文档库 最新最全的文档下载
当前位置:文档库 › 电偶极子位于均匀介质球中时球外电场的研1

电偶极子位于均匀介质球中时球外电场的研1

电偶极子位于均匀介质球中时球外电场的研1
电偶极子位于均匀介质球中时球外电场的研1

电偶极子位于均匀介质球中时球外电场的研究

08物理学三班许婉漪 20082301075

摘要:采用分离变量法求解了电偶极子位于均匀介质球中时复连通域的拉普拉

斯方程和泊松方程,求出了球内外两种不同介质的电势分布和球面上的极化电荷分布;通过求解二阶非线性微分方程得到了球外的电场线函数;利用计算软件,作出了相应的电场线簇图形,并且进行了必要的讨论.

关健词:电偶极子;极化电荷;电场线簇图形

一、具有轴对称性的三维电势方程的边值问题的求解

均匀介质球的介电常量为1∑, ,球外充满另一种均匀介质,介电常量为2∑,在介质球的中心置一自由电偶极子,电偶极矩为f P , 介质球半径为R 。,这样的静电场的定解问题属于求解介质球外的三维拉普拉斯方程和介质球内的三维泊松方程的边值问题.

如果选择坐标系原点与介质球中心以及电偶极子中心重合,并且球坐标的极轴沿电偶极矩f P ,方向,则电势与电场的分布具有轴对称性.V=V(r,θ),因,E = E (r, θ) ,考虑到介质球内外的电势分布在边界面上连续和电位移矢量的法线分量连续,三维电势方程及定解条件简化为:

r

2

1

12

V V ??+2r

r

??1V +

θ

θθ??sin cos 1V +

2

12

θ

??V = —q(

1

1

)

2/(2/ξδξδl r l r +-

-)()

(0

2

2

22

V V ??+2

r

V ??2+

θ

θsin cos +

2

12

θ

??V =0 (R

) (2) V 1=V 2(r=R) (3)

1

ξr

??1V R r ==2

ξr

V ??2R

r = (4)

式(1)中Z 为电偶极子的一对等量异号点电荷之间的距离,电偶极矩f P =ql ,电势

的分布必须同时考虑电偶极子和介质球面上极化面电荷的贡献,并

且电势的分布具有轴对称性.采用分离变量法,式(1)和式(2)具有轴对称解· V=

2

14r

P f πξθ

cos +∑∞

=++

1

)(n n n

n

n r

b r a P n (θcos ) (5)

式(5)中电势y 由两部分组成,第一部分由电偶极子本身所贡献,第二部分由电偶极子极化效应在球面上产生的极化面电荷所贡献.一般说来,组成电偶极子的一对等量异号点电荷之间的距离z 远比场点到它们的距离r 小得多,所以,除了邻近电偶极子的区域以外,式(5)中的第一部分准确地表示了电偶极子对电势分布的贡献,愈加远离电偶极子的场点,电偶极子的一对等量异号点电荷之间的距离的差别愈小,式(5)中第一部分的表述愈准确.将式(5)应用于求解介质球内的电势分布,考虑到极化面电荷的电势在r=0处有限,将式(5)的第二部分取极限,有

lim 0

→r ∑∞

=++

1

)(n n n

n

n

r

b r a

P n (θcos )=有限值 (6)

由式(6)易得

n b =0 (对所有n (7)

因而介质球内的电势分布为 V 1=

2

14r

P f πξθ

cos +∑n n r a P n (θcos ) (r

将式(5)应用于求解介质球外的电势分布,考虑到极化面电荷的电势在r=∞处趋于零,将式(5)的第二部分取极限,有

∑∞

=++

1

)(n n n

n

n

r

b r a

P n (θcos )=0 (9)

由(9)易见

n a =0(对所有

n ) (10)

因而介质球外的电势分布为

V 2=

2

14r

P f πξθ

cos +∑

+1

n n r

b P n (θcos ) (R

将式(8)和式(11)代入衔接条件式(3)与式(4),有

2

14cos R

P f πξθ+∑

=·0

n n a n

R

P n (θcos )=

2

24cos R

p f πξθ+∑

=·0

n 1

R

+n n

b P n (θcos ) —

3

4cos 2R

P f πθ

+1ξ∑∞

=·0

n n n a 1-n R P n (θcos ) = (12)

3

4cos R

P f πθ —2

ξ∑∞

=·0

n (n+1)2

R

+n n

b

P n (θcos ) (13)

比较式(12)两端同阶勒让德函数的系数,注意到θcos =1P (θcos )有

??

??

?≠=+-=+)

1(44!23

1221

n R a b R a P P b n n n f f πξπξ (14) 再将式(14)式代入式(13),并且比较同阶勒让德函数的系数,可求得

??

??

?

≠=+=-)1(0)2(23

211211n a P R a n f ξξπξξξ (15) 又将式(15)代入式(14)得到

??

??

?≠=+-=)1(0)2(4212121

n b b n ξξπξξξ (16) 于是,得到介质球内外的电势分布:

???

???

