文档库 最新最全的文档下载
当前位置:文档库 › 步进电机的基本原理

步进电机的基本原理

步进电机的基本原理
步进电机的基本原理

步进电机的基本原理

步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。

现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度

反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。

混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。

步进电机的一些基本参数:

电机固有步距角:

它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这个步距角可以称之为‘电机固有步距角’,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。

步进电机的相数:

是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72°。在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用细分驱动器,则‘相数’将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。

保持转矩(HOLDING TORQUE):

是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。

DETENT TORQUE:

是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。

步进电机的一些特点:

1.一般步进电机的精度为步进角的3-5%,且不累积。

2.步进电机外表允许的最高温度。

步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

3.步进电机的力矩会随转速的升高而下降。

当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

4.步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。

步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。

维科特57行星减速步进电机

步进电机是一种运用广泛的减速设备,主要传动结构有行星齿轮箱(减速器)、步进电机(驱动电机)组装而成,行星减速步进电机通常简称为行星减速电机或者步进电机,带减速功能的。 下面维科特主要给大家介绍57行星减速步进电机的相关信 息.57行星减速步进电机气隙小转矩大,具有较高的抗共振特性,及发热小的优势。 一、标准型57行星减速步进电机 材质:合金钢切削齿轮,滚珠轴承支撑,标配日本信浓步进电机。工作寿命8000小时。径向负载≤400N,轴向负载≤300N。

一级减速(减速比5、10)最大负载25NM,背隙≤15弧分,效率95%; 二级减速(减速比15~100)最大负载45NM,背隙≤25弧分,效率90%。 57行星减速箱和57步进电机法兰尺寸一样,电机力矩不够的情况下,不用改法兰尺寸可以直接改用减速电机。 下面表格中的额定转矩和速度范围只是其中一个速度点的参数,在减速箱的最大负载的范围内,降低减速电机的工作转速,可以达到更大的工作力矩。驱动电压增加或者降低会相应增加或者降低对应工作速度下的力矩。为了达到比较好的噪声效果,建议减速箱的输入转速不超过600rpm。

二、薄型57行星减速步进电机 材质:合金钢切削齿轮,滚珠轴承支撑,标配日本信浓步进电机。工作寿命8000小时。径向负载≤400N,轴向负载≤300N。 一级减速(减速比5、10)最大负载25NM,背隙≤15弧分,效率95%; 二级减速(减速比15~100)最大负载45NM,背隙≤25弧分,效率90%。 薄型57行星减速步进电机除了常用的轴径10的,还可以定制轴径9和轴径12的产品。57行星减速箱和57步进电机法兰尺寸一样,电机力矩不够的情况下,不用改法兰尺寸可以直接改用减速电机。 下面表格中的额定转矩和速度范围只是其中一个速度点的参数,在减速箱的最大负载的范围内,降低减速电机的工作转速,可以达到更大的工作力矩。驱动电压增加或者降低会相应增加或者降低对应工作速度下的力矩。为了达到比较好的噪声效果,建议减速箱的输入转速不超过600rpm。

步进电机工作和控制原理

步进电机工作和控制原理 一、综述 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有 0.1N·M~40N·M。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て

步进电机的工作原理

1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式 步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的4号齿就和C、D相 绕组磁极产生错齿,2、5号齿就和D 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图、b、c所示: a. 单四拍 b. 双四拍c八拍 51单片机驱动步进电机的方法。 驱动电压12V,步进角为度 . 一圈 360 度 , 需要 48 个脉冲完成!!! 该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。采用51驱动ULN2003的方法进行驱动。 ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。要解决这个问题,必须采用加减速的办法。就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。这就是我们常说的“加减速”方法。 步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。 所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。加速和减速的原理是一样的。以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。 步电机系统解决方案

加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。使用单片机或者PLC,都能够实现加减速控制。对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。通常,完成步进电机的加减速时间为300ms以上。如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以 步电机系统解决方案

