文档库 最新最全的文档下载
当前位置:文档库 › 车库等效均布荷载取值的分析与建议

车库等效均布荷载取值的分析与建议

车库等效均布荷载取值的分析与建议
车库等效均布荷载取值的分析与建议

第40卷增刊建筑结构 2010年4月车库等效均布荷载取值的分析与建议

周宁峰,孟中朝

(路劲地产集团有限公司,苏州 215123)

[摘要]车辆局部荷载作用下,对各类构件采用同一化的等效均布荷载有时过于简化,于安全性与经济性不利。

通过分析后认为,在实际电算时,对于楼板、梁柱、基础、抗震设计应采用不同数值,并宜分别对应于采用满布(投影)荷载的相应倍数。

[关键词]等效均布荷载;跨度效应;板形效应;满布荷载

Analysis and advice to design value of vehicle equivalent uniform load

Zhou Ningfeng,Meng Zhongchao

(RoadKing Properties Holdings Limited, Suzhou 215123,China)

Abstract: Under ‘local loading’ of vehicle, it may be too rough to use same ‘equivalent uniform load’ on different types of structural elements instead of ‘local load’. It’s harmful to the safety and economy. With analysis, it is proposed that different ‘equivalent uniform load’ should be used at different structural element such as slab, beam, column, foundation and anti-seismic calculation.

Keywords: equivalent uniform load; span effect; shape effect; packed distribution load

0 引言

《建筑结构荷载规范》(GB50009—2001)第4.1.1条规定了普通客车、消防车楼面荷载取值,并在第4.1.2条对梁等构件的活载折减方法进行了表述。但是实际工程中,设计人员对此经常有模糊的认识,甚至错误的做法,一方面可能对结构设计的安全性造成威胁,另一方面又可能使梁、竖向构件及基础的设计出现浪费。以下通过计算比较,给出建议的取值方法,以期满足适用广泛性和计算平滑性要求,并便于设计者理解和电算时采用。

1 板的等效均布荷载及合理换算方法

规范4.1.1条将楼盖分成“板跨不小于2m的单向板”和“板跨不小于6m×6m的双向板”两类。由于两个等效荷载数值相差40%以上,并未提及在实际工程中应用最为广泛的板跨小于6m的双向板以及跨度大于2m的单向板,造成设计人员往往无所适从,或者凭理解随意取值的情况,因此完善这部分的取值方法显得十分迫切。

规范附录B规定,“楼面的等效均布活荷载,应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定”。对于楼板而言,已经明确,这种等效专指“弯矩”内力相同。由于车辆轮压是局部作用,从微观角度分析,局部作用区域下的楼板在受力时通过弯、剪、扭向四周传递效应,如果没有约束则继续向四周扩散效应,相反,如果在某方向遇到约束,则在该方向产生弯矩,并同时减弱了向其他方向的扩散。

1.1 局部荷载的跨度效应

规范条文说明上要求的消防车排布情况见图1。

先讨论板的跨度效应。限于篇幅,只讨论荷载作用面的长边平行于板跨的情形。图2左为2m跨的单向板,受消防车轮压每个60kN,作用在0.2m×0.6m的范围内。按照规范附录B方法计算:板厚h加两倍垫层厚2s共计0.2m,有b cx=0.4m,b cy=0.8m,l=2.0m,b=b cx+0.7×l=1.8m,由于e=1.4m<b,因此取b′=(1.8+1.4)/2=1.6m。经计算M x=31.2kN·m(考虑动力系数1.3),则q e=8×31.2/4/1.6=30.84kN/m2。

类似的,如果单向板的跨度增大到3.0m,如图2之中、右所示,则b=2/3×0.8+0.73×3=2.723m,b′=(2.723+1.4)/2=2.06m,经计算,组合一M x=32.18kN·m (考虑动力系数1.3),q e=8×32.18/9/2.06=13.89kN/m2,同样,组合二的q e=8×30.29/9/2.06=13.07kN/m2,综合取13.78kN/m2,随着板跨的继续增大,q e仍会下降。

86

可见,随着板跨的增大,板的有效分布宽度明显增大,降低了板控制截面的弯曲效应。车辆等效均布荷载随板跨增大而降低,这种现象可称之为板的“跨度效应”。

(a)q e=24.37kN/m2(b)组合一(c)组合二

图1 消防车排布示意图2 不同跨度单向板的消防车排布

为此,本文认为单向板的等效均布荷载可以具体按下式计算:

q e=K d×k m×q e0(1)式中K d为动力系数;q e0为消防车的“满布荷载”,按照图1排列时的总重的平均投影值计取,对于300kN 的消防车可取q e0=9.5 kN/m2;k m为跨度系数,可按表1取值。

消防车轮压作用下板的等效均布荷载值跨度系数k m 表1 l/m ≤2 2.5 3 3.5 4 4.5 5 5.5≥6

k m 2.83 2.68 2.53 2.38 2.23 2.08 1.92 1.78 1.62注:l为板格的短边跨度。

例如,对于2m跨的单向板,300kN消防车等效均布荷载q e=K d×k m×q e0=1.3×2.83×9.5=35kN/m2,对于3.3m的单向板等效均布荷载,q e0=1.3×2.44×9.5=30.1 kN/m2。

1.2 双向板的板形效应

对于双向板,一般将短边尺寸作为板的跨度,但是长边的尺寸大小对等效荷载的取值也有明显影响,比如四边简支的2m×4m板块和2m×2m板块,两者跨度相同,各自板中受一个轮压局部荷载,按照《建筑结构静力计算手册》(第二版)[4]表4-29,前者a x/l x=0.4/2=0.2,a y/l y=0.8/4=0.2,则M x=0.2116×0.4×0.8×(1.3×60/0.4/0.8)=16.50kN·m,M y=10.95kN·m,再查表4-16,得q ex=16.5/4/0.0965=42.7kN/m2,q ey=157 kN/m2。后者板块q ex=69.4 kN/m2。

从上面对比可以得到以下三个规律性结论:

(1)相同跨度的双向板,q e大于单向板,原因是双向板支座对轮压局部荷载的约束作用,弱于对均布荷载的约束作用。

(2)相同跨度的双向板,随长短边长比l y/l x的逐步减小,其等效均布荷载逐步增大,为了准确反映这一规律,引进“板形系数”k s,取值可见表2.

板形系数(n为长短边长比)表2

n 2 1.8 1.6 1.4 1.3 1.2 1.1 1.0 k s 1.00 1.05 1.13 1.25 1.34 1.44 1.57 1.78

因此,长短边长相近的双向板,车辆等效均布荷载可按下式计算:

q e=K d×k m×K S×q e0(2)(3)双向板的等效均布荷载是以短边弯矩相等为原则确定的,但是从上面计算可以看到,与长边弯矩相对应的等效均布荷载明显大于短边等效均布荷载,如果片面地按照前者进行计算、配筋,则长边有可能出现承载力不足的问题。当然考虑板的塑性内力重分布因素,板未必会有安全隐患,但是从理论分析的角度,出于对板的抗裂考虑,同时为了简化,本文建议长边的弯矩设计值不宜小于短边弯矩设计值的2/3,而不再计算长边的等效均布荷载。

例如,对于图3所示的阴影处的双向板,3300×4000区格,按式(2)计算,查表1得k m=2.44,查表2得K S=1.43,取K d=1.3,q e0=9.5,则q e=K d×k m×K S×q e0=43.09kN/m2。

图3 双向板(剖线部分)

2 梁、柱、基础的等效均布荷载计算

软件中对于梁、柱、基础等构件,其内力计算是依附于板而进行的,由上述分析可知,不同跨度、不同板形楼板的等效荷载相互间相差甚多,由于梁等构件的“等效均布荷载”是以梁等构件自身内力等效的原则确定的,所以将梁、柱的荷载机械地直接沿用板的等效均布荷载而计算,是一种概念性错误。

2.1 梁的等效均布荷载

梁的等效原则有支座弯矩、跨中弯矩和剪力三种,一般由剪力等效控制。按照文[2],建议主、次梁采用“实际分布情况简化的集中活荷载”进行内力分析,为简化电算、估算,笔者建议也可按下式采用:

q be=K b×q e0(3)式中,K b为梁的等效系数,主梁跨度为8m时取为2.6,跨度为6m时为3.2,次梁跨度为8m时取为2.8,跨度

87

为6m时为3.2,其他可内插采用。

2.2 柱的等效均布荷载

柱的等效原则有轴力等效、X向柱底弯矩等效、Y 向柱底弯矩等效三种。参考文[2]成果,建议柱采用“实际分布情况简化的集中活荷载”,也即本文前述的“满布荷载”q e0进行内力分析,为简化电算、便于估算,笔者建议对于消防车荷载也可按下式采用:

q ce=K c×q e0(4)其中K c为柱的等效系数,跨度为8m时取为2.3,跨度为6m时为3.0,其他可内插采用。

2.3 基础的等效分布荷载及抗震重力代表值的取用

基础的等效分布荷载及抗震计算时的重力代表值的取用均应直接采用q e0进行设计。以上分析是以消防车荷载为例进行的,对于普通客车,可以类比采用。但应注意,规范说明中指出这种等效荷载的内容,不仅含车辆的自重和载重,还包括“其他必要的维修设备荷载”、以及必要的人流等,因此对于车库而言,以上各类构件的取值均不应小于2.5 kN/m2。

3 结语

综上所述,由于局部荷载作用下,建筑物各个构件,以及构件的各个部位的受力特征与理想均布荷载作用下的效应是不同的,所以,等效均布荷载是一种简化,是一种近似。既然如此,等效理应有其适用范围。通过上面的分析,笔者建议在实际电算时,对于楼板采用式(1)或(2)的数值,对于梁采用式(3)数值,对于柱采用式(4)计算,对于基础、抗震设计,统一采用q e0进行设计,也就是一个模型计算四次,在计算工作量可控的同时,能够满足安全、经济的需要。

参考文献

[1] 朱炳寅. 汽车等效均布荷载的简化计算[J]. 建筑结构·技术通讯,,

2009,39(3):17-18.

[2] 卞文. 大型车辆设计荷载取值探讨[J]. 结构工程师,2004,20(6):

1-5.

[3] 吴腾,葛耀君,熊洁. 现行国内外公路桥梁汽车荷载及其响应的比较

[J]. 结构工程师,2008,24(5):130-136.

[4] 《建筑结构静力计算手册》编写组. 建筑结构静力计算手册(第二

版)[M]. 中国建筑工业出版社,1998.

[5] 周军文,鲁良辉. 无梁楼盖地下室消防车活载取值的探讨[J]. 四川建

筑,2008,28(6):119-120.

[6] 蔡健,何春保,沈建华,等. 局部荷载作用下有梁矩形板的弹性分

析[J]. 力学与实践,2004,26(6):45-49.

[7] 杨宏. 消防车等效均布荷载的计算[J]. 四川建筑,2008,28(3):

92-94,96.

作者简介:周宁峰,结构总工程师,一级注册结构工程师,高级工程师,Email:daming30@https://www.wendangku.net/doc/a76196286.html,。

___________________________________________________________________________________________

(上接第15页)

为了解决现场的施工困难,首先,将框架梁在与型钢柱交接处偏心搁置,梁边贴柱边,梁的两排钢筋部分由型钢的侧面穿过,不与型钢接触,躲过型钢,如图5所示的型钢梁柱节点构造。其次,柱子的箍筋除最外侧箍筋外,内侧矩形箍筋改用两个开口矩形箍筋搭接焊接。

图5 型钢梁柱节点构造

3.2.2其他竖向构件

裙房屋面上一层的框架柱和剪力墙,根据前面分析比较的计算结果显示,与其他类似部位相比,这些部位的配筋都有不同程度的增加。因此,对这些竖向

(HRB335级)钢筋,同时适当提高框架柱的配筋率;剪力墙的边缘构件全部按照约束边缘构件要求设置。同时,裙房屋面上一层的抗震构件的抗震等级和下一层的抗震等级相同;裙房屋面上二层的抗震等级再根据各个塔楼的高度单独设置。

4 结语

(1)在条件允许的情况下,多塔结构尽量避免各个单塔高度相差过大,尽量采用等高的单塔,以减少地震剪力,减少塔楼根部的地震剪力集中。

(2)通过设置型钢混凝土柱,可以很好地增加结构的延性,尤其是在多塔裙房屋面部位的延性。

(3)采用钢梁+混凝土板组合结构,对使用荷载较大的大跨度屋盖,是一种方便有效的方法。

作者简介:张速,本科,高级工程师,Email:zhangsu@https://www.wendangku.net/doc/a76196286.html,。

88

附录C:楼面等效均布活荷载的确定方法

附录C 楼面等效均布活荷载的确定方法 C.0.1 楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定。 C.0.2 连续梁、板的等效均布活荷载,可按单跨简支计算。但计算内力时,仍应按连续考虑。 C.0.3 由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。 C.0.4 单向板上局部荷载(包括集中荷载)的等效均布活荷载可按下列规定计算: 1,等效均布活荷载q c 可按下式计算: 2 max 8bl M q c = (C.0.4-1) 式中:l ——板的跨度; b ——板上荷载的有效分布宽度,按本附录C.0.5确定; M max ——简支单向板的绝对最大弯矩,按设备的最不利布置确定。 2,计算M max 时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上由操作荷载引起的弯矩。 C.0.5 单向板上局部荷载的有效分布宽度b ,可按下列规定计算: 1,当局部荷载作用面的长边平行于板跨时,简支板上荷载的有效分布宽度b 为(图C.0.5-1): 图C.0.5-1 简支板上局部荷载的有效分布宽度 (荷载作用面的长边平行于板跨) 当b cx ≥b cy ,b cy ≤0.6l ,b cx ≤l 时: l b b cy 7.0+= (C.0.5-1) 当b cx ≥b cy ,0.6l <b cy ≤l ,b cx ≤l 时: l b b cy 94.06.0+= (C.0.5-2) 2,当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度b 按下列规定确定(图C.0.5-2):

汽车等效均布荷载的简化计算(可编辑)

汽车等效均布荷载的简化计算 Building Structure 设计交流 汽车等效均布荷载的简化计算 朱炳寅/中国建筑设计研究院 汽车(消防车)轮压以其荷载数值大、作用位置不确定够厚,轮压扩散足够充分时,汽车轮压荷载可按均布荷载考 及一般作用时间较短而倍受结构设计者关注。结构设计的关虑。当覆土层厚度足够时,可按汽车在合理投影面积范围内 键问题在于汽车轮压等效均布荷载数值的确定。轮压荷载作的平均荷重计算汽车的轮压荷载,见表2。 用位置的不确定性,给等效均布荷载的确定带来了一定难覆土厚度足够时消防车的荷载表2 度,一般情况下,要精确计算轮压的等效均布荷载是比较困汽车类型 100kN 150kN 200kN 300kN 550kN 2 难的,且从工程设计角度看,也没有必要。“等效”和“折荷载/kN/m 4.3 6.3 8.5 11.3 11.4 覆土厚度最小值hmin/m 2.5 2.4 2.4 2.3 2.6 减”的本质都是“近似”,且其次数越多,误差就越大。本 文推荐满足工程设计精度需要的汽车轮压等效均布荷载的

足够的覆土厚度指:汽车轮压通过土层的扩散、交替和 简化计算方法,供读者参考。重叠,达到在某一平面近似均匀分布时的覆土层厚度。足够 1 影响等效均布荷载的主要因素的覆土厚度数值应根据工程经验确定,当无可靠设计经验 1.1跨度时,可按后轴轮压的扩散面积不小于按荷重比例划分的汽车 等效均布荷载的数值与构件的跨度有直接的关系,在相投影面积(图 1)确定相应的覆土厚度为 hmin ,当实际覆土 同等级的汽车轮压作用下,板的跨度越小,则等效均布荷载厚度 h≥hmin 时,可认为覆土厚度足够。 的数值越大;而板的跨度越大,则等效均布荷载数值越小。以300kN级汽车为例(图1): 结构设计中应注意“等效均布荷载”及“效应相等”的特点,考虑汽车合理间距(每侧600mm)后汽车的投影面积为 (8+0.6 )×(2.5+0.6 )=26.66m2 汽车轮压荷载具有荷载作用位置变化的特性,是移动的活荷 载,其最大效应把握困难,且效应类型(弯矩、剪力等)不后轴轮压占全车重量的比例为 240/300=0.8 同,等效均布荷载的数值也不相同,等效的过程就是一次近取后轴轮压的扩散面积为 0.8×26.66=21.33m2 似的过程。根据后轴轮压的扩散面积不小于按荷重比例划分的汽 1.2 动力系数车投影面积有:

附录B 楼面等效均布活荷载的确定方法

附录B 楼面等效均布活荷载的确定方法 B.0.1楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定。 B.0.2连续梁、板的等效均布活荷载,可按单跨简支计算。但计算内力时,仍应按连续考虑。 B.0.3由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。 B.0.4单向板上局部荷载(包括集中荷载)的等效均布活荷载qe,可按下式计算: 式中l—板的跨度; b—板上荷载的有效分布宽度,按本附录B.0.5 确定; Mmax—简支单向板的绝对最大弯矩,按设备的最不利布置确定。 计算Mmax 时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上,由操作荷载引起的弯矩。 B.0.5单向板上局部荷载的有效分布宽b,可按下列规定计算: 1 当局部荷载作用面的长边平行于板跨时,简支板上荷载的有效分布宽度b 为:(图B.0.5-1)

2 当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度b 为(图B.0.5-2): 式中l—板的跨度; bcx—荷载作用面平行于板跨的计算宽度; bcy—荷载作用面垂直于板跨的计算宽度; 式中btx—荷载作用面平行于板跨的宽度; bty—荷载作用面垂直于板跨的宽度; s—垫层厚度; h—板的厚度。

3 当局部荷载作用在板的非支承边附近,即时(图B.0.5-1),荷载的有效分布宽度应予折减,可按下式计算: 式中b '—折减后的有效分布宽度; d—荷载作用面中心至非支承边的距离。 4 当两个局部荷载相邻而e

车库等效均布荷载取值的分析与建议

第40卷增刊建筑结构 2010年4月车库等效均布荷载取值的分析与建议 周宁峰,孟中朝 (路劲地产集团有限公司,苏州 215123) [摘要]车辆局部荷载作用下,对各类构件采用同一化的等效均布荷载有时过于简化,于安全性与经济性不利。 通过分析后认为,在实际电算时,对于楼板、梁柱、基础、抗震设计应采用不同数值,并宜分别对应于采用满布(投影)荷载的相应倍数。 [关键词]等效均布荷载;跨度效应;板形效应;满布荷载 Analysis and advice to design value of vehicle equivalent uniform load Zhou Ningfeng,Meng Zhongchao (RoadKing Properties Holdings Limited, Suzhou 215123,China) Abstract: Under ‘local loading’ of vehicle, it may be too rough to use same ‘equivalent uniform load’ on different types of structural elements instead of ‘local load’. It’s harmful to the safety and economy. With analysis, it is proposed that different ‘equivalent uniform load’ should be used at different structural element such as slab, beam, column, foundation and anti-seismic calculation. Keywords: equivalent uniform load; span effect; shape effect; packed distribution load 0 引言 《建筑结构荷载规范》(GB50009—2001)第4.1.1条规定了普通客车、消防车楼面荷载取值,并在第4.1.2条对梁等构件的活载折减方法进行了表述。但是实际工程中,设计人员对此经常有模糊的认识,甚至错误的做法,一方面可能对结构设计的安全性造成威胁,另一方面又可能使梁、竖向构件及基础的设计出现浪费。以下通过计算比较,给出建议的取值方法,以期满足适用广泛性和计算平滑性要求,并便于设计者理解和电算时采用。 1 板的等效均布荷载及合理换算方法 规范4.1.1条将楼盖分成“板跨不小于2m的单向板”和“板跨不小于6m×6m的双向板”两类。由于两个等效荷载数值相差40%以上,并未提及在实际工程中应用最为广泛的板跨小于6m的双向板以及跨度大于2m的单向板,造成设计人员往往无所适从,或者凭理解随意取值的情况,因此完善这部分的取值方法显得十分迫切。 规范附录B规定,“楼面的等效均布活荷载,应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定”。对于楼板而言,已经明确,这种等效专指“弯矩”内力相同。由于车辆轮压是局部作用,从微观角度分析,局部作用区域下的楼板在受力时通过弯、剪、扭向四周传递效应,如果没有约束则继续向四周扩散效应,相反,如果在某方向遇到约束,则在该方向产生弯矩,并同时减弱了向其他方向的扩散。 1.1 局部荷载的跨度效应 规范条文说明上要求的消防车排布情况见图1。 先讨论板的跨度效应。限于篇幅,只讨论荷载作用面的长边平行于板跨的情形。图2左为2m跨的单向板,受消防车轮压每个60kN,作用在0.2m×0.6m的范围内。按照规范附录B方法计算:板厚h加两倍垫层厚2s共计0.2m,有b cx=0.4m,b cy=0.8m,l=2.0m,b=b cx+0.7×l=1.8m,由于e=1.4m<b,因此取b′=(1.8+1.4)/2=1.6m。经计算M x=31.2kN·m(考虑动力系数1.3),则q e=8×31.2/4/1.6=30.84kN/m2。 类似的,如果单向板的跨度增大到3.0m,如图2之中、右所示,则b=2/3×0.8+0.73×3=2.723m,b′=(2.723+1.4)/2=2.06m,经计算,组合一M x=32.18kN·m (考虑动力系数1.3),q e=8×32.18/9/2.06=13.89kN/m2,同样,组合二的q e=8×30.29/9/2.06=13.07kN/m2,综合取13.78kN/m2,随着板跨的继续增大,q e仍会下降。 86

汽车等效均布荷载的计算

汽车等效均布荷载的计算 本工程最小板跨为2.4m×2.5m,板厚180mm,汽车最大轮压为100KN (根据《城市桥梁设计荷载标准》第4.1.3条城—A级车辆荷载),汽车轮压着地面积为0.6m×0.2m(参考《建筑结构荷载规范》规范说明中4.1.1条“对于20~30T的消防车,可按最大轮压为60kN作用在0.6m ×0.2m的局部面积上的条件决定;”),动力系数为1.3,板顶填土S=0.9m。平面简图详见附图一。 计算过程如下: 一、X方向计算 1.填土中扩散角取30°,tan30°=0.5 2.a x=0.6+2×0.5×0.9=1.5m a y=0.2+2×0.5×0.9=1.1m a x/l x=1.5/2.4=0.625 a y/l x=1.1/2.4=0.458 l y/l x=2.5/2.4=1.042 考虑动力系数后q=1.3P/(a x a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0843×157.57×1.5×1.1=10.96Kn×m My max=0.0962×157.57×1.5×1.1=12.51Kn×m Me max=0.0368×qe×l2 qe=Me max/0.212=59Kn/m2 二、Y方向计算 1.填土中扩散角取30°,tan30°=0.5

2. a×=0.2+2×0.5×0.9=1.1m a y=0.6+2×0.5×0.9=1.5m a×/l×=1.5/2.4=0.458 a y/l×=1.1/2.4=0.625 l y/l×=2.4/2.5=0.96 考虑动力系数后q=1.3P/(a×a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0962×157.57×1.5×1.1=12.50Kn×m My max=0.0843×157.57×1.5×1.1=10.96Kn×m Me max=0.0368×qe×l2 qe=Me max/0.23=54.37Kn/m2 附图一

汽车荷载与轮压

汽车荷载与轮压 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

注:覆土厚度不为表中数值时,其动力系数可按线性内插法确定

4.各类汽车在其投影面积范围(考虑汽车之间的纵向及横向最小间距均为600mm)内 5.目前结构设计计算中,出于对结构抗震设计的考虑,地下室承受的土压力一般均按静止土压力计算,土压力系数值一般取 四设计建议 1.对于直接承受消防车荷载的结构楼面(屋面)板,当符合荷载规范要求时,可进行简化计算,即直接采用表4.1.1中均布活荷载数值;当不符合时,应计算汽车轮压的局部荷载效应

2)依据城市供热管网结构设计规范CJJ 105-2005的规定,轮压在混凝土结构中的扩散按单边1:1考虑,即相当于取图4.1.1-1中扩散角 =450;轮压在土中的扩散按深度每增加1m,单边扩散宽度增加0.7m

自然状态下的土体内水平向有效应力,可以认为与静止土压力相等,土体侧向变形会改变其水平应力状态,最终的水平应力,随着变形的大小和方向而呈现出主动极限平衡和被动极限平衡两种极限状态事实上,地下室的施工工艺决定了其周围的土只能是回填土,应取用相应的主动土压力系数,而静止土压力一般可用在不允许有位移的支护结构,并不适合用于地下室外墙或挡土墙的设计计算中 现阶段地下室外墙或挡土墙的设计计算,可结合设计现状进行适当的调整,即考虑地震往复作用对接近地表之地下室土压力的增大作用,建议地下室顶部土压力可按静止土压力系数计算,而地下室底部土压力系数可按主动土压力系数计算(见图4.1.1 图4.1.1

小型机动车吊上楼面验算计算书

小型汽车吊上楼面验算计算书 专业:结构 总设计师(项目负责人):__ _ 审核: ____ ____ _ 校对: ____ __ _ ____ 设计计算人: ____ _________ _

***********所有限公司 2018年1月 汽车吊上楼面施工作业存在两种工况:工况一为汽车吊在楼面上行走的工况,工况二为汽车吊吊装作业时的工况。 一、楼面行走工况 1、设计荷载 根据原结构设计模型,四层楼面设计恒荷载9kN/m2,楼面设计活荷载 8kN/m2,四层楼面楼板厚度120mm,楼板自重恒荷载3kN/m2。因此,汽车吊楼面行走工况下,等效均布荷载不超过(9-3)+8=14kN/m2为宜。汽车吊行走区域如下图所示。 图1汽车吊行走区域布置图

2、吊车荷载及尺寸 3、汽车吊行驶相关参数 15吨小型汽车吊基本尺寸、轮宽及其行驶过程中各轮位置对楼板产生的荷载如下图所示: 图2汽车荷载参数 4、承载力校核 15吨汽车吊行走时,后两轮居于板跨中为最不利工况,如下图:

图3 汽车楼面行走计算简图 4.1 基本资料 4.1.1 工程名称:局部承压计算 4.1.2 周边支承的双向板,按上下和左右支承单向板的绝对最大弯矩等值, 板的跨度Lx =3250mm,Ly =8000mm,板的厚度h =120mm 4.1.3 局部荷载 4.1.3.1 第一局部荷载 局部集中荷载N =42kN,荷载作用面的宽度btx =200mm,荷载作用面的宽度bty =600mm; 垫层厚度s =0mm 荷载作用面中心至板左边的距离x =1625mm,最左端至板左边的距离x1 =1525mm, 最右端至板右边的距离x2 =1525mm 荷载作用面中心至板下边的距离y =3100mm,最下端至板下边的距离y1 =2800mm,

消防车等效均布荷载的计算

消防车等效均布荷载的计算 【摘要】消防车荷载的取值,一直比较混乱,为使消防车荷载有一个较为合理的取 值,笔者对消防车等效荷载进行了常见的几种情况的计算,供设计界同仁参考。 【关键词】消防车等效荷载轮压扩散角动力系数 消防车荷载的取值,就目前来说,一直比较混乱, 有按《建筑结构荷载规范》(下面简称《荷载规范》)要求单向板(板跨度≥2m)取35kN/㎡、双向板(板跨度≥6m)取20kN/㎡的,也有取等效均布荷载为26kN/㎡的, 还有主梁取0.8X20=16kN/㎡次梁为0.95X20=19kN/㎡的,如此等等,各种取法都有。而消防车荷载的取值又属“强条”。《荷载规范》表4.1.1注第3条:“……;当不符合本表的要求的时候,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。”即消防车荷载的取值大小应按等效均布荷载计算。这些对每一个设计人员来说,都是清楚的。但是在实际工程中,由于等效均布荷载计算过程较为繁琐, 设计周期又短等各种原因,大都未进行等效均布荷载的计算。一般来说,凡取等效均布荷载的,都没有相应的计算资料, 大都采取“估算”的办法。 就目前成都建筑市场而言,基本上都采用大底盘地下室,其上部修建若干栋多、高层建筑,这样必然出现小区内的消防通道置于地下室的顶板上。而地下室的顶板设计,一般采用井字梁楼盖或十字梁楼盖,板跨大都小于6.0mX6.0m,故消防车荷载是不能取20kN/㎡。而应按规范要求进行等效均布荷载计算(单向板或密肋楼盖较少采用,所以此处仅就双向板进行分析)。为使消防车荷载有一个较为合理的取值,笔者对消防车等效均布荷载进行了常见的几种情况的计算,供设计界同仁参考,以飨读者。 1.荷载计算 消防车荷载均沿消防车道布置。小区道路通常不是很宽,一般在5m左右,所以消防车按单列布置(当小区消防通道宽度≥6 m时,应按并列两辆消防车的布置进行等效均布荷载计算。此种情况,不在本文叙述范围)。为求最不利情况,按两车车尾对车尾的排列,两车尾间净距按500㎜计,消防车总重量按《荷载规范》要求,以300 kN计算。消防车荷载前、后桥轮压及车列布置见图1~图3, 轮压面积按200㎜X600㎜计。

基坑支护设计汽车等效均布荷载计算方法

基坑支护设计汽车等效均布荷载计算方法 题,该如何施加,施加多少,现行《建筑基坑支护设计规程》(JGJ120-2012)中并有说明,导致实际基坑支护设计时,汽车超载施加无指导性方法可循。现笔者仅对自己实际工作中的一些想法,提出自己认为切实可行的做法。 基坑开挖过程中需要土方外运,土方外运一般采用前四后八自卸车外运,所前四后八自卸车就是说前面是双桥4个轮,,后面是双桥8个轮子。汽车荷载属于动力荷载,当汽车荷载距离基坑坡顶线超过一定距离时,岩土对汽车荷载起缓冲和扩散作用,当汽车荷载距离超过1.0m时,轮压荷载的动力影响已不明显,可取动力系数为1.0。 前四后八荷载主要在后面双桥上,后面双桥轴距1.4m,轮距1.8m,后轮双桥总轴重600kN,前四后八后桥平面尺寸见下图: 假设汽车外侧轮距离基坑坡顶线 1.0m,计算汽车等效分布荷载作用大小时,车轮扩散压力扩散角取30°。 后轮双桥轮压的扩散面积为(2.4+2) ×(1.6+2)=15.84m2。 则汽车等效分布荷载P=600kN/15.84 m2=37.88 kPa。 计算车轮荷载等效分布深度时,取车轮扩散压力扩散角取45°,则d=1.0m。 假设汽车外侧轮距离基坑坡顶线 2.0m,计算汽车等效分布荷载作用大

小时,车轮扩散压力扩散角取30°。 后轮双桥的轮压的扩散面积为(2.4+4)×(1.6+4)=35.84m2。 则汽车等效分布荷载P=600kN/35.84 m2=16.74kPa。 计算车轮荷载等效分布深度时,取车轮扩散压力扩散角取45°,则d=2.0m。 假设汽车外侧轮距离基坑坡顶线 3.0m,计算汽车等效分布荷载作用大小时,车轮扩散压力扩散角取30°。 后轮双桥的轮压的扩散面积为(2.4+6)×(1.6+6)=63.84m2。 则汽车等效分布荷载P=600kN/63.84 m2=9.40kPa。 计算车轮荷载等效分布深度时,取车轮扩散压力扩散角取45°,则d=3.0m。 现就汽车等效分布荷载大小及作用深度的车轮压力扩散角取值不同做出说明:计算等效分布荷载大小时,现行《建筑地基处理技术规范》(JGJ79--2012)压力扩散角取30°;计算等效分布荷载作用深度时,现行《建筑基坑支护技术规范》(JGJ120-2012)土压力扩散角取45°;两者取值不同主要是从安全角度考虑,计算等效分布荷载大小时,取30°对工程安全有利,计算等效分布荷载作用深度时,取45°对工程安全有利,这也是两本规范土压力扩散角取值不同的原因所在。 通过计算标明基坑边缘车辆超载,距基坑边线距离为1.0~3.0m时,汽车等效局部荷载为35.84~9.40kPa,等效分布深度为1.0~3.0m。 通过以上计算,现对坡顶汽车荷载等效分布荷载及作用深度表作简化,提供如下表格供设计人员设计时使用。

汽车荷载与轮压

对荷载规范第4.1.1条的理解与应用(建筑结构.技术通讯2006.5) (2007-08-01 19:41:13) 对荷载规范第4.1.1条的理解与应用 (注意:本文上传过程图及符号丢失,请核查原文) 一规范的规定 见建筑结构荷载规范GB 50009-2001(以下简称荷载规范)第4.1.1条 二对规范规定的理解 荷载规范表4.1.1可从以下三方面理解: 1.表4.1.1中的均布活荷载为作用在楼面上的荷载,需要说明的是:表4.1.1中的所有荷载均为直接作用在楼面上的荷载,仅可用于楼面板设计计算,用于楼面梁柱墙及基础计算时的荷载需按荷载规范第4.1.2条要求折减 2.符合表4.1.1注3规定时,按表中数值取用 3.不符合表4.1.1注3规定(如汽车总重量大于300kN等)时,按结构效应等效原则,将车轮的局部荷载换算为等效均布荷载 三结构设计的相关问题 1.车辆荷载尤其是消防车对楼面的荷载作用,主要应考虑车辆满载重量及汽车轮压的动荷载效应,动力系数与楼面覆土厚度等因素有关,见表4.1.1-1 表4.1.1-1 汽车轮压荷载传至楼板和梁的动力系数 覆土厚度(m)0.250.300.350.400.450.500.550.600.65≥0.7动力系数 1.30 1.27 1.24 1.20 1.17 1.14 1.10 1.07 1.04 1.0 注:覆土厚度不为表中数值时,其动力系数可按线性内插法确定 2.表4.1.1中第8项实际上是汽车轮压直接作用在楼板上的等效均布活荷载,对于跨度较大的楼板还应考虑多辆汽车的共同作用 1)对客车荷载,不能将客车车库的楼面等效荷载(表4.1.1中第8项数值)与其楼面实际荷载混为一谈,当楼板的形式及支承情况不同时楼面等效荷载的计算数值也不相同等效荷载数值的不同不是楼面实际荷载的不同,而是在相同楼面荷载(客车荷载)下,不同形式楼板按跨中弯矩相等折算出的等效荷载数值不同,因此,结构设计中将客车荷载按规范的等效荷载数值限制是不恰当的,且容易得出同一客车停车库(场)有两种不同荷载限值的错误结论;对客车车库的荷载应以限定客车的种类为宜,如限定停放载人少于9人的客车(每一车位最小范围2.5m×4.5m)等;

汽车荷载的简化计算

汽车等效均布荷载的简化计算 朱炳寅 中国建筑设计研究院(100044) 汽车(消防车)轮压以其荷载数值大、作用位置不确定及一般作用时间较短而倍受结构设计者关注。结构设计的关键问题在于汽车轮压等效均布荷载数值的确定。轮压荷载作用位置的不确定性,给等效均布荷载的确定带来了相当的困难,一般情况下,要精确计算轮压的等效均布荷载是比较困难的,且从工程设计角度看,也没有必要。“等效”和“折减”的本质都是“近似”,“等效”和“折减”的次数越多其误差就越大。本文推荐满足工程设计精度需要的汽车轮压等效均布荷载的简化计算方法,供读者参考。 1. 影响等效均布荷载的主要因素 1)跨度 等效均布荷载的数值与构件的跨度有直接的关系,在相同等级的汽车轮压作用下,板的跨度越小,则等效均布荷载的数值越大;而板的跨度越大,则等效均布荷载数值越小。结构设计中应注意“等效均布荷载”及“效应相等”的特点,汽车轮压荷载具有荷载作用位置变化的特性,是移动的活荷载,其最大效应的把握困难,且效应类型(弯矩、剪力等)的不同,等效均布荷载的数值也不相同,等效的过程就是一次近似的过程。 2)动力系数 汽车荷载属于动力荷载,板顶填土或面层对汽车动力荷载起缓冲和扩散作用,板顶覆土或面层太薄时,一般可不考虑其有利影响。而当板顶覆土厚度较大时,轮压荷载对顶板的动力影响已经不明显,可取动力系数为1.0。见表1。《荷载规范》表4.1.1中给出的车辆荷载,是一种直接作用在楼板上的等效均布荷载,已考虑了动力系数,可直接采用。 表1 汽车轮压荷载传至楼板及梁的动力系数 注:1. 覆土厚度不为表中数值时,其动力系数可按线性内插法确定; 2.当直接采用《荷载规范》表4.1.1中第8项规定的数值时,无需再乘以表中数值。 3)覆土层厚度 1)《荷载规范》表4.1.1中第8项所规定的汽车荷载,是轮压直接作用在楼板上的等效均布荷载。 2)结构板面的覆土及面层对汽车轮压具有扩散作用(车轮压力扩散角,在混凝土中按45°考虑,在土中可按30°考虑),覆土越厚,汽车轮压扩散越充分,当覆土层厚度足够厚,轮压扩散足够充分时,汽车轮压荷载可按均布荷载考虑。当覆土层厚度足够时,可按汽车在合理投影面积范围内的平均荷重计算汽车的轮压荷载,见表2。 表2 覆土厚度足够时消防车的荷载

楼面等效均布荷载 B-1 计算结果(按线荷载计算)

楼面等效均布荷载计算书 项目名称:恒大珠江新城商业办公项目 项目概况:原有楼面设计活荷载为4KN/m2,现因施工要求,楼面需用到3T挖掘机进行作业。 复核结论:按线荷载复核,楼板能满足要求,详以下计算书。 施工建议:挖掘机履带下需至少用600mm宽,50mm厚的木板作为支垫行走。 复核单位:广东华南建筑设计院有限公司 复核日期:2017.04.20

1楼面等效均布荷载: B-1 1.1基本资料 1.1.1工程名称:工程一 1.1.2周边支承的双向板,按四边简支板的绝对最大弯矩等值、取短跨方向的等效荷载, 板的跨度 L x= 4600mm, L y= 3750mm,板的厚度 h = 120mm, 楼面均布荷载 g k= 1.5kN/m2,楼面均布荷载 q k= 2kN/m2 1.1.3局部荷载 整体坐标系的原点为楼板左下角,局部坐标系原点在整体坐标系中的坐标: x0= 1600mm、y0= 0mm 1.1.3.1第一局部荷载 Y 向局部线性荷载 Q' = 6kN/m,荷载作用面的宽度 b tx= 600mm,荷载作用面的宽度 b ty= 2400mm;垫层厚度 s = 0mm 荷载作用面中心至局部坐标系原点的距离: x' = 0mm, y' = 0mm 1.1.3.2第二局部荷载 Y 向局部线性荷载 Q' = 6kN/m,荷载作用面的宽度 b tx= 600mm,荷载作用面的宽度 b ty= 2400mm;垫层厚度 s = 0mm 荷载作用面中心至局部坐标系原点的距离: x' = 3000mm, y' = 1875mm 1.2局部荷载换算为局部均布荷载 1.2.1第一局部荷载 P = Q' / b tx - q k= 6/0.6-2 = 8.00kN/m2 1.2.2第二局部荷载 P = Q' / b tx - q k= 6/0.6-2 = 8.00kN/m2 1.3局部坐标系转换为整体坐标系 局部坐标系原点的坐标: x0= 1600mm、y0= 0mm 1.3.1第一局部荷载: b tx= 600mm, b ty= 2400mm; x = 1600mm, x1= 1300mm, x2= 2700mm; y = 0mm, y1= -1200mm, y2=2550mm

汽车荷载与轮压

汽车荷载与轮压 This model paper was revised by the Standardization Office on December 10, 2020

对荷载规范第4.1.1条的理解与应用(建筑结构.技术通讯)(2007-08-01 19:41:13) 对荷载规范第4.1.1条的理解与应用 (注意:本文上传过程图及符号丢失,请核查原文) 一规范的规定 见建筑结构荷载规范GB 50009-2001(以下简称荷载规范)第4.1.1条 二对规范规定的理解 荷载规范表4.1.1可从以下三方面理解: 1.表4.1.1中的均布活荷载为作用在楼面上的荷载,需要说明的是:表中的所有荷载均为直接作用在楼面上的荷载,仅可用于楼面板设计计算,用于楼面梁柱墙及基础计算时的荷载需按荷载规范第条要求折减 2.符合表4.1.1注3规定时,按表中数值取用 3.不符合表4.1.1注3规定(如汽车总重量大于300kN等)时,按结构效应等效原则,将车轮的局部荷载换算为等效均布荷载 三结构设计的相关问题 1.车辆荷载尤其是消防车对楼面的荷载作用,主要应考虑车辆满载重量及汽车轮压的动荷载效应,动力系数与楼面覆土厚度等因素有关,见表4.1.1-1 表4.1.1-1汽车轮压荷载传至楼板和梁的动力系数 注:覆土厚度不为表中数值时,其动力系数可按线性内插法确定