?>+=<+-+=)(cos )2(43)(cos )2(2)(cos 4P V 22123

212121f

1R r r P V R r R

r P r f

f θξξπθξξπξξθπξ (17) 从上述推导可知,式(8)为求解介质球内和球外电势分布的普遍表达式,充分利用如下3个条件,使得球内和球外的勒让德函数级数的系数关联起来,并可得到

球内和球外电势分布的简洁表达式:1)极化电荷对无限远处电势的贡献为零;2)极化电荷对r=0处电势的贡献为有限;3)球内的电势分布函数与球外的电势分布函数在球面上必须相等.充分利用上述3个条件后,将式(11)化简为式(17)的第2式,即将电偶极子本身对电势分布的贡献与极化电荷对电势分布的贡献两者合并成为一个简洁的表达式,使得球外的电势分布非常容易计算与求解.考虑到边界面上无自由面电荷,介质球边界面上的边界条件为

P n E E e σξ=-)(120 (18)

由式(18)可得球面上的极化面电荷分布

θ

ξξπξ

ξξξξσ

cos )2(2)(3)

(3

211

210120R

p r

V r

V f R

r P

+-=

??+

??-

== (19)

二、 介质球外电场线函数的求解

对于互相正交的两曲线簇u(x,y)而v(x,y)而言,它们在相交点的切线向量必定互相垂直.对曲线簇u(x ,y),曲线上各点的切线方程为

dx

dy =y

u x u ????-

//=αtan (20)

其中αtan 为切线的斜率.对曲线簇v(x,y),由于与曲线簇u(x,y)正交,因而曲线上过相应点的切线方程为

dx

dy =y

v x v ????-

//=-

α

tan 1=

x

u y u ????// (21)

对电势分布函数V 2= u(x,y),其负梯度为电场强度 E=-grad u=x e x u ??-

+

y e y

u ??=x E x e +y E y e (22)

因而可通过求出电场强度的分量x E ,y E ,进而求电场线满足的微分方程的解而获得电场线函数.

x E =x

u ??-

=)

)

(3)

(1(

432

/52

2

22

/32

2

y x x

y x k +-

+-

π

(23)

y E =y

u ??-

=

π49k

2

/52

2

)

(y x xy

+ (24)

三、用电脑软件画出电场分布图如下:

电偶极子位于均匀介质球中时球外电场

四、结论:

从图中可以看出电场线簇左

半平面和右半平面是对称分布的,上半平面和下半平面也是对称分布的,说明求得的电场分布具有左右对称性和上下对称性.这和实际的电场分布的对称性相一致.

参考文献:

【1】赵凯毕,陈熙谋.电磁学[M].北京:高等教育出版社,1999:65“7.

【2】李旭.胡先权.胡文江.电介质椭球内极化场强方向的研究[J].大学物理,2004,23(10):28—31.

简谐振动电偶极子辐射场分析(最终报告)

研究简谐振动的电偶极子电场 【摘 要】本文首先对振动性偶极子电场的物理模型进行简要的分析并推导出其电场线方程,然后利用数学软件Matlab 对隐函数直接作图的功能作出其电场线的演化进程图像,并用Matlab 动画模拟其电场线辐射过程,最后结合图像和动画对了振动性偶极子电场进行具体的分析,得出结论。特别是,文中清楚地模拟了部分不闭合电场线“分裂”出闭合电场线的过程,这在一般论文和教材中较为少见。 【关键字】振动性偶极子(振荡电偶极子 偶极振子);Matlab ;作图;动画;感应电场;库仑电场 1. 引言 振动性偶极子是电磁波辐射理论的基础,对其电场辐射情况的研究具有重要的意义。但由于振动性偶极子电场的概念抽象,理论计算过程又十分复杂,推导和掌握需要较深的数学基础,而图形绘制也要考虑诸多因素,极其繁琐,致使这方面的研究较为困难。使用Matlab 则可以轻松地应对这些问题,它能够针对振动性偶极子电场的各个参量变化时的特点快速地绘制出其电场线图像。在图形的帮助下,就很容易对其电场进行简明而清楚的分析。 2. 物理模型 2.1振动性偶极子的电场 设振动性偶极子的电矩为 0cos x P e P t ω= 采用球坐标可得到在任意时刻t ,空间任意处r 的辐射电场[4]: 3032 0211cos cos()cos()4()()2r P k E t kr t kr kr kr πθωωπε?? =-+-+???? 30320111sin []cos()cos()4()()2P k E t kr t kr kr kr kr θπθωωπε??=--+-+???? (2-1) 0=?E 上式中k c ω = 。 在kr>>l 的远区,库仑电场比感应电场弱得多,故远区的电场以感应电场为主导。而在 kr<

电偶极子的电场讨论

电偶极子的电场讨论 姓名:乔霞芳 (09物理教育专业 准考证号:412410100009 ) 【摘要】:电偶极子是继点电荷之后最简单而且重要的带电系统。凡是有电荷 的地方,四周就存在着电场,即任何电荷都在自己周围的空间激发电场。这里将从点电荷到电偶极子,通过对其中垂面和延长线上的电场强度、及其空间任意一点电场分布的求解,讨论电偶极子的静态电场。 【关键词】:电场 电场强度 电偶极子 电势 电视梯度 一、电场 为了能够形象的描述电场,正确、定量的讨论电场,先对电场进行适量了解。就它有什么样的性质,用什么定量的描述它,又用什么来给人以形象的概念进行讨论。 1.电场强度 电场的一个重要性质是它对电荷施加作用力,我们就以这个性质来定量地描述电场。我们知道,电场本身的性质由电场强度来反映,即E =F/q 。它是一个矢量,现在以点电荷所产生的电场中各点的电场强度来说明其方向和大小是如何确定的。 如图1-1所示,O 点有一点电荷q ,我们任取一场点P ,记OP=r 。设想把一个正试探电荷q 0 放在P 点,根据库伦定律,它受的力为:F=kqq 0r 1/r 2 (r 1是沿OP 方向的单位向量),又由电场强度的定义式可得P 的场强为E =F/q 0=kq r 1/r 2 ,这表明若q>0,E 沿r 1方向;若q<0,E 沿-r 方向。E 与r 2 成反比,当r →无穷大时,E →0。 电场力是矢量,它服从矢量叠加原理。那么,电场 强度矢量是不是也服从呢?如果以F 1、F 2、…、F k 分别表示点电荷q 1、q 2、…、q k 单独存在时电场施予空间同一点上试探电荷q 0的力,则它们同时存在时,电场施予该点试探电荷的力为F 1、F 2、…、F k 的矢量和,即 图1-1

静电场中的电介质

3.1 填空题 3.1.1 电介质的极化分为( )和( )。 3.1.2 分子的正负电荷中心重合的电介质叫做( )电介质;在外电场作用下,分子的正负电荷中心发生相对位移形成( )。 3.1.3 如果电介质中各点的( )相同,这种介质为均匀电介质;满足( )关系的电介质称为各向同性电介质。 3.1.4 平行板电容器两极板间相距为0.2 mm ,其间充满了相对介电常数r ε=5.0的玻璃片,当 两极间电压为400 V 时,玻璃面上的束缚电荷面密度为( )。 3.1.5 一平行板电容器充电后断开电源,这时储存的能量为0w ,然后在两极板间充满相对介电常数为r ε的电介质,则电容器内储存的能量变为( )。 3.1.6 一平行板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为r ε的 各向同性均匀电介质,这时两极板上的电量是原来的( )倍;电场强度是原来的( )倍;电场能量是原来的( )倍。 3.1.7 两个电容器1和2,串联以后接上电动势恒定的电源充电。在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差( ),电容器1极板上的电量( )(填增大、减小、不变)。 3.1.8 一平行板电容器两板充满各向同性均匀电介质,已知相对介电常数为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D =( ),电场强度的大小E =( )。 3.2 选择题 3.2.1 两个相距很近而且等值异号的点电荷组成一个( )。 A :重心模型; B :电偶极子; C :等效偶极子; D :束缚电荷。 3.2.2 可以认为电中性分子中所有正电荷和所有负电荷分别集中于两个几何点上,这称为分 子的( ) A :电介质; B :电偶极子; C :重心模型; D :束缚电荷。 3.2.3 电偶极子的电偶极矩定义为( ) A :E p M ?=; B :l q p =; C :l q p ?=; D :l q p ?= 3.2.4 在电场E 的作用下,无极分子中正负电荷的重心向相反方向作微小位移, 使得分子偶 极矩的方向与场强E 一致,这种变化叫做( ) A :磁化; B :取向极化; C :位移极化; D :电磁感应。 3.2.5 在真空平行板电容器的中间平行插一片介质,当给电容器充电后,电容器内的场强为( ) A :介质内的电场强度为零; B :介质内与介质外的电场强度相等; C :介质内的场强比介质外的场强小; D :介质内的场强比介质外的场强大。 3.2.6 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。则下列说法中不正确的是( ) A :介质中的场强为真空中场强的r ε1 倍;

电偶极子和磁偶极子的对比讲解

电偶极子和磁偶极子的对比 目录 1引言 (1) 2定义 (1) 2.1电偶极子的定义 (1) 2.2磁偶极子的定义 (2) 3电偶极子和磁偶极子比较---主动方面 (2) 3.1电偶极子和磁偶极子的场分布 (2) 3.2电偶极子和磁偶极子辐射 (4) 4电偶极子和磁偶极子比较---被动方面 (4) 4.1电偶极子和磁偶极子在外场E和B中的力和力矩 (4)

4.2电偶极子和磁偶极子在外场中的相互作用能 (5) 5应用 (8) 5.1心脏的活动 (8) 5.2赫濨磁偶极子天线 (9) 6结论 (9) 参考文献:................................... 致谢......................................

电偶极子和磁偶极子的对比 摘要:本文介绍了电偶极子和磁偶极子模型的建立,并对两者在数学表达上的类似和内在结构土的不同所引起的差别作了讨论。这里的关键是通过电偶极子 和磁偶极子各方面的的性质做出了基本论述电偶极子和磁偶极子都是非常实用的物理模型,让同学们更好的认识电磁偶极子非常重要的事。在研究物质电磁性态时,用电偶极子和磁偶极子就能很好地说明极化和磁化现象,在研究电磁辐射时,偶极辐射不论在理论上或实际应用中都十分重要。由于电偶极子和磁偶极 子分别是复杂点体系和次体系的一级近似在数学表达上有不少的类似之处,使得研究更具更利,但应当认识到,这种类似只是形式上的,因为至今尚未有存在磁单极的实验证据,我们在进行类比并由此高清电偶极子和磁偶极子。 关键词:电偶极子;磁偶极子;相互作用力;相互作用能

1引言 电偶极子和磁偶极子都是非常实用的物理模型,让同学们更好的认识电磁偶极子非常重要的事,但数学公式较繁琐,导致初学者在认识上要产生障碍,使得教与学都功倍事半。应用它们往往能将复杂的问题大大简化又不失本质的东西例如,在研究物质电磁性态时,用电偶极子和磁偶极子就能很好地说明极化和磁化现象;在研究电磁辐射时,偶极辐射不论在理论上或实际应用中都十分重要由于电偶极子和磁偶极子分别是复杂电体系和磁体系的一级近似,,在数学表达上有不少类似之处,使得研究更具便利,但是应当认识到,这种类似只是形式上的,因为至今尚未有存在磁单极的实验证据,现有电磁理论的电磁对称是破缺的,所以我们在进行类比时要时刻记住偶极模型的根源,并由此搞清电偶极子 和磁偶极子的差别。研究电偶极子与磁偶极子在生活中的实际应用,围绕其性质及作用,进行科学性研究论述! 2定义 2.1电偶极子的定义 一个实体,它在距离充分大于本身几何尺寸的一切点处产生的电场强度都和一对等值异号的分开的点电荷所产生的电场强度相同。 电偶极子(electric dipole )是两个相距很近的等量异号点电荷组成的系 统。电偶极子的特征用电偶极距P= lq描述,其中I是两点电荷之间的距离,I 和P的方向规定由一q指向+ q。

静电场中的电介质

静电场中的电介质 (一)要求 1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义 2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系 3、掌握有介质时场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别 4、了解静电场的能量及能量密度 5、演示实验:介质对电容器电容的影响 (二)要点 1、电介质的极化 (1)电介质的电结构 (2)电介质的极化 2、极化强度矢量 (1)极化强度矢量 (2)极化电荷 (3)极化电荷体密度与面密度 3、有介质时的静电场方程 (1)电位移矢量

(2)介质中的高斯定理 (3)介质中的电场方程 *4、静电场的边值关系 5、静电场的能量和能量密度 (三)难点 求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等 § 3-1电介质的极化 一、介质中的电场强度 实验表明,电容器中填充介质后电容增大,增大程度由填充介质的相对介电常数£决定。由于引入外电场后,电介质表面出现电荷,产生附加电场比方向与外电场方向相反,削 弱了电介质内部的外电场,这样

f f f 4 E=E^ + E f 但 E t丰E‘,辰工On 二、电介质的极化 在外电场作用下电介质表面出现电荷的现象叫做电介质的极化,在表面出现的这种电荷叫极化电荷(束缚电荷)。 由于极化电荷比自由电荷少得多,极化电场比感应电场也小得多,因此介质内部合场强不为零但要注意极化电荷与自由电荷、极化电场与感应电场的区别。 §3-2极化强度矢量 一、极化的微观机制1无极分子的位移极化 在外电场作用下,无极分子正负电荷“中心”发生相对位移而出现极化电荷的现象,称为位移极化。 2、有极分子的取向极化 在外电场作用下,有极分子的电偶极矩受到电场的力矩而转向外电

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质 一、选择题 1. (★★)一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的 距离为a 处(a

用matlab数值分析电偶极子的等电势图和电场线图

合肥学院 创新课程设计报告 题目:用matlab分析电偶极子的等电势图和电场线系别:电子信息与电气工程系 专业:通信工程专业 班级: 1 4 姓名: 导师: 成绩: 2013 年 《通信技术综合创新课程设计》任务书

目录 电偶极子的等电势图和电场 (4) 一电偶极子原理以及相关知识 (4) 1.1 电偶极子定义 (4) 1.2 电偶极子原理 (4) 二演示程序 (7) 2.1电偶极子电势在matlab中的模拟 (7) 2.2电偶极子电场在matlab中的模拟 (9) 三结束语 (10) 四参考文献 (11)

电偶极子的等电势图和电场 一电偶极子原理以及相关知识 1.1 电偶极子定义 一个实体,它在距离充分大于本身几何尺寸的一切点处产生的电场强度都和一对等值异号的分开的点电荷所产生的电场强度相同。电偶极子(electric dipole)是两个相距很近的等量异号点电荷组成的系统。电偶极子的特征用电偶极距P=lq描述,其中l是两点电荷之间的距离,l和P的方向规定由-q指向+q。电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故简称电矩。如果外电场不均匀,除受力矩外,电偶极子还要受到平移作用。电偶极子产生的电场是构成它的正、负点电荷产生的电场之和。 1.2 电偶极子原理 两个点电荷q和-q间的距离为L。此电偶极子在场点 P 处产生的电位等于两个点电荷在该点的电位之和,即 (1) 图(1)表示中心位于坐标系原点上的一个电偶极子,它的轴线与Z轴重合,其中与分别是q和-q到 P 点的距离。

大学物理练习题 静电场中的电介质

练习八 静电场中的电介质 一、选择题 1. 极化强度P v 是量度介质极化程度的物理量,有一关系式为()E P v v 1r 0?=εε,电位移矢量公 式为P E D v v v +=0ε,则 (A ) 二公式适用于任何介质。 (B ) 二公式只适用于各向同性电介质。 (C ) 二公式只适用于各向同性且均匀的电介质。 (D ) 前者适用于各向同性电介质,后者适用于任何电介质。 2. 电极化强度P v (A ) 只与外电场有关。 (B ) 只与极化电荷产生的电场有关。 (C ) 与外场和极化电荷产生的电场都有关。 (D ) 只与介质本身的性质有关系,与电场无关。 3. 真空中有一半径为R ,带电量为Q 的导体球,测得距中心O 为r 处的A 点场强为() 30π4r r Q E A εv v =,现以A 为中心,再放上一个半径为ρ,相对电容率为ε r 的介质球,如图所示,此时下列各公式中正确的是 (A ) A 点的电场强度r εA A E E v v =′。 (B ) ∫∫=?S Q S D v v d 。 (C ) ∫∫?S S E v v d =Q /ε0。 (D ) 导体球面上的电荷面密度σ = Q /(4πR 2)。 4. 在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所 在处为球心作一球形闭合面,则对此球形闭合面: 电介质 (A ) 高斯定理成立,且可用它求出闭合面上各点的场强。 (B ) 高斯定理成立,但不能用它求出闭合面上各点的场强。 (C ) 由于电介质不对称分布,高斯定理不成立。 (D ) 即使电介质对称分布,高斯定理也不成立。 5. 关于高斯定理,下列说法中哪一个是正确的? (A ) 高斯面内不包围自由电荷,则面上各点电位移矢量D r 为零。 (B ) 高斯面上处处D r 为零,则面内必不存在自由电荷。 (C ) 高斯面的D r 通量仅与面内自由电荷有关。 (D ) 以上说法都不正确。 6. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A ) 起自正电荷,止于负电荷,不形成闭合线,不中断。 (B ) 任何两条电位移线互相平行。 (C ) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交。 (D ) 电位移线只出现在有电介质的空间。 7. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: (A ) ε0E 。 (B ) ε0εr E 。 (C ) εr E 。 (D ) (ε0εr ?ε0)E 。

