文档库 最新最全的文档下载
当前位置:文档库 › 间接碘量法测定硫酸铜中铜含量

间接碘量法测定硫酸铜中铜含量

间接碘量法测定硫酸铜中铜含量
间接碘量法测定硫酸铜中铜含量

实验八—(2)间接碘量法测定硫酸铜中铜含量

一实验目的

掌握用碘法测定硫酸铜的原理和方法

二.实验原理:

[板书]2Cu2+ + 4I- = 2CuI ↓(白)+I2(红棕)

I2 + I- = I3-

I2+2S2O32- = S4O62-+2I-

指示剂:淀粉近终点时加入

近终点时加入KSCN:CuI + SCN- = CuSCN ↓(米色)+ I-

终点:篮色突然消失(米色)

[讲解] 滴定条件:

1.过量的KI作用:

○1增大I2的溶解度,降低I2的挥发性

○2加快反应速度,提高反应的完全程度

2.适当的酸度:

⑴.酸度过高:Cu2+催化I-被空气氧化成I2的反应,结果偏高。

⑵.酸度过低:反应不完全,铜离子水解,终点拖长,结果偏低。

⑶.由于氯离子与二价铜离子络合,所以调节酸度不能用盐酸而用硫酸。3.KSCN只能近终点时加入,否则:

6Cu2++ 7SCN- + 4H2O = 6CuSCN ↓+SO42- + HCN +7H+

4I2+ SCN- + 4H2O = SO42- +7I-+ ICN +8H+

三.实验方法

准确称取CuSO4试样0.3~0.4克(三份)于锥型瓶中→3mL 1 mol?L-1H2SO4→水30mL 溶解后→10% KI 7~8mL,♀Na2S2O3溶液滴定至浅黄色→1%淀粉1mL →♀Na2S2O3溶液滴定至浅兰色→5mL10%KSCN →♀Na2S2O3溶液滴定至溶液兰色突然消失即为终点。

四.数据处理

Cu% =

100%

(M Cu=63.55)

五.注意事项

1.防止铜盐水解加硫酸,不能加盐酸。

2.一份一份加KI,防止I2挥发,开始时快滴、慢摇。

3.淀粉与KSCN的加入要适时,不能过早。

第一步:由菊黄—浅黄(小米粥)

第二步:兰色略有紫色

第三步:米色(悬浮物)

六.思考题

1. 硫酸铜易溶于水,为什么溶解时要加硫酸?

2.用碘法测定钢含量时,为什么要加入KSCN溶液?如果在酸化后立即加入KSCN溶液,会产生什么影响?加入KSCN溶液,会产生什么影响?

3,已知,EθCu2+/Cu+=0.158V,EθI2/I-=0.54V,为什么本法中Cu2+离子却能使I—离子氧化为I2 ?

4.测定反应为什么一定要在弱酸性溶液中进行?

5.如果分析矿石或合金中的铜,应怎样分解试样?试液中含有的干扰性杂质如Fe3+、NO3-;

等离子,应如何消除它们的干扰?

1.如果用Na2S2O3标准溶液测定铜矿或钢合金中的铜,用什么基准物标定Na2S2O3溶液的浓度最好?

实验八 间接碘量法测定胆矾中铜的含量教案

实验八间接碘量法测定胆矾中铜的含量教案 课程名称:分析化学实验B 教学内容:间接碘量法测定胆矾中铜的含量 实验类型:验证 教学对象:化工、环境工程、药学、生物科学、应用化学、医学检验、制药、复合材料、生物工程、生物技术 授课地点:中南大学南校区化学实验楼302 授课学时:4学时 一、教学目的与要求 1、练习巩固移液管、滴定管、容量瓶、电子分析天平的使用; 2、了解间接碘量法测定胆矾中铜含量的测定意义; 3、学习硫代硫酸钠标准溶液的配制和标定; 4、掌握铜盐中铜的测定的原理、方法和计算; 5、掌握碘量法的测定方法的原理、方法和计算; 6、熟悉氧化还原特殊指示剂终点颜色判断和近终点时滴定操作控制 二、知识点 氧化还原反应、化学计量点、氧化还原特殊指示剂、滴定终点、铜盐中铜含量的表示方法、标准溶液、移液管、酸式滴定管、容量瓶、电子分析天平、实验报告的撰写(数据处理三线表表格化)、有效数字 三、技能点 玻璃器皿的洗涤、移液管的使用、酸式滴定管的使用、容量瓶的使用、电子分析天平的使用、标准溶液的配制与标定 四、教学重点及难点 重点:铜盐中铜的测定的基本原理和操作方法 难点:淀粉指示剂的变色特征和近终点时滴定操作控制 五、教学方法 任务驱动法、分组讨论法、阅读指导法、现场讲解指导等 六、复习引入