2.表4.1.1中第8项实际上是汽车轮压直接作用在楼板上的等效均布活荷载,对于跨度较大的楼板还应考虑多辆汽车的共同作用 1)对客车荷载,不能将客车车库的楼面等效荷载(表4.1.1中第8项数值)与其楼面实际荷载混为一谈,当楼板的形式及支承情况不同时楼面等效荷载的计算数值也不相同等效荷载数值的不同不是楼面实际荷载的不同,而是在相同楼面荷载(客车荷载)下,不同形式楼板按跨中弯矩相等折算出的等效荷载数值不同,因此,结构设计中将客车荷载按规范的等效荷载数值限制是不恰当的,且容易得出同一客车停车库(场)有两种不同荷载限值的错误结论; 对客车车库的荷载应以限定客车的种类为宜,如限定停放载人少于9人的客车(每一车位最小范围2.5m×4.5m)等; 2)对消防车荷载,若不考虑板顶的覆土厚度对消防车轮压的影响而统一取用表中数值,当地下室顶板顶面覆土厚度较厚时,显然是不合适的,现举例说明之 例如:某工程纯地下室(顶板为板跨小于2m的单向板)顶面为覆土厚度3m的绿化地面,消防车(30t级)道贯穿其中,覆土已将消防车轮压局部荷载基本扩散为均布荷载,由表4.1.1-3可知:30t消防车在车身平面内的平均荷载仅为m2,显然消防车的任何排列方式均不可能达到表中35 kN/m2的荷载数值 3.荷载规范条文说明中指出,对20~30t的消防车,可按最大轮压为60kN作用在 0.6m×0.2m的局部面积上的条件确定,为此,应按全国民用建筑工程设计技术措施(结构)(以下简称结构技术措施)图2.3.2和图确定汽车纵横方向的排列间距 表4.1.1-2各级汽车荷载的主要技术指标

两种等效均布荷载计算方法比较

双向板楼面等效均布活荷载确定方法的探 讨 彭勇穆文伦 (贵州新基石建筑设计有限责任公司) [摘要]:建筑结构荷载规范关于双向板楼面等效荷载计算方法的表达比较含糊,引起了对规范说明不同的理解,本文根据对规范的理解提出两种不同的计算方式,经过比较分析提出正确的计算方式 根据《建筑结构荷载规范》GB50009-2001(2006版)附录B“楼面等效均布活荷载的确定方法”的规定,对于单向板的计算已经有比较明确的公式和规定,本文不进行叙述,对于双向板的等效均布荷载计算方法,规范仅指出可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。这样对规范的表述就有了不同理解,第一种理解为:按与单向板相同的计算方式进行计算;第二种理解:按四边简支板绝对最大弯矩等值的原则进行计算。两种方法计算比较如下: 1 按与单向板相同的计算原则进行计算 计算简图1 1.1 基本资料 周边支承的双向板,板的跨度Lx=2800mm,板的跨度Ly=3500mm,板的厚度h=150mm;局部集中荷载N=42kN,荷载作用面的宽度btx=1000mm,荷载作用面的宽度bty=1000mm;垫层厚度s=100mm ;荷载作用面中心至板左边的距离x=1400mm,最左端至板左边的距离x1=900mm,最右端至板右边的距离x2=900mm 荷载作用面中心至板下边的距离y=1750mm,最下端至板下边的距离y1=1250mm,最上端至板上边的距离y2=1250mm 1.2 计算结果 1.2.1 荷载作用面的计算宽度 bcx=btx+2*s+h=1000+2*100+150=1350mm bcy=bty+2*s+h=1000+2*100+150=1350mm 1.2.2 局部荷载的有效分布宽度

消防车轮压等效荷载计算

消防车轮压等效荷载计算 规范明确规定了等效均布荷载的计算原则,但由于消防车轮压位置的不确定性,实际计算复杂且计算结果有时与规范数值出入很大,对双向板问题更加突出.为方便设计,并应网友的要求,此处提供满足工程设计要求的等效荷载计算表(此为博主正在编辑整理的书稿内容),供设计者选择使用。 1.不同板跨时,双向板等效均布荷载的简化计算表格 表1中列出了在消防车(300kN级)轮压直接作用下,不同板跨的双向板其等效均布荷载简化计算数值,供读者参考。 表1 消防车轮压直接作用下双向板的等效均布荷载 板跨(m)2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ≥6.0 等效均布荷载(kN/m2) 35.0 33.1 31.3 29.4 27.5 25.6 23.8 21.9 20.0 2. 不同覆土厚度时,消防车轮压等效均布荷载的简化计算 不同覆土厚度时,对消防车轮压等效均布荷载数值的计算可采取简化方法,考虑不同覆土厚度对消防车轮压等效均布荷载数值的影响,近似可按线性关系按表2确定。 表2 消防车轮压作用下,不同覆土厚度时的等效均布荷载调整系数 覆土厚度(m)≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.50调整系数 1.00 0.92 0.83 0.75 0.66 0.58 0.49 0.41 0.32 3. 综合考虑板跨和不同覆土层厚度时,消防车轮压等效均布荷载的确定 考虑板跨和不同覆土层厚度确定消防车轮压作用下的等效均布荷载数值时,可采用简化计算方法,参考表-3,表-4确定不同板跨、不同覆土层厚度时的等效均布荷载数值。 表3 消防车轮压作用下单向板的等效均布荷载值(kN/m2) 板跨(m)覆土厚度(m) ≤0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ≥2.50 ≥2 35.0 32.0 29.1 26.1 23.2 20.2 17.2 14.3 11.3

双向板等效均布活荷载的确定

双向板等效均布活荷载的确定 韩天华1王振平2 (1.天津市市政工程设计研究院给排水分院,天津300051;2.呼伦贝尔市建设 工程造价管理站,呼伦贝尔021008) 摘要:本文根据《建筑结构荷载规范》(GB50009-2001)(2006版)附录B中对双向板等效荷载计算的概述,介绍了工程设计中双向板上等效均布活荷载的计算方法,为后续使用电算软件对结构整体进行受力分析提供了计算数据。 关键词:双向板等效均布活荷载计算 0前言 双向楼板由于其经济、美观等优势而被广泛应用于建筑中。本人在设计某污水处理厂脱水机房时,遇到了设备搁置于二层楼面的情况,由于脱水机房内设备较多以及工艺的要求,无法将所有设备布置于梁上,需要将布置于楼板上的设备重量进行等效均布活荷载的换算。根据《建筑结构荷载规范》(GB50009-2001)(2006版)第4.1.3条规定,楼面板上的局部线荷载、面荷载等可按附录B的规定,换算为等效均布活荷载。而附录B中仅对局部荷载作用下,如何计算等效均布荷载做了粗略的规定,所提供的计算公式也仅适用于单向板情况。对于双向板的等效均布活荷载计算,本文基于对规范的规定理解提出一种计算方法。 《建筑结构荷载规范》(GB50009-2001)(2006版)第B.0.1条指出:楼面(板、次梁及主梁)的等效均布活荷载应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形裂缝的等值要求来确定在一般情况下,可仅按内力的等值来确定;第B.0.6条指出,双向板的等效均布荷载可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。这里通过一块楼板及其上部的设备荷载来介绍一下《建筑结构荷载规范》(GB50009-2001)第B.0.6条所述的双向板(这里所指的双向板一般指长边与短边长度之比小于或等于2.0的板,长边与短边长度之比大于2.0的板可按沿短边受力的单向板考虑)如何按四边简支的绝对最大弯矩等值确定其等效均布荷载。而对于单向板上局部荷载的等效,《建筑结构荷载规范》(GB50009-2001)第B.0.4条、第B.0.5条已有详细说明,这里不再进行讨论。 1实例概况 例:取二楼6.3×5.7m的钢筋混凝土双向板,板面上搁置絮凝剂混合槽,槽体为圆形,直径为1.5米,运行重量为2.8t。为方便计算,根据面积相等的原则,将圆形受压区域化为正方形受压区域,边长为1.33米。板上作用局部均布荷载时如图1所示,板上作用等效均布荷载时如图2 所示;

汽车荷载与轮压

汽车荷载与轮压 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

注:覆土厚度不为表中数值时,其动力系数可按线性内插法确定 2.表4.1.1中第8项实际上是汽车轮压直接作用在楼板上的等效均布活荷载,对于跨度较大的楼板还应考虑多辆汽车的共同作用 1)对客车荷载,不能将客车车库的楼面等效荷载(表4.1.1中第8项数值)与其楼面实际荷载混为一谈,当楼板的形式及支承情况不同时楼面等效荷载的计算数值也不相同等效荷载数值的不同不是楼面实际荷载的不同,而是在相同楼面荷载(客车荷载)下,不同形式楼板按跨中弯矩相等折算出的等效荷载数值不同,因此,结构设计中将客车荷载按规范的等效荷载数值限制是不恰当的,且容易得出同一客车停车库(场)有两种不同荷载限值的错误结论; 对客车车库的荷载应以限定客车的种类为宜,如限定停放载人少于9人的客车(每一车位最小范围2.5m×4.5m)等;

4.各类汽车在其投影面积范围(考虑汽车之间的纵向及横向最小间距均为600mm)内的 5.目前结构设计计算中,出于对结构抗震设计的考虑,地下室承受的土压力一般均按静止土压力计算,土压力系数值一般取

自然状态下的土体内水平向有效应力,可以认为与静止土压力相等,土体侧向变形会改变其水平应力状态,最终的水平应力,随着变形的大小和方向而呈现出主动极限平衡和被动极限平衡两种极限状态事实上,地下室的施工工艺决定了其周围的土只能是回填土,应取用相应的主动土压力系数,而静止土压力一般可用在不允许有位移的支护结构,并不适合用于地下室外墙或挡土墙的设计计算中 现阶段地下室外墙或挡土墙的设计计算,可结合设计现状进行适当的调整,即考虑地震往复作用对接近地表之地下室土压力的增大作用,建议地下室顶部土压力可按静止土压力系数计算,而地下室底部土压力系数可按主动土压力系数计算(见图4.1.1 图4.1.1

汽车等效均布荷载的计算

汽车等效均布荷载的计算 本工程最小板跨为 2.4m×2.5m,板厚180mm,汽车最大轮压为100KN(根据《城市桥梁设计荷载标准》第4.1.3条城—A级车辆荷载),汽车轮压着地面积为0.6m×0.2m (参考《建筑结构荷载规范》规范说明中 4.1.1条“对于20~30T的消防车,可按最大轮压为60kN作用在0.6m×0.2m的局部面积上的条件决定;”),动力系数为 1.3,板顶填土S=0.9m。平面简图详见附图一。 计算过程如下: 一、X方向计算 1.填土中扩散角取30°,tan30°=0.5 2.a x=0.6+2×0.5×0.9=1.5m a y=0.2+2×0.5×0.9=1.1m a x/l x=1.5/2.4=0.625 a y/l x=1.1/2.4=0.458 l y/l x=2.5/2.4=1.042 考虑动力系数后q=1.3P/(a x a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0843×157.57×1.5×1.1=10.96Kn×m

My max=0.0962×157.57×1.5×1.1=12.51Kn×m Me max=0.0368×qe×l2 qe=Me max/0.212=59Kn/m2 二、Y方向计算 1.填土中扩散角取30°,tan30°=0.5 2. a×=0.2+2×0.5×0.9=1.1m a y=0.6+2×0.5×0.9=1.5m a×/l×=1.5/2.4=0.458 a y/l×=1.1/2.4=0.625 l y/l×=2.4/2.5=0.96 考虑动力系数后q=1.3P/(a×a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0962×157.57×1.5×1.1=12.50Kn×m My max=0.0843×157.57×1.5×1.1=10.96Kn×m Me max=0.0368×qe×l2 qe=Me max/0.23=54.37Kn/m2

单向板等效均布荷载计算

单向板等效均布荷载计算技术手册 软件为单向板等效均布荷载计算,计算主要遵循《建筑结构荷载规范》GB50009-2001(2006年版)附录B中的相关条文及规定。 附录B主要针对活荷载情况,按理可推广至其他类似于活载作用方式的荷载,而不仅限于活荷载。 楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定。 连续梁、板的等效均布活荷载,可按单跨简支计算。但计算内力时,仍应按连续考虑。 由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。 单向板上局部荷载(包括集中荷载)的等效均布活荷载可按下式计算: 式中:为板的跨度; 为板上荷载的有效分布宽度; 为简支单向板的绝对最大弯矩,按设备的最不利布置确定。 计算时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上,由操作荷载引起的弯矩。单向板上局部荷载的有效分布宽度,可按下列规定计算: 1)当局部荷载作用面的长边平行于板跨时(),简支板上的荷载的有效分布宽度为: (1)当,,时: (2)当,,时:

注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 2)当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度为:(1)当,,时: (2)当,,时: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为板的跨度; 为荷载作用面平行于板跨的计算宽度; 为荷载作用面垂直于板跨的计算宽度。

式中:为荷载作用面平行于板跨的宽度; 为荷载作用面垂直于板跨的宽度; 为垫层厚度; 为板的厚度。 注意:计算宽度不可超出面板实际布置范围。 3)当局部荷载作用在板的非支承边附近,即时,荷载的有效分布跨度应予折减,可按下式计算: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为折减后的有效分布宽度; 为单向板上局部荷载的有效分布宽度; 为荷载作用中心至非支承边的距离。 4)当两个局部荷载相邻而时,荷载的有效分布宽度应予折减,可按下式计算:

相关文档
相关文档 最新文档