电偶极子和磁偶极子的对比

电偶极子和磁偶极子的对比

目录 1 引言 (1) 2 定义 (1) 2.1 电偶极子的定义 (1) 2.2 磁偶极子的定义 (2) 3 电偶极子和磁偶极子比较---主动方面 (2) 3.1 电偶极子和磁偶极子的场分布 (2) 3.2 电偶极子和磁偶极子辐射 (4) 4 电偶极子和磁偶极子比较---被动方面 (4) 4.1 电偶极子和磁偶极子在外场E和B中的力和力矩 (4) 4.2 电偶极子和磁偶极子在外场中的相互作用能 (5) 5 应用 (8) 5.1 心脏的活动 (8) 5.2 赫濨磁偶极子天线 (9) 6 结论 (9) 参考文献:........................................................... 致谢................................................................

电偶极子和磁偶极子的对比 摘要:本文介绍了电偶极子和磁偶极子模型的建立, 并对两者在数学表达上的类似和内在结构土的不同所引起的差别作了讨论。这里的关键是通过电偶极子和磁偶极子各方面的的性质做出了基本论述电偶极子和磁偶极子都是非常实用的物理模型,让同学们更好的认识电磁偶极子非常重要的事。在研究物质电磁性态时,用电偶极子和磁偶极子就能很好地说明极化和磁化现象,在研究电磁辐射时,偶极辐射不论在理论上或实际应用中都十分重要。由于电偶极子和磁偶极子分别是复杂点体系和次体系的一级近似在数学表达上有不少的类似之处,使得研究更具更利,但应当认识到,这种类似只是形式上的,因为至今尚未有存在磁单极的实验证据,我们在进行类比并由此高清电偶极子和磁偶极子。 关键词:电偶极子;磁偶极子;相互作用力;相互作用能

偶极子1解读

偶极子[编辑] 维基百科,自由的百科全书 (重定向自偶极矩) 地球磁场可以近似为一个磁偶极子的磁场。但是,图内的N 和S 符号分别标示地球的地理北极和地理南极。这标示法很容易引起困惑。实际而言,地球的磁偶极矩的方向,是从地球位于地理北极附近的地磁北极,指向位于地理南极附近的地磁南极;而磁偶极子的方向则是从指南极指向指北极。 电极偶子的等值线图。等值曲面清楚地区分于图内。 在电磁学里,有两种偶极子(dipole):电偶极子是两个分隔一段距离,电量相等,正负相反的电荷。磁偶极子是一圈封闭循环的电流,例如一个有常定电流运行的线圈,称为载流回路。偶极子的性质可以用它的偶极矩描述。 电偶极矩()由负电荷指向正电荷,大小等于正电荷量乘以正负电荷之间的距离。磁偶极矩()的方向,根据右手法则,是大拇指从载流回路的平面指出的方向,而其它拇指则指向电流运行方向,磁偶极矩的大小等于电流乘以线圈面积。 除了载流回路以外,电子和许多基本粒子都拥有磁偶极矩。它们都会产生磁场,与一个非常小的载流回路产生的磁场完全相同。但是,现时大多数的科学观点认为这个磁偶极矩是电子的自然性质,而非由载流回路生成。 永久磁铁的磁偶极矩来自于电子内禀的磁偶极矩。长条形的永久磁铁称为条形磁铁,其两端称为指北极和指南极,其磁偶极矩的方向是由指南极朝向指北极。这常规与地球的磁偶极矩恰巧相反:地球的磁偶极矩的方向是从地球的地磁北极指向地磁南极。地磁北极位于北极附近,实际上是指南极,会吸引磁铁的指北极;而地磁南极位于南极附近,实际上是指北极,会吸引磁铁的指南极。罗盘磁针的指北极会指向地磁北极;条形磁铁可以当作罗盘使用,条形磁铁的指北极会指向地磁北极。

电偶极子电势电场matlab模拟

利用matlab 绘制电偶极子在3维空间电势、电场的分布 电偶极子(electric dipole )是两个相距很近的等量异号点电荷组成的系统,具体模型如图1所示,两点电荷+q 和-q 相距为d ,且r >>d 。本文主要对电偶极子在空间中产生的电势,电场分布进行计算机模拟。 图1 电偶极子 1 电偶极子的电势、电场计算 应用叠加原理,得场中任意点P 的点位为 012114q φπεr r ??=- ??? 应用关系式=-E φ?,可以求得位于原点的电偶极子在离它r 远处产生的电场强度。 2 电偶极子电势、电场分布在matlab 中的模拟 电势分布模拟,源程序如下: q=1; d=2; e0=8.854187817*10.^-12; x=-3:0.1:3; y=-3:0.1:3; [x,y]=meshgrid(x,y); z=q.*(1./sqrt((y-1).^2+x.^2)-1./sqrt((y+1).^2+x.^2))./(4*pi*e0); mesh(x,y,z); 运行结果如下:

电场分布,源程序如下: q=1; d=2; e0=8.854187817*10.^-12; x=-3:0.1:3; y=-3:0.1:3; [x,y]=meshgrid(x,y); z=q.*(1./sqrt((y-1).^2+x.^2+0.01)-1./sqrt((y+1).^2+x.^2+0.01))./(4*pi*e0); contour(x,y,z); [px,py]=gradient(z); hold on streamslice(x,y,px,py,'k') 运行结果如下:

电偶极子

§2.7 电偶极子 一、电偶极子及其电偶极矩 1.电偶极子——两个相距很近的等量异号点电荷所组成的带电系统。 在原子物理学、电介质理论和无线电理论中,电偶极子是很重要的模型。原子中带正电的原子核和带负电的电子。电介质中有一类电介质分子的正、负电荷中心不重合,形成电偶极子,称为有极分子;另一类电介质分子的正、负电荷中心重合,称为无极分子,但在外电场作用下会相对位移,也形成电偶极子。 应用有偶极子天线,以及天线的辐射等现象,可以用振荡偶极子 t j e e p ω来表示,研究从稳恒到 X 光频电磁场作用下电介质的色 散和吸收,等等具有广泛地应用。 将偶极子概念加以推广,可有多极子,其中最重要的是四极子。 电偶极子的特征:点电荷的电荷量(+q 、-q), 两个点电荷的距离---电偶极子的轴线l :从电偶极子的负电 荷到正电荷的一个矢径表示表示。 可集成为一个特征量----电偶极矩来表征电偶极子整体电性质,即用电偶 极矩表示电偶极子的大小和空间取向: 2. 电偶极子的电偶极矩——电偶极子中的一个电荷的电量与轴线的乘积,简称电矩。记为: l q p = 或l q p e = (相对于磁矩m p ) (1) p 是矢量,它是表征电偶极子整体电性质的重要物理量, 大小: 等于乘积, 方向: 规定由-q 指向+q , 单位:库·米( )---国际制单位 德拜(debye)-----微观物理学中常用的单位为;1德拜=3.336×10-30C ·m ,它相当于典型分子内部核间距离的十分之一(约2×10-11m)同一个电子的电荷e =1.6×10-19C 的乘积。 电偶极子在外电场中受力矩作用而旋转,使其电偶极矩转向外电场方向。电偶极矩就是电偶极子在单位外电场下可能受到的最大力矩,故

matlab结题报告(电偶极子的辐射场)

matlab结题报告(电偶极子的辐射场)

————————————————————————————————作者:————————————————————————————————日期:

电偶极子的辐射场 背景与意义: 对于一个带电体来说,如果正负电荷呈电偶分布,正、负电荷的重心不重合,那么讨论这种带电体的电场时,可以把它模拟成两个相距很近的等量异号的点电荷+q 和?q ,这样的带电系统称为电偶极子。实际生活中电偶极子的例子随处可见,例如,在研究电解质极化时,采用重心模型描述后电解质分子可等效为电偶极子;在电磁波的发射和吸收中电子做周期性运动形成振荡电偶极子;生物体所有的功能和活动都以生物电的形式涉及到电偶极子的电场等,当天线长度l 远小于波长时,它的辐射就是电偶极辐射。因此,研究电偶极子在空间激发的电场问题具有重要意义。我们主要讨论宏观电荷系统在其线度远小于波长情形下的辐射问题。 基本内容介绍: 1. 计算辐射场的一般公式 A B ??= (1) B k ic E ??= (2) 其中 (3) 若电流J 是一定频率的交变电流,有 (4) 代入(3)式得 , (5) 式中 为波数。令 有 ')'(π4μ)(0dV r e x J x A V ikr ?= (6) 2. 失势的展开 在失势公式(6)中,存在三个线度:电荷分布区域的线度l ,它决定积分区 的大小;波长 以及电荷到场点的距离r 。我们研究分布于一个小区域的电流所产生的辐射。所谓小区域是指它的线度远小于波长 以及观察距离r ,即 λ<

matlab结题报告(电偶极子的辐射场)

电偶极子得辐射场 背景与意义: 对于一个带电体来说,如果正负电荷呈电偶分布,正、负电荷得重心不重合,那么讨论这种带电体得电场时,可以把它模拟成两个相距很近得等量异号得点电荷+q 与?q,这样得带电系统称为电偶极子。实际生活中电偶极子得例子随处可见,例如,在研究电解质极化时,采用重心模型描述后电解质分子可等效为电偶极子;在电磁波得发射与吸收中电子做周期性运动形成振荡电偶极子;生物体所有得功能与活动都以生物电得形式涉及到电偶极子得电场等,当天线长度l远小于波长时,它得辐射就就是电偶极辐射。因此,研究电偶极子在空间激发得电场问题具有重要意义。我们主要讨论宏观电荷系统在其线度远小于波长情形下得辐射问题。 基本内容介绍: 1.计算辐射场得一般公式 (1) (2) 其中 (3) 若电流J就是一定频率得交变电流,有 (4) 代入(3)式得 (5) 式中为波数。令 有 (6) 2.失势得展开 在失势公式(6)中,存在三个线度:电荷分布区域得线度l,它决定积分区 得大小;波长以及电荷到场点得距离r。我们研究分布于一个小区域得电流所产生得辐射。所谓小区域就是指它得线度远小于波长以及观察距离r,即这种情况下,可以讲失势做展开得 (7)

3.电偶极辐射 我们研究展开式得第一项 (8) 先瞧电流密度体积分得意义。电流就是有运动得带电粒子组成得。设单位体积内有个带电荷为,速度为得粒子,则它们各自对电流密度得贡献为 ,因此 其中求与符号表示对各类带电粒子求与。上式也等于对单位体积内得所有带电粒子得qv求与。因此 式中求与符号表示对区域内所有带电粒子求与。但 式中就是电荷系统得电偶极矩。因此 如右图所示,当两个相距为得导体球组成,两个 导体之间由导线连接。当导线上有交变电流I时,两导体上得电荷就交替 变化,形成一个振荡电偶极子。这系统得电偶极矩为 当导线上有电流I时,Q得变化率为 因而体系得电偶极矩变化率为 (9) 由此可得,(8)式代表振荡电偶极矩产生得辐射 (10) 在计算电磁场时,需要对作用算符。我们只保留1/R 低次项,因而算符不需作用到分母得R上,而仅需作用到因子上,作用结果相当于代换 由此得辐射场 (11) (12) 写成分量形式得 (13) (14)