五线四相步进电机简介

1、概念 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 【开环控制系统:不将控制的结果反馈回来影响当前控制的系统 举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起已对按开关的这个活动没有影响;投篮——篮球出手后就无法再继续对其控制,无论球进与否,球出手的一瞬间控制活动即结束。 闭环控制系统:可以将控制的结果反馈回来与希望值比较,并根据它们的误差调整控制作用的系统 举例:调节水龙头——首先在头脑中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的用手进行调节形成一个反馈闭环控制;骑自行车——同理,不断的修正行进的方向与速度形成闭环控制。 开环闭环的区别:1、有无反馈;2、是否对当前控制起作用。开环控制一般是在瞬间就完成的控制活动,闭环控制一定会持续一定的时间,可以借此判断, 投篮第一次投篮投近了第二次投的时候用力一些,这也是一种反馈但不会对第一次产生影响了,所以是开环控制】 步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。 【所谓时序,就是内存的时钟周期数值,脉冲信号经过上升再下降,到下一次上升之前叫做一个时钟周期,随着内存频率提升,这个周期会变短。例如CL9的意思就是CL这个操作的时间是9个时钟周期。 时序电路,是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。 如触发器、锁存器、计数器、移位寄存器、存储器等电路都是时序电路的典型器件,时序逻辑电路的状态是由存储电路来记忆和表示的。虽然组合逻辑电路能够很好地处理像加、减等这样的操作,但是要单独使用组合逻辑电路,使操作按照一定的顺序执行,需要串联起许多组合逻辑电路,而要通过硬件实现这种电路代价是很大的,并且灵活性也很差。为了实现一种有效而且灵活的操作序列,我们需要构造一种能够存储各种操作之间的信息的电路,我们称这种电路为时序电路。】 【步进电机、直流电机和无刷直流电机的主要区别在于他们的驱动方式。步进电机是以步阶方式分段移动,直流电机和无刷直流电机通常采用连续移动的控制方式。步进电机采用直接控制方式,它的主要命令和控制变量都是步阶位置。直流电机则是以电机电压为控制变量,以位置或速度为命令变量。

步进电机的控制原理及其单片机控制实现

步进电机的控制原理及其单片机控制实现 一前言 步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统和精密机械等领域。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。 步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。 二 1.步进电机的控制原理 步进电机2个相邻磁极之间的夹角为60°。线圈绕过相对的2个磁极,构成一相(A-A′,B-B′,C-C′)。磁极上有5个均匀分布的矩形小齿,转子上没有绕组,而有40个小齿均匀分布在其圆周上,且相邻2个齿之间的夹角为9°当某组绕组通电时,相应的2个磁极就分别形成N-S极,产生磁场,并与转子形成磁路。如果这时定子的小齿与转子没有对齐,则在磁场的作用下转子将转动一定的角度,使转子齿与定子齿对齐,从而使步进电机向前“走”一步。 2. 步进电机的控制方式 如果通过单片机按顺序给绕组施加有序的脉冲电流,就可以控制电机的转动,从而实现数字→角度的转换。转动的角度大小与施加的脉冲数成正比,转动的速度与脉冲频率成正比,而转动方向则与脉冲的顺序有关。以三相步进电机为例,电流脉冲的施加共有3种方式。(1)单相三拍方式(按单相绕组施加电流脉冲):→A→B→C→正转;→A→C→B→反转。(2)双相三拍方式(按双相绕组施加电流脉冲):→AB→BC→CA→正转;→AC→CB→AB→反转。(3)三相六拍方式(单相绕组和双相绕组交替施加电流脉冲):→A→AB→B→BC→C→CA→正转;→A→AC→C→CB→B→BA→反转。单相三拍方式的每一拍步进角为3°,三相六拍的步进角则为1.5°,因此,在三相六拍下,步进电机的运行反转平稳柔和,但在同样的运行角度与速度下,三相六拍驱动脉冲的频率需提高1倍,对驱动开关管的开关特性要求较高。 3. 步进电机的驱动方式 步进电机常用的驱动方式是全电压驱动,即在电机移步与锁步时都加载额定电压。为了防止电机过流及改善驱动特性,需加限流电阻。由于步进电机锁步时,限流电阻要消耗掉大量的功率,故限流电阻要有较大的功率容量,并且开关管也要有较高的负载能力。步进电机的另一种驱动方式是高低压驱动,即在电机移步时,加额定或超过额定值的电压,以便在较大的电流驱动下,使电机快速移步;而在锁步时,则加低于额定值的电压,只让电机绕组流过锁步所需的电流值。这样,既可以减少限流电阻的功率消耗,又可以提高电机的运行速度,但这种驱动方式的电路要复杂一些。驱动脉冲的分配可以使用硬件方法,即用脉冲分配器实现。现在,脉冲分配器已经标准化、芯片化,市场上可以买到。但硬件方法结构复杂,成本也较高。步进电机控制(包括控制脉冲的产生和分配)也可以使用软件方法,即用单片机实现,下面给出具体的使用单片机以软件方式驱动步进电机的实现方法。 三步进电机的单片机控制 1. 双相三拍控制

四相八拍步进电机调速

目录 引言 (1) 第1章绪论 (2) 1.1步进电机的概述 (2) 1.1.1 步进电机的特点 (2) 1.1.2步进电机的工作原理简述 (2) 1.2四相八拍步进电机 (2) 1.2.1 四相步进电机工作原理 (2) 1.2.2 八拍得工作方式 (4) 1.3单片机概述 (4) 1.3.1 单片机原理简述 (4) 1.3.2 8031单片机 (5) 1.4总体方案设计 (5) 1.4.1 系统的组成 (5) 1.4.2 系统的工作原理 (6) 第2章系统软件设计 (7) 2.1显示子程序的设计 (7) 2.2键盘子程序的设计 (8) 2.3正反转程序流程图 (11) 2.3.1 正反转程序流程图 (11) 2.3.2 转速快慢程序流程图 (14) 2.4定时中断流程图 (17) 2.5语音报警系统 (19) 2.6主程序设计 (20) 参考文献 (23) 致谢 (24)

引言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本设计方案中采用单片机内部的定时器改变脉冲的频率从而实现对步进电机的转速进行控制,实现电机调速与正反转的功能。 关键词:步进电机,单片机,调速系统

A步进电机四相八拍

一.方案设计 本设计采用电压为DC12V的四相八拍步进电机35BYJ46型电机,用ULN2803作为步进电动机驱动电路主芯片,以8255A作为8088并行输出接口,8088对步进电机的控制信号则通过8255A送到ULN2803. 关于转向与转速,通过查表的方式实现,以逐次递增方向查表,依次输出表中数据,则步进电机正转;以逐次递减方向查表,则步进电机反转,即通过一个表实现步进电机的正转与反转。转速则通过调用延时子程序,当调用延时较长的子程序时,则步进电机转速慢,当调用延时较短的子程序时,步进电机转速加快。 二、硬件系统的基本原理 在工业控制系统里步进电动机是主要的控制元件之一。步进电机具有快速启动停止,精确定位和能够使用数字信号进行控制,能够实现脉冲-角度转换的特点,因此得到广泛的应用。在使用步进电机的控制系统里,脉冲分配器产生周期的控制脉冲序列,步进电机驱动器每接收一个脉冲就控制步进电机沿给定方向步进一步。 实验使用型号为35BYJ46的四相步进电机,采用四相八拍控制方式工作。步进电机的转角和转动方向取决于各相中通电脉冲的个数和顺序。8088控制机控制步进电机的电路见图1-1。计算机将表1-1所示的各种通电方式转换成相应的状态控制字,通过计算机将各种状态字依次送到接口电路,并根据速度的要求作相应的延时处理。由接口电路输出所需的控制脉冲通过驱动电路路使步进电机按要求动作。驱动电路使用ULN2803A达林顿晶体管,反相驱动,驱动电流可以达到500mA。驱动电路的作用是对控制脉冲进行放大,产生步进电机工作所需要的激励电流。

图1-1 步进电机控制实验原理图 35BYJ46型步进电机使用DC12V 电压,采用四相八拍控制相序。励磁线圈和励磁顺序如图1-2,控制相序如表1-1。表中的PB10~PB13对应并行接口8055的B 口0~3位。如果使用8255B 口的其它位则相应的状态字也要改变。 表1-1 步进电机四相八拍相序表 步 序 相 序 通电相 对应PB 口的输出值 (状态字) PB13 PB12 PB11 PB10 1 0 0 0 1 A 01H 2 0 0 1 1 AB 03H 3 0 0 1 0 B 02H 4 0 1 1 0 BC 06H 5 0 1 0 0 C 04H 6 1 1 0 0 CD 0CH 7 1 0 0 0 D 08H 8 1 0 1 DA 09H 1 2 3 4 5 6 7 8 5 + + + + + + + + 4 - - - 3 - - - 5 (黑) 4 (黄) 3 (棕) 2 (蓝) 1 (红) +12V A ’ B ’ C ’ D ’ A B C D PB0 PB1 PB2 PB3 8255 驱动单元 步进电动机

步进电机的控制1

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 自动控制原理课程设计报告 设计题目: 单位(二级学院):自动化学院 学生姓名: 专业:自动化 班级: 学号: 指导教师: 设计时间:2010 年 6 月 重庆邮电大学自动化学院制

目录 目录 (2) 一、设计题目 (3) 1题目内容 (3) 2实现目标 (3) 3设计要求 (3) 4 设计安排 (3) 二、设计报告正文 (3) 1步进电机的概论 (4) 2步进电机的驱动控制系统 (6) 3系统设计思路 (10) 4步进电机的控制电路 (13) 三、设计总结 (15) 四、参考文献 (16)

一、设计题目 1题目内容 基于51单片机的步进电机调速设计 2实现目标 1)具有与PC机串口通信的功能; 2)具有与数码管显示或者LED指示灯显示状态(数码管显示的速度并不代表电 机实际速度,只是一个感性的认识) 3设计要求 1)绘制原理图,PCB; 2)完成单片机所有代码编写; 3)设计PC机简易显示界面; 4设计安排 三个人一组,为期一周,小组成员合作,共同完成设计要求。 二、设计报告正文 摘要:步进电机是一种将电脉冲转换成相应角位移或者线位移的电磁机械装置。在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。它具有快速启停能力,在电机的负荷不超过它能提供的动态转矩时,可以通过输入脉冲来控制它在一瞬间的启动或者停止。由于其精确性以及其良好的性能在实际当中得到了广泛的应用。 本文首先介绍了步进电机的分类、技术指标、步进电机的工作原理以及步进电机

(整理)四相步进电机原理图.

四相步进电机原理图 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c 所示:

a. 单四拍 b. 双 四 c八拍 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 步进电机驱动器系统电路原理如图3: 图3 步进电机驱动器系统电路原理图 AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。AT89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

步进电动机的结构与工作原理

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。

A 相通电使转子1、3齿和AA' 对齐。 图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接和组数的区别。

蜗轮减速步进电机产品参数与应用

蜗轮减速步进电机是一种小功率微型减速电机,主要由蜗轮齿轮箱、步进电机组装而成,这类蜗轮减速步进电机的输出功率在50W以下,电压在24V以下的小功率减速器,通常跟进不同运用领域、设备中,采用定制技术参数开发而成——非标减速机;广泛运用在智能家居、智能汽车、智能通讯、电子产品、机器人传动、工业自动化领域等; 蜗轮减速步进电机参数 电压范围:12 -24VDC 旋转方向:cc&ccw 频率:2400PPS 行程:15-25DM 时间:0.2-1.5S 空载转速:按需定制 空载电流:按需定制 噪音:稳定后低于42db 产品分类:智能家居传动蜗轮减速电机 额定电压:6V 空载转速:45±20% 空载电流:300mA MAX 额定负载力矩:1000g.cm 额定负载电流:600mA MAX 堵转力矩:3g.cm REF 反驱力矩:10KG.cm MAX 噪音:稳定后不超出65db(侧面10cm,无防风罩测试

6mm蜗轮减速步进电机 外径:6mm 材质:塑料 旋转方向:cc&ccw 齿轮箱回程差:≤3° 轴承:烧结轴承;滚动轴承 轴向窜动:≤0.3mm(烧结轴承);≤0.2mm(滚动轴承)输出轴径向负载:≤0.3N(烧结轴承);≤4N(滚动轴承)

蜗轮减速步进电机是一种广泛运用在于汽车配件、智能厨卫、智能家居、医疗器械、通讯器材、工业设备、仪器仪表、航模、机器人、个人护理、安防摄像、数码电子等领域。 关于兆威 深圳市兆威机电股份有限公司成立于2001年,是一家研发、生产精密传动系统及汽车精密注塑零组件的制造型企业,为客户提供传动方案设计,零件的生产与组装的定制化服务。

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

步进电机加速 减速方法

不需要专门的延迟。但是软件中应该做到使速度是连续的渐变,而不是突变。 类似物理里面我们分析的“上抛物体”的运动一样:先按匀减速运动,速度减到零后就变成反方向的匀加速运动了。 不要有从某个速度“突变”为静止,或由静止“突变”为某个速度的操作。这种“突变”自然会产生冲击振动。 至于这个“匀加速度”、“匀减速度”的加速度大小,则可以根据步进电机的性能和负载的惯性大小来确定。 通常,步进电机都会给出一个“最大力矩”的参数。根据这个最大力矩,和负载的惯性(包括步进电机的转子和传动机构的惯性在内)大小,可以计算出加速度不应该超过多少。实际设计时,还应该比最大允许值再留出相当的余地。 当然,我上面说的“速度”、“加速度”都是一个连续的理论值,实际的步进电机是一步一步离散的操作的,和理论规律总会有差别。但是只要这种“量化误差”不超过一定限度,就可以有满意的效果了。 最理想的是,这个误差的累计值不超过0.5步。也就是说,假如按照上述“匀加速”、“匀减速”的理论计算,在时刻t的时候应该走到x步(有小数)的位置,而真实的执行效果是:走到的位置总是等于x的四舍五入取整的值。这是最理想的。 如果算法设计不好,这个累积误差可能会大些。但最坏的情况下,这个误差的累计值不要超过半个相位周期。例如,您的脉冲分配如果是“四相八拍制”,那么,累积误差就必须小于4步。 超出的话,就会发生步进电机的“失步”。 上面说的道理,对于采用不采用“细分”,道理是一样的。只是采用细分后的每一个“步”(“细步”)比原来小了,容易做到比较均匀。 例如上面说的“四相八拍制累积误差就必须小于4步”,如果采用了“16细分”,那么只要小于64“细步”就可以,显然软件里处理起来更容易一些。 但是,只要软件考虑设计仔细一些,不采用细分也是可以做到的。 【看了“广州一丁”兄的回答后,再补充说明一点】 上面“广州一丁”兄说的“减速时间长点,加速时间同时也长点”,就相当于我这里说的“匀加速运动”和“匀减速运动”段中,加速度的绝对值再小一些。 原则上说,这个加速度的绝对值,只要不超过上面说的根据电机性能和负载惯性算出来的允许值就可以。当然,更小一点冲击更小。 我只是担心,您是否没有按“匀加速”、“匀减速”设计,而是直接由静止突变为某个速度,或由某个速度突变为静止。如果是那样,问题就比较大了。 一般来说,一个方向的运动,应该分为至少两个阶段,或者还需要三个阶段。开始是由静止开始的匀加速度段,后段是匀减速段(直到速度减为零)。如此,中间的速度最高。假如最高的速度超出了电机或者我们的设备允许的值,那么还应该限制。于是,中间又多出一个段:匀速段。这就成了三个段。 这种控制原理上应该是清楚的。但是实现时的算法,则根据需求不同,有可能需要特别安排。

步进电机控制

步进电机控制 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

杭州电子科技大学 电子系统设计综合实验 设计报告 实验名称: 步进电机控制 实验序号: 4 小组号: 4A 姓名学号: 指导教师: 黄继业 2015年1月4日 一.引言: 步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)。实验中使用的是永磁式步进电机24BY 型,下图是该电机的接线图,从图中可以看出,电机共有四组线圈,四组线圈的一个端点连在一起引出,这样一共有5 根引出线。要使用步进电机转动,只要轮流给各引出端通电即可。将COM 端标识为C,只要AC、A C、BC、B C,轮流加电就能驱动步进电机运转,加电的方式可以有多种,如果将COM 端接正电源,那么只要用开关元件

(如三极管),将A、A 、B、B 轮流接地。 二.实验要求: 1.(基本):控制四相六线式步进电机的转动(四相八拍方式) 2.(基本):显示步进电机的转动圈数、角度和方向 三.(扩展):用非接触的方式实时监测步进电机的工作状态 四.实验器材清单: 名称型号数量 驱动芯片L2981片 霍尔元件cs31441个 二极管80508个 电容100uf、各2个 电阻2K1个 四:实验电路原理图 1:驱动电路原理图: 2:驱动电路工作原理: L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准

减速步进电机选用指南

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。随着科技的发展进步,步进电机被广泛的应运于生活中各大领域。步进电机由于有别于其他普通电机的一些特性,所以导致减速步进电机的选用和其他减速电机的选用有共性的一面,也有步进电机特殊性的一面。有下面需求的情况下,可以考虑选用减速步进电机。 1. 需要低速大力距。 步进电机本身调速很方便,不用减速箱也可以低速运行,使用减速电机主要是为了增大工作力矩。由于步进电机一般擅长在900rpm 速度以下运行,减速步进电机的输出转速一般就比较低了。 2. 较少法兰盘尺寸,减轻电机重量 使用减速电机可以在不增加法兰盘尺寸的情况下增大工作力矩。虽然电机机身因此变长,一般还是比同样力矩的更大法兰盘尺寸电机的重量要轻。

3. 缩短电机的启停时间,提高电机对负载大小波动的适应能力,对于带动转动惯量比较大的负载以及负载大小常常变化的情况有帮助。 通过减速箱可以大幅提高电机的转动惯量,增加电机的启动刚性,缩短电机加减速时间,对负载变化的承受能力更强。 4. 避开低速共振区。 步进电机在低速容易发生共振,有时候即使通过细分驱动、物理减振等方式处理也达不到满意的效果,这时候可以考虑通过减速箱来提高步进电机本身的转速,从而避开共振速度区。 5. 通过减速箱提高步距精度。 虽然驱动器细分可以提高步距角精度,但实际上细分之后的步距角并不均匀,和驱动器的性能也有关系。如果需要提高步距角精度,选用步矩角更小的步进电机同时,也可以考虑通过减速箱来实现。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有

步进电机的常见故障及工作原理

步进电机的常见故障及工作原理 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 识。 步进电机的分类: 步进电机分永磁式(PM)、反应式(VR)、混合式(HR)三种。永磁式一般为二相,转矩和体积都很小,步距角一般为7.5°或15°;反应式一般为三相,实现大转矩输出,步距角为1.5°;混合式兼具永磁式和反应式的优点,分二相和五相,二相步距角为1.8°,无相步距角为0.72°。 步进电机的工作原理: 步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 步进电机的主要特性 1 步进电机必须加驱动才可以运转,驱动信号必须为脉冲信号,没有脉冲的时候,步进电机静止,如果加入适当的脉冲信号,就会以一定的角度(称为步角)转动。转动的速度和脉冲的频率成正比。 2 腾龙版步进电机的步进角度为7.5 度,一圈360 度,需要48 个脉冲完成。 3 步进电机具有瞬间启动和急速停止的优越特性。 4 改变脉冲的顺序,可以方便的改变转动的方向。 因此,目前打印机,绘图仪,机器人,等等设备都以步进电机为动力核心。 一、步进电机的基本特点 1、步进电动机工作时每相绕组不是恒定地通电,而是按一定的规律轮流通电。 2、每输入一个脉冲电信号转子转过的角度称为步距角。 3、步进电机可以按特定指令进行角度控制,也可以进行速度控制。角度控制时,每输入一个脉冲,定子绕组就换接一次,输出轴就转过一个角度,其步数与脉冲数一致,输出轴转动的角位移量与输入脉冲成正比。速度控制时,步进电机绕组中送入的是连续脉冲,各相绕组不断地轮流通电,步进电机连续动转,它的转速与脉冲频率成正比。改变通电顺序,即改变定子磁场旋转方向,就可以控制电机正转或是反转。 4、步进电机具有自锁能力。当控制脉冲停止输入,而让最后一个脉冲控制的绕组继续通直流电时,则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电机可以实现停车时转子定位。 二、步进电动机为什么会失步?

步进电机加减速控制

1 加减速控制算法 1.1 加减速曲线 本设计按照步进电机的动力学方程和矩频特性曲线推导出按指数曲线变化的升降速脉冲序列的分布规律,因为矩频特性是描述每一频率下的最大输出转矩,即在该频率下作为负载加给步进电机的最大转矩。因此把矩频特性作为加速范围下可以达到(但不能超过)的最大输出转矩来拟订升降速脉冲序列的分布规律,就接近于最大转矩控制的最佳升降速规律。这样能够使得频率增高时,保证输出最大的力矩,即能够对最大的力矩进行跟随,能充分的发挥步进电机的工作性能,使系统具有良好的动态特性。 由步进电机的动力学方程和矩频特性曲线,在忽略阻尼转矩的情况下,可推导出如下方程: 式中,为转子转动惯量,K为假定输出转矩按直线变化时的斜率,τ为决定升速快慢的时间常数,在实际工作中由实验来确定。fm为负载转矩下步进电机的最高连续运行频率,步进电机必须在低于该频率下运行才能保证不失步。(1)式为步进电机的升速特性,由此方程可绘制出电机升速曲线。(1)式表明驱动脉冲的频率f应随时间t作指数规律上升,这样就可以在较短的时间内使步进电机的转速上升至要求的运行速度。鉴于大多数的步进电机的矩频特性都近似线性递减的,所以上述的控制规律为最佳。 1.2 加减速离散处理 在本系统中,FPGA使用分频器的方式来控制步进电机的速度,升降速控制实际上是不断改变分频器初载值的大小。指数曲线由于无法通过程序编制来实现,可以用阶梯曲线来逼近升速曲线,不一定每步都计算装载值。 如图l所示,纵坐标为频率,单位是步/秒,其实反映了转速的高低。横坐标为时间,各段时间内走过的步数用N来表示,步数其实反映了行程。图中标出理想升速曲线和实际升速曲线。

相关文档