1、复习配位滴定法有关知识,提问学生: (1) 铜盐中铜的含量测定是用什么方法测定的?(间接碘量法) (2) 铜盐中铜的测定中以什么作指示剂?(淀粉溶液) (3) 滴定终点颜色如何判断?(蓝色消失30s后不返色为终点) [引入] 氧化还原滴定法的应用:间接碘量法测定胆矾中铜含量 [引言] 硫酸铜又名蓝矾、胆矾、石胆,为透明的深蓝色结晶或粉末,溶于水,其溶液呈弱酸性。在无机工业上用于制备其他铜盐的原料;也可用作纺织品媒染剂、农业杀虫剂、水的杀菌剂,饲料添加剂,并用于镀铜。在防治鱼病中,硫酸铜的作用非常明显,硫酸铜是鱼病防治中常用的药品,它可治疗鱼的原生寄生虫病,农业上主要用于防治果树、麦芽、马铃薯、水稻等多种病害,也可用于稻田、池塘除藻。无机农药波尔多液就是硫酸铜和石灰乳的混合液,在有机农业中可以做杀真菌剂用。蓝矾韭菜中的蓝矾也可能是农药的残留,而不是菜农为保鲜而涂抹。硫酸铜是可溶于水的,消费者可以在水中浸泡再用淘米水清洗就可放心食用。硫酸铜中铜的含量常用滴定碘法来测定。 [新授]课题:间接碘量法测定胆矾中铜含量 [提出任务]教师提出本课题的学习任务: 1、间接碘量法测定胆矾中铜含量的基本原理是什么? 2、用K2Cr2O7作基准物质标定Na2S2O3溶液时,为什么要加入过量的KI和HCl 溶液?为什么要放置一定时间后才能加水稀释?为什么在滴定前还要加水稀释? 3、间接碘量法测定胆矾中铜含量的操作方法。 [任务探索] 1、间接碘量法测定胆矾中铜含量的基本原理是什么? 根据有关学习资料,思考下列问题: (1) 在实验中加入KI的作用是什么? (2) 碘量法测定铜时,溶液的酸度如何控制?酸性介质如何选择? (3) 在实验中加入KSCN溶液的作用是什么?为什么不能过早的加入? [归纳]引导学生归纳总结出间接碘量法测定胆矾中铜含量的基本原理在以硫酸或HAc为介质的酸性溶液中(pH=3~4)Cu2+与过量的I -作用生成