心脏电场的电偶极子模型

心脏的电偶极子模型和心电图 姓名刘开元学号PB11206017 论文摘要: 心电图在现代医学对心脏的诊疗中占有重要地位,本文综述了心电仿真中一个重要的因素-心脏电兴奋源的模型,简要分析了心脏视为偶极子模型的电磁学原理和建立方法、应用、发展和不足,并重点分析了电偶极子模型为基础的单级导通技术的电磁学基础。 论文目录: 1.心肌细胞的细胞膜电位 2.心脏单电偶极子模型的分析 3.心电图的单级导通技术 4.心脏电偶极子模型的进一步思考和可能的完善 引言: 在心电图的测量中,最为关键的莫过于对心脏电模型的构建.现在的主流模型--单电偶极子模型是如何由心脏的结构抽象而来?有何优点和缺陷?如何进一步的改进和分析?本文将简单讨论该模型的电磁学基础和以此为基础的单极导通技术. 一.心肌细胞的细胞膜电位 为了探究心脏的电偶极子模型,我们有必要先简单分析一下心肌细胞的细胞膜电位. 心肌细胞生物电产生的基础是心肌细胞跨膜电位取决于离子的跨膜电-化学梯度和膜对离子的选择性通透。

心室肌细胞跨膜电位及其产生机理: [1] 静息电位:心室肌细胞在静息时,细胞膜处于内正外负的极化状态,其主要由K+外流形成。 [2] 动作电位:心室肌动作电位的全过程包括除极过程的0期和复极过程的1、2、3、4等四个时期。 0期:心室肌细胞兴奋时,膜内电位由静息状态时的-90mV上升到+30mV左右,构成了动作电位的上升支,称为除极过程(0期)。它主要由Na+内流形成。 1期:在复极初期,心室肌细胞内电位由+30mV迅速下降到0mV左右,主要由K+外流形成。 2期:1期复极到0mV左右,此时的膜电位下降非常缓慢它主要由Ca2+内流和K+外流共同形成。 3期:此期心室肌细胞膜复极速度加快,膜电位由0mV左右快速下降到-90mV,历时约100~150ms。主要由K+的外向离子流(Ik1和Ik、Ik也称Ix)形成。 4期:4期是3期复极完毕,膜电位基本上稳定于静息电位水平,心肌细胞已处于静息状态,故又称静息期。 在心脏中细胞的兴奋是不等同的,如下图所示: 心脏的收缩从窦房结开始,每一心动周期中,由窦房结产生的兴奋,依次传向心房和心室.通过心肌细胞间的润盘结构,窦房结的收缩会向周围的细胞传导从而诱发全心脏的收缩.从传导的次序不同,由上图可以看出心脏的电位变化是不同时的.正是这些差别产生了人体表面的电势变化. 从上述内容可以看出,在心肌细胞受到刺激以及其后恢复原状的过程中,将形成一个变化的电偶极矩,在其周围产生电场,并引起空间电势的变化。

13静电场中的导体和电介质习题详解(精)

第1页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1和 r2的金属球壳。设无穷远处为电势零点,则球壳内半径为r的P点处的场强和电势为[] (A)E= Q4πε0r 2 , U=Q4πε0r Q4πε0r ; (B)E=0, U=(D)E=0, U= Q4πε0r1 Q4πε0r2 ;(C)E=0, U=; 。 答案:D 解:由静电平衡条件得金属壳内E=0;外球壳内、外表面分别带电为-Q和+Q,根据电势叠加原理得

U= Q4πε0r + -Q4πε0r + Q4πε0r2 = Q4πε0r2 2.半径为R的金属球与地连接,在与球心O相距d=2R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上的感应电荷q'为[] (A)0;答案:C 解:导体球接地,球心处电势为零,即U0=球心的距离相等,均为R),由此解得q'=- 3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(OP=r)的场强和电位移的大小分别为[](A)E=(C)E=答案:C 解:由高斯定理得电位移 D= 4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半 Q4πr 2 (B) q2 ;(C)- q2 ;(D)-q。 q4πε0dRd +q2 q'4πε0R =0(球面上所有感应电荷到 q=- 。

Q4πε0εrr 2 ,D= Q4πε0r 2 ;(B)E= Q4πεrr 2 ,D= Q4πr 2 ; Q4πε0r 2 ,D= Q4πr 2 ;(D)E= Q4πε0r 2 ,D= Q4πε0r 2 。 ,而 E= D ε0 = Q4πε0r 2 。 第2页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 为空气,如图所示。当两极板带上恒定的等量异号电荷时,有一个 质量为m、带电量为+q的质点,在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[]

matlab结题报告(电偶极子的辐射场)

电偶极子的辐射场 背景与意义: 对于一个带电体来说,如果正负电荷呈电偶分布,正、负电荷的重心不重合,那么讨论这种带电体的电场时,可以把它模拟成两个相距很近的等量异号的点电荷+q 和?q ,这样的带电系统称为电偶极子。实际生活中电偶极子的例子随处可见,例如,在研究电解质极化时,采用重心模型描述后电解质分子可等效为电偶极子;在电磁波的发射和吸收中电子做周期性运动形成振荡电偶极子;生物体所有的功能和活动都以生物电的形式涉及到电偶极子的电场等,当天线长度l 远小于波长时,它的辐射就是电偶极辐射。因此,研究电偶极子在空间激发的电场问题具有重要意义。我们主要讨论宏观电荷系统在其线度远小于波长情形下的辐射问题。 基本内容介绍: 1. 计算辐射场的一般公式 A B ??=(1) B k ic E ??=(2) 其中 A (x , t)=μ04π J (x , ,t?r c )r V dV , (3) 若电流J 是一定频率的交变电流,有 J x , ,t =J (x , )e ?i ωt (4) 代入(3)式得 A x ,, t =μ04π J (x , )e i (kr ?ωt)r V dV , (5) 式中k =ω/c 为波数。令 A x ,t =A (x )e ?i ωt 有 ')'(π4μ)(0 dV r e x J x A V ikr ?= (6) 2. 失势的展开 在失势公式(6)中,存在三个线度:电荷分布区域的线度l ,它决定积分区 x , 的大小;波长λ=2π/k 以及电荷到场点的距离r 。我们研究分布于一个小区域的电流所产生的辐射。所谓小区域是指它的线度远小于波长λ以及观察距离r ,即 λ<

第五章--静电场中的电介质

第5章静电场中的电介质 ◆本章学习目标 理解:电介质的概念和分类;电介质对电场的影响;电介质的极化和极化电荷;D的高斯定理;电容器和电容的概念,电容器的能量。 ◆本章教学内容 1.电介质对电场的影响 2.电介质的极化 3.D的高斯定律 4.电容器和它的电容 5.电容器的能量 ◆本章重点 用D的高斯定理计算电介质中静电场的分布和电介质的极化电荷密度; 电容和电容器能量的计算。 ◆本章难点 电介质的极化机制、电位移矢量。

5. 1 电介质对电场的影响 如果介质是均匀的,极化的介质内部仍然没有净电荷,但介质的表面会出现面电荷,称为极化电荷。极化电荷不是自由电荷,不能自由流动(有时也称为束缚电荷),但极化电荷仍能产生一个附加电场使介质中的电场减小。 介质中的电场是自由电荷电场与极化电荷的电场迭加的结果。下面考虑一种比较简单而常见的情况,即各向同性介质均匀地充满电场的情况来定量地说明这种迭加的规律。所谓介质均匀地充满电场,举例来说,对于平板电容器,只需要一种各向同性的均匀介质充满两板之间就够了;而对于点电荷,原则上要充满到无穷远的地方。实验证明,若自由电荷的分布不变,当介质均匀地充满电场后,介质中任一点的和场的电场强度E为原来真空中的电场强度的分之一,即 其中为介质的相对介电常量,取决于介质的电学性质。对于“真空”,,对于空气,近似有,对其它介质,。 加入介质以后场强的变化是由于介质中产生的极化电荷激发的附加电场参与迭加而形成的。在介质均匀地充满电场这种简单条件下,我们可以通过真空中的电场和介质中的电场的比较,由自由电荷分布推算出极化电荷的分布。以点电荷为例,真空中的点电荷在其周围空间任一点p激发的电场为 充满介质以后,点电荷本身激发的场强并不会因极化电荷的出现而改变,即仍为上式。极化电荷是分布在介质表面上,即介质与点电荷交界面上。这是一个很小的范围,从观察p看去,极化电荷也是一个点电荷,设其电量为,它在p 点激发的电场应为 介质中的场强应是与迭加的结果

电偶极子论文

Electric Dipole’s R﹑d Orders Of Magnitude Conditions By KanSen In the calculation of the electric intensity E or potential V of a electric dipole, If meet R > > d, We often take the approximate calculation to simplify calculations, But, only when what order of magnitude condition of R and d is meeted, can we use approximate calculation ,whose error is withen our acceptable range. Then we will analysise this problem; In order to study the effect of the relationship of R and D orders of magnitude on the error of the approximate calculation, We first use the accurate calculation formula to calculate the potential V of a electric dipole on a certain point. Then we use the approximate calculation formula to calculate the potential on that point.Next we can observe the difference between the theoretical result and approximate result. y Electric dipole model

第9章_静电场中的导体和电介质

第9章 静电场中的导体和电介质 什么是导体?什么是电介质? 9.1 静电场中的导体 静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。 若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加电场,其电场强度'E r 和外在的电场 强度 0E r 的方向相反。这样,金属板内部的电场 强度E r 就是0E r 和'E r 的叠加。开始时0'E E <, 金属板内部的电场强度不为零,自由电子会不断

地向左移动,从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平 衡状态。 当导体处于静电平衡状态时,满足以下条件: 从场强角度看: ①导体内任一点,场强0=E (否则内部电荷运动); ②导体表面上任一点E 与表面垂直(否则导体表面电荷运动)。 从电势角度也可以把上述结论说成: ①?导体内各点电势相等; ②?导体表面为等势面。 用一句话说:静电平衡时导体为等势体。 已知导体静电平衡时电场分布,应用高斯定理可分析电荷分布。 01 e i S s E dS q e F =??òv v ?内 1、导体内无空腔时电荷分布(实心带电导体) 如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑?= ?内 S S q s d E 0 1 ε 导体静电平衡时其内0=E , ∴ 0=??s d E S , 即0=∑内 S q 。 S 面是任意的,∴导体内无净电荷存在。 结论:静电平衡时,净电荷都分布在导体表面上。 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况:电荷只分布在导体外表面 如图所示,导体电量为Q ,在其内作一高斯面1S ,高斯定理为:1 01 S S E ds q e ??ò r r ?内 静电平衡时,导体内 0=E ∴ 0=∑内 S q ,即1 S 内净电荷为0 1S 是任意的,所以导体内无净电荷,电荷只分布在导体表面上。 内表面电荷分布情况:

相关文档
相关文档 最新文档