαβ-=+. 这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? (二)探讨过程: 我们根据两角差的余弦公式可以得到: cos()cos cos sin sin sin 222π π π αααα-=+= 提示:我们可以利用上式实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗? 让学生动手完成两角和与差正弦公式的推导. ()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ??????????+=-+=-+=-+- ? ? ??????????????? sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ -=+-=-+-=-???? 由此得到两角和与差的正弦公式: ()sin sin cos cos sin αβαβαβ+=+ ()sin sin cos cos sin αβαβαβ-=- 让学生观察并记忆两角和与差正弦公式,并思考与两角和与差的余弦公式的联系与区别。 (三)例题讲解 例1、利用和、差角正弦公式求sin 75,sin15的值. 解:分析:把75,15构造成两个特殊角的和、差. 12sin 75sin(3045)sin 30cos 45cos30sin 452=+=+=?+=

两角和、差及倍角公式(一)

两角和、差及倍角公式(一) 【考纲解读】 1. 掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系; 2. 能运用上述公式进行简单的恒等变换. 【基础回顾】 1. 和、差角公式: sin()______________________αβ±=; cos()______________________αβ±=; tan()______________________αβ±=. 2. 二倍角公式: sin 2______________________α=; cos 2_____________________________________________α===; tan 2______________________α=. 3. 半角公式: =αsin _________________; _________________________________________________cos ===α; ________________tan =α. 4.降幂公式: 2sin _________________α=; 2cos _________________α=. 5.辅助角公式: sin cos ______________a x b x +=, (其中sin ______cos ______??==,). 【基础练习】

1. 已知),,2( ,53cos ππαα∈-= 的值求)4cos(απ-。 2. 已知)3 cos(,1715sin πθθθ-= 是第二象限角,求 3. 利用两角和差公式求下列各式的值 (1)?15sin (2)?75cos (3) ?15tan 4. 的值求已知)3tan(,3tan παα+ = 5.求下列各式的值: (1)??+??18sin 72cos 18cos 72sin (2)??+??12sin 72sin 12cos 72cos 6.化归:))tan()(os A )sin(A (?ω?ω?ω+++x x c x 、 、即化归成 (1) =-x x sin 23cos 21 (2)=+x x cos sin 3 (3)=-)sin (cos 2x x (4)=-x x sin 6cos 2 【高考例题】 4. (04重庆)sin163sin 223sin 253sin313_____??+??=. 5. (05北京)在ABC ?中,已知2sin cos sin A B C =,那么ABC ?是___三角形.

两角和与差的正切公式

两角和与差的正切公式 时间:2017年12月7日授课班级:高一(16)班授课教师:叶桂芬一、教学目标 知识与技能 1.会有两角和与差的正弦、余弦公式推导其正切公式 2.会用两角和与差的正切公式求非特殊角的正切值. 3.应用两角和与差的正切公式进行计算、对1的灵活运用. 过程与方法: 1.通过公式的推导,提高学生恒等变形能力和逻辑推理能力; 2.通过公式的灵活运用,培养学生的数学思想方法. 情感、态度、价值观 1.使学生体会“联想转化、数形结合、分类讨论”的数学思想; 2.培养学生大胆猜想、敢于探索、勇于置疑、严谨、求实的科学态度. 二、教学重点、难点 1.重点:两角和与差的正切公式推导及其运用 2.难点:两角和与差的正切公式的运用。 三、课时安排 1课时 四、教学流程 1、复习回顾: β α αsin β β α C + = cos(- sin cos ) cos α+ β β αsin α α β β C cos(+ = - ) cos cos sin β α-

βαβαβαsin cos cos sin )sin(+=+ βα+S βαβαβαsin cos cos sin )sin(-=- βα-S 2、探究新知(推导过程) (1) 在两角和与差的正弦,余弦公式的基础上,你能用αtan ,βtan 表示出 )tan(βα+和)tan(βα-吗? (2) 利用所学的两角和与差的正弦,余弦公式,对比分析公式 βα+C ,βα-C ,βα+S ,βα-S ,能否推导出)t an( βα+和)tan(βα-?其中βα,应该满足什么条件? 师生讨论: 当0)cos(≠+βα时,β αβαβ αβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin()tan( -+=++=+ 若0cos cos ≠βα,即0cos ≠α且0cos ≠β时,分子分母同除以βαcos cos 得β αβ αβαtan tan 1tan tan )tan( -+=+ 根据角α,β的任意性,在上面的式子中,用-β代替β,则有 β αβ αβαβαβαtan tan 1tan tan )tan(tan 1)tan(tan )tan(+-=---+= - 由此推得两角和与差的正切公式。简记为“βα+T ,βα-T ” βαβαβαtan tan 1tan tan )tan(-+= + β αβ αβαtan tan 1tan tan )tan(+-=- 其中βα,应该满足什么条件?还依然是任意角吗? 由推导过程可以知道:) (2 ) (2 ) (2Z k k Z k k Z k k ∈+ ≠±∈+≠∈+ ≠π πβαπ πβπ πα

三角函数的两角及差与倍角公式练习题.doc

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若 sin 3 ( 2 ), tan 1 ,则 tan( ) 的值是 5 2 A .2 B .- 2 2 2 C . D . 11 11 2、如果 sin x 3cosx, 那么 sin x · cosx 的值是 1 1 2 3 A . B . C . D . 6 5 9 10 3、如果 tan( ) 2 , tan( ) 1 ,那么 tan( )的值是 5 4 4 4 13 3 13 13 A . B . C . D . 18 22 22 18 4、若 f (sin x) cos2x, 则 f 3 等于 2 1 3 1 3 A . B . C . D . 2 2 2 2 5、在 ABC 中, sin A · sin B cosA · cosB, 则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6 、角 终边过点 (4,3) ,角 终边过点 ( 7, 1),则 sin() ; 7 、若 tan 3,则 2 所在象限是 ; 8 、已知 cot 4 3,则 2 sin cos ; cos 2 sin 9 、 tan 65 tan 70 tan65·tan 70 ; 10、 化简 3sin 2x 3 cos2x 。 三、解答题: 11、求 sec100 tan 240·csc100 的值。

12、已知3 ,求(1 tan )(1 tan )的值。4 13、已知cos2 3 , 求 sin 4 cos4的值。 5 14、已知tan, tan 是方程x 2 3x 5 0的两个根, 求 sin 2 ( ) 2 sin( ) ·cos( ) 的值。

两角和与差及二倍角公式讲义

两角和与差及二倍角公式 一.【复习要求】 1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联. 2.掌握二倍角的正弦、余弦、正切公式. 2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明. 二、【知识回顾】 1.两角和与差的三角函数 sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ; 2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。 sin 2α= ; cos2α= = = tan 2α= 。 3.降幂公式 2 sin α= ; 2cos α= . 注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用 4.辅助角公式 证明: )sin cos x x y x x =+= sin sin cos )x x ??+ )x ?+ 其中, cos ?= sin ?= tan b a ?= 且角?终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想 如:sin cos αα+= ;sin cos αα-= 。 5.公式的使用技巧 (1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++

(2)“1”的代换:22 sin cos 1αα+=,sin 1,tan 12 4 π π == (3)收缩代换:sin cos y x x =+ =)x ?+, (其中,a b 不能同时为0) (4)公式的变形: tan tan tan()1tan tan αβ αβαβ ++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++ tan tan tan()1tan tan αβ αβαβ --= +→tan()tan tan tan()tan tan αβαβαβαβ-=--- 如:tan 95tan 353tan 95tan 35--= 。 tan 70tan 503tan 70tan 50+-= 。 (5)角的变换(拆角与配角技巧) 22 α α=? , ()ααββ=+-, ()αββα=--, 1[()()]2 ααβαβ= ++-, ()4 4 ααπ π =+ - , ()4 24π π π αα+= --,1 [()()]2 βαβαβ=+--, (6)二倍角公式的逆用及常见变形 二倍角的正用、逆用、变形应用是公式的三种主要使用方法,特别是二倍角的余弦公式,它在求值、化简、证明中有广泛的应用,解题时应根据不同的需要,灵活选取。 ①sin 2sin cos 22 α α α=;②2 2 2 2 cos cos sin 12sin 2cos 12 2 2 2 α α α α α=-=-=- ③2 2tan 2tan 1tan 2 α αα = -;④21sin 2(sin cos )ααα±=±;⑤22(sin cos )(sin cos )2αααα++-= 5.三角函数式的化简 (1)化简方法:①直接应用公式进行降次、消项;②化切为弦,异名化同名,异角化同角;③ 三 角公式的逆用等。④降幂或升幂 (2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少; ④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 6.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变 换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于 “变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,关键也在于“变角”,把所求角用含已知角的 式子表示,由所得的函数值结合所求角的范围或函数的单调性求得角。 7.三角等式的证明 (1)三角恒等式的证明

两角和与差的正切公式教案

课题:探究两角和与差的正切 一、教学目标 知识与方法 ①会有两角和与差的正弦、余弦公式推导其正切公式,并运用其解决简单的化简问题。 过程目标: ①通过公式的推导,提高学生恒等变形能力和逻辑推理能力; ②通过公式的灵活运用,培养学生的数学思想方法. 情感、态度、价值观目标 ①使学生体会“联想转化、数形结合、分类讨论”的数学思想; ②培养学生大胆猜想、敢于探索、勇于置疑、严谨、求实的科学态度. 二、教学重点、难点 两角和与差的正切公式推导及其运用,公式的逆用。 三、课时安排 1课时 四、教学流程 1、复习回顾: βα+C βα-C βα+S βα-S 可用多种形式让学生回顾(提问,默写,填空等形式) 2、讲解新课: 1 在两角和与差的正弦,余弦公式的基础上,你能用αtan ,βtan 表示出)tan(βα+和)tan(βα-吗? 如)3045tan(15tan -=,它的值能否用 45tan , 30tan 去计算? (让学生带着问题展开后面的讨论) 2 利用所学的两角和与差的正弦,余弦公式,对比分析公式 βα+C ,βα-C ,βα+S ,βα-S ,能否推导出)t an( βα+和)tan(βα-?其中βα,应该满

足什么条件? 师生讨论: 当0)cos(≠+βα时,βαβαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin()tan(-+=++=+ 若0cos cos ≠βα,即0cos ≠α且0cos ≠β时,分子分母同除以βαcos cos 得β αβαβαtan tan 1tan tan )tan(-+=+ 根据角α,β的任意性,在上面的式子中,用-β代替β,则有 β αβαβαβαβαtan tan 1tan tan )tan(tan 1)tan(tan )tan(+-=---+=- 由此推得两角和与差的正切公式。简记为“βα+T ,βα-T ” βαβαβαtan tan 1tan tan )tan(-+=+ β αβαβαtan tan 1tan tan )tan(+-=- 其中βα,应该满足什么条件?还依然是任意角吗?给学生时间思考。 由推导过程可以知道:) (2)(2 )(2Z k k Z k k Z k k ∈+≠±∈+≠∈+ ≠π πβαπ πβππα 这样才能保证αtan ,βtan 及)tan( βα±都有意义。 3 师生共同分析观察公式βα+T ,βα-T 的结构特征与正、余弦公式有什么不同? 3、 例题讲解 例1 已知2tan =α,31tan -=β,其中20πα<<, πβπ<<2 (1)求)tan( βα- (2)求βα+的值 解(1)因为2tan =α,3 1tan -=β, 所以732131 2tan tan 1tan tan )tan(=-+ =+-=-βαβαβα

相关文档
相关文档 最新文档