碘量法测定铜

碘量法测定铜 一、方法原理 在弱酸性溶液中,Cu2+可被KI还原为CuI,2Cu24I-==2CuI I2这是一个可逆反应,由于CuI溶解度比较小,在有过量的KI存在时,反应定量地向右进行,析出的I2用Na2S2O3标准溶液滴定以淀粉为指示剂,间接测得铜的含量。 I22S2O32-==2I-S4O62- 由于CuI沉淀表面会吸附一些I2使滴定终点不明显,并影响准确度故在接近化学计量点时,加入少量KSCN,使CuI沉淀转变成CuSCN,因CuSCN的溶解度比CuI小得多(K sp,CuI=1.1×10-10,K sp,CuSCN=1.1×10-14)能使被吸附的I2从沉淀表面置换出来, CuI SCN-==CuSCN I- 使终点明显,提高测定结果的准确度。且此反应产生的I-离子可继续与Cu2作用,节省了价格较贵的KI。 二、主要试剂 1.0.01mol/L重铬酸钾标准溶液。用差减法准确称取干燥的(180℃烘两小时)分析纯K2Cr2O7固体0.7~0.8g于100mL烧杯中,加50mL水使其溶解之,定量转入250mL容量瓶中,用水稀释至刻度,摇匀。 2.0.05mol/L硫代硫酸钠溶液。在台秤上称取6.5g硫代硫酸钠溶液,溶于500mL 新煮沸并放冷的蒸馏水中,加入0.5g Na2CO3,转移到500mL试剂瓶中,摇匀后备用。 3.Na2SO4:30%水溶液。 4.碘化钾:A·R。 5.硫氰酸钾溶液:20%。 6.淀粉溶液:0.5%。称取0.5g可溶性淀粉,用少量水调成糊状,慢慢加入到沸腾的100mL蒸馏水中,继续煮沸至溶液透明为止。 7.盐酸:3mol/L。 8.硝酸:1:3。 9.氢氧化铵溶液:1:1。

实验3 硫酸铜中铜含量的测定

实验3 硫酸铜中铜含量的测定 一、目的 掌握用碘量法测定硫酸铜中铜含量的原理和方法。 二、原理 二价铜盐与碘化物发生下列反应: 2Cu2+ + 4I- =2CuI↓ + I2; I2 + I- =I3-; I2 + 2S2O32-=2I- + S4O62- 析出的I2再用Na2S2O3标准溶液滴定,由此可以计算出铜的含量。 Cu2+与I-的反应是可逆的,为了促使反应实际上能趋于完全,必须加入过量的KI。但是由于CuI沉淀强烈地吸附I3-离子,会使测定结果偏低。 如果加入KSCN,使CuI(K sp = 5.06×10-12)转化为溶解度更小的CuSCN (K sp = 4.8×10-15):CuI + SCN- =CuSCN↓+I- 这样不但可以释放出被吸附的I3-离子,而且反应时再生出来的I-离子可与未反应的Cu2+离子发生作用。在这种情况下,可以使用较少的KI而能使反应进行得更完全。 但是KSCN只能在接近终点时加入,否则因为I2的量较多,会明显地为KSCN所还原而使结果偏低: SCN- + 4I2 + 4H2O =SO42- + 7I- + ICN + 8H+ 为了防止铜盐水解,反应必须在酸性溶液中进行。酸度过低,Cu2+离子氧化I-离子的反应进行不完全,结果偏低,而且反应速度慢,终点拖长;酸度过高,则I-离子被空气氧化为I2的反应为Cu2+离子催化,使结果偏高。 大量Cl-离子能与Cu2+离子络合,I-离子不易从Cu(Ⅱ)的氯络合物中将Cu(Ⅱ)定量地还原,因此最好用硫酸而不用盐酸(少量盐酸不干扰)。 矿石或合金中的铜也可以用碘法测定。但必须设法防止其他能氧化I-离子的物质(如NO3-、Fe3+离子等)的干扰。防止的方法是加入掩蔽剂以掩蔽干扰离子(例如使Fe3+离子生成FeF63-络离子而掩蔽),或在测定前将它们分离除去。若有As(Ⅴ)、Sb(Ⅴ)存在,应将pH调至4,以免它们氧化I-离子。 三、试剂 0.05000 mol/L Na2S2O3标准溶液;1mol/L H2SO4溶液;10% KSCN溶液;10%KI溶液;1% 淀粉溶液

《铜精矿化学分析方法 金和银量的测定

《铜精矿化学分析方法金和银量的测定 火试金和原子吸收光谱法》 国家标准编制说明 一、任务来源及要求 根据中国有色金属工业协会文件《关于下达2009年第一批有色金属国家、行业标准制(修)订项目计划的通知》(中色协综字[2009]165号)的要求,由大冶有色金属股份有限公司负责制定国家标准《硫化铜、铅和锌精矿试样中吸湿水分测定重量法》,计划编号为20091098-T-610,项目完成时间为2011年。 二、标准制定原则 1、本标准是ISO 10378-2005(E)国际标准的等同转换。 2、本标准格式按照GB/T 1.1-2009的标准要求进行制定。 3、本标准的制定有利于促进国内外硫化铜精矿市场公平贸易,并与 硫化铜精矿国际标准接轨,具有可操作性。 三、标准主要内容 1、本标准规定了硫化铜精矿试样中金和银量的测定方法―火试金和原子吸收光谱法。测定范围:Au:0.5g/t~300 g/t ;Ag:25 g/t~1500 g/t。 2、本标准样品的制备按ISO9599的要求制备试样或用预干试料(见附录A)。 3、本标准方法提要:将试料与氧化铅等配料混合,在还原条件下,于坩锅中熔融,铅捕集试料中的贵金属形成铅扣。灰吹使铅扣中的贱金属与贵金属分离,从而形成含有少量其它金属的金银合金粒。以硝

酸处理金银合粒,从合粒中分离出金,称重。如果金粒质量小于0.05mg,则用王水溶解金粒,用火焰原子吸收光谱法(FAAS)测定金量。用原子吸收光谱法(FAAS)测定分金后溶液中银量。为最大限度回收金和银,将所有残渣再处理。第二次合粒用酸溶解,然后用FAAS 方法测定金和银,并进行空白的校正。 4、为使分析试料代表性好,采用多点多次取样的方式从试样中称取10g~20g试料。 5、预熔化:为保证铅扣质量在30~45g之间,进行预熔化试验,依据试样的还原能力,决定配料中硝酸钠或硝酸钾等氧化剂的用量。 6、加银分金:为保证合粒分金完全,银与金的比例应超过2.5:1。合粒中银、金比率就达不到要求,或者是当金含量超过30%时不易分离。如果用原子吸收或ICP测定银,银应该在分金前测定。所以金银必须分开测定。金应该按照此附录分金的步骤进行,银应该按照7.9中溶解方法测定。 如果用重量法测定银,应该在分金前对贵金属合粒称重。按照附录D进行分金,按照7.8中步骤分离,按照附录G冲洗金粒,在收集分离后的溶液中测定杂质含量。 注1:如果已知道银与金比率不到2.5:1,则在初熔化前加入适量银以保证银、金比率4:1。 注2:如果金的质量小于50μg,合粒不需要分离就能溶解,金银含量按7.9步骤测定。此种情况下,不需要分金。 如果试料中银的质量小于7500μg,那么银应该按照7.9中方法

碘量法测铜

1 实验原理 碘量法测定铜的依据是在弱酸性溶液中(pH=3~4),Cu2+与过量的KI作用,生成CuI沉淀和I2,析出的I2可以淀粉为指示剂,用Na2S2O3标准溶液滴定。有关反应如下: 2Cu2+ +4I-=2CuI+I2 或2Cu2+ +5I- =2CuI+I3- I2+2S2O32- =2I- +S4O62- Cu2+与I-之间的反应是可逆的,任何引起Cu2+浓度减小(如形成络合物等)或引起CuI溶解度增大的因素均使反应不完全,加入过量KI,可使Cu2+的还原趋于完全。但是,CuI沉淀强烈吸附I3-,又会使结果偏低。通常使用的办法是在近终点时加入硫氰酸盐,将CuI(K sp=1.1×10-12)转化为溶解度更小的CuSCN沉淀(K sp=4.8×10-15)。在沉淀的转化过程中,吸附的碘被释放出来,从而被Na2S2O3溶液滴定,使分析结果的准确度得到提高[2]。即 CuI+SCN- =CuSCN +I- 硫氰酸盐应在接近终点时加入,否则SCN-会还原大量存在的I2,致使测定结果偏低。溶液的pH值一般应控制在3.0~4.0之间。酸度过低,Cu2+易水解,使反应不完全,结果偏低,而且反应速率慢,终点拖长;酸度过高,则I-被空气中的氧氧化为I2(Cu2+催化此反应),使结果偏高。 Fe3+能氧化I-,对测定有干扰,但可加入NH4HF2掩蔽。NH4HF2是一种很好的缓冲溶液,因HF的K a=6.6×10-4,故能使溶液的pH值保

持在3.0~4.0之间。 2 材料 2.1主要试剂 2.1.1 KI溶液(200 g·L-1)。 2.1.2 Na2S2O3溶液(0.1 mol·L-1):称取25g Na2S2O3·5H2O于烧杯 中,加入300~500mL新煮沸经冷却的蒸馏水,溶解后,加入 约0.1g Na2CO3,用新煮沸且冷却的蒸馏水稀释至1L,贮存于 棕色试剂瓶中,在暗处放置3~5天后标定。 2.1.3 淀粉溶液(5g·L-1):称取0.5g可溶性淀粉,加少量的水,搅匀, 再加入100mL沸水,搅匀。若需放置,可加入少量HgI2或H3BO3 作防腐剂。 2.1.4 NH4SCN溶液(100g·L-1); 2.1.5 H2O2(30%,原装); 2.1.6 Na2CO3(固体); 2.1.7 K2Cr2O7标准溶液(C(K2Cr2O7)=0.01667mol·L-1); 2.1.9 H2SO4溶液(1 mol·L-1); 2.1.10 HCl(6mol·L-1,即1:1); 2.1.11 NH4HF2(200g·L-1); 2.1.12 HAc(7mol·L-1,即:1); 2.1.13 氨水(7mol·L-1,即1:1); 2.1.14 尿素(原装) 2.1.15 HNO3(1:1)

硫酸铜中铜含量的测定

硫酸铜中铜含量的测定 实验目的:1熟悉分光光度法测定物质的含量的原理和方法 2 掌握吸收曲线和标准曲线的绘制 3学习分光光度计的使用 实验原理: 硫酸铜的分析方法是在样品中加入碘化钾,样品中的二价铜离子在微酸性溶液中能被碘化钾还原,而生成难溶于稀酸的碘化亚铜沉淀。以淀粉为指示剂用硫代硫酸钠标准溶液滴定,化学反应为: 2+-22-2-- 223 46 2Cu + 4I = 2CuI + I I + 2S O = S O + 2I 矿石和合金中的铜也可以用碘量法测定。但必须设法防止其他能氧化-I 的物 质(如-3NO 、3+Fe 等)的干扰。防止的方法是加入掩蔽剂以掩蔽干扰离子(比如 使3+Fe 生成3-6FeI 配离子而被掩蔽)或在测定前将它们分离除去。若有As (Ⅴ)、Sb (Ⅴ)存在,则应将pH 调至4,以免它们氧化-I 。 间接碘量法以硫代硫酸钠作滴定剂,硫代硫酸钠(Na 2S 2O 3·5H 2O )一般含有少量杂质,比如S 、Na 2SO 3、Na 2SO 4、Na 2CO 3及NaCl 等,同时还容易风化和潮解,不能直接配制准确浓度的溶液,故配好标准溶液后还应标定其浓度。 本实验就是利用此方法测定CuSO 4中铜的含量,以得到CuSO 4试剂的纯度。试剂与仪器 Na 2S 2O 3·5H 2O ;Na 2CO 3(固体);纯铜(99.9%以上);6 mol ·L -1HNO 3溶液;100 g ·L -1KI 溶液;1+1和1 mol ·L -1H 2SO 4溶液;100 g ·L -1KSCN 溶液;10 g ·L -1淀粉溶液 电子天平;碱式滴定管;碘量瓶 实验步骤 0.05 mol·L -1Na 2S 2O 3溶液的配制:称取12.5 g Na 2S 2O 3·5H 2O 于烧杯中,加入约300 mL 新煮沸后冷却的蒸馏水溶解,加入约0.2 g Na 2CO 3固体,然后用新煮沸且冷却的蒸馏水稀释至1 L ,贮于棕色试剂瓶中,在暗处放置1~2周后再标定。 1.1.1 0.05 mol·L -1Cu 2+标准溶液的配制:准确称取(0.7-0.8)g 左右的铜片, 置于250 mL 烧杯中。(以下分解操作在通风橱内进行)加入约 3 mL 6 mol ·L -1HNO 3,盖上表面皿,放在酒精灯上微热。待铜完全分解后,慢慢升温蒸发至干。冷却后再加入H 2SO 4(1+1)2 mL 蒸发至冒白烟、近干(切忌蒸干),冷却,定量转入250 mL 容量瓶中,加水稀释至刻度,摇匀,从而制得Cu 2+标准溶液。 1.1.2 Na 2S 2O 3溶液的标定:准确称取25.00 mLCu 2+标准溶液于250 mL 碘量瓶中, 加水25mL ,混匀,溶液酸度应为pH=3~4。加入7mL100 g ·L -1KI 溶液,立

碘量法测定铜合金中铜的含量

7-3 碘量法测定铜合金中铜的含量 实验7-3 碘量法测定铜合金中铜的含量 一、试剂 1+1 HCl溶液、30%H2O2、1+1NH3·H 2O溶液、1+1HAc溶液、20%NH4HF2溶液、20%KI 溶液、10%NH4SCN溶液、0.5%淀粉溶液、0.1mol/L Na2S2O3标准溶液。 二、测定原理 铜合金试样可用HCl-H2O2熔解,加热煮沸使过量的H2O2,分解,然后将溶液调节至酸性(pH=3~4),加KI、使之与Cu2+作用生成CuI沉淀,同析出与铜量相当的I2,(实际上以I3-形式存在)。析出的I2以淀粉为指示剂,用Na 2S2O3标准溶液滴定,其反应如下: 2Cu2++4I- =2CuI + I2 I2 + 2S2O3-=2I- + S4O32- 根据Na2 S2O3的用量计算试样中的铜的含量。 由于CuI沉淀强烈地吸附I3-,因此在近终点时加入硫氰酸盐以使CuI转化为溶解度更小的CuSCN沉淀,从而使被吸附的I3- 释放出来参加反应。Fe3+的干扰可用NH4HF2掩蔽加以消除。 三、测定步骤 准确称取铜合金试样0.16g于250mL锥形瓶中,加入1+1HCl溶液10mL,并用滴管加30%H2O2约1mL,加盖,观察试样是否溶解完全,必要时再加些H2O2,加热助溶,煮沸至冒大气泡,冷却后加水10mL,滴加NH3H2O溶液至出现浑浊,再加入1+1HAc 8mL,加NH HF2溶液5mL、KI溶液10mL,摇匀。稍放置后用Na2S2O3标准溶液滴定至溶液呈浅黄色,4 加入淀粉溶液5mL,继续滴定至溶液呈浅蓝灰色,再加入NH4SCN溶液10mL,充分摇动。此时,溶液颜色变深,然后滴定至蓝灰色消失为止。根据Na2S2O3标准溶液用量计算铜合金 中铜的含量。

硫酸铜中铜含量测定实验报告

实验题目硫酸铜中铜含量测定 一、实验目的 1、掌握用碘法测定铜的原理和方法。 2、进一步熟悉滴定操作;掌握移液管的使用。 3、进一步掌握分析天平的使用。 二、实验原理 二价铜盐与碘化物发生下列反应: 2Cu2++4I-=2CuI↓+I2I2+I-=I3-析出的I2再用Na2S2O3标准溶液滴定,I2+2S2O32-=S4O62-+2I-由此可以计算出铜的含量。 nCu2+=nS2O32-mCu2+=(CNa2S2O3VNa2S2O3)×10-3×MCu2+ WCu2+=mCu2+/m硫酸铜试样 MCu2+= 上述反应是可逆的,为了促使反应实际上能趋于完全,必须加入过量的KI;但是KI浓度太大,会妨碍终点的观察。同时由于CuI沉淀强烈地吸附I3-离子,使测定结果偏低。如果加入KSCN,使CuI(KspΘ=5.05×10-12转化为溶解度更小的CuSCN (KspΘ=4.8×10-15)CuI+SCN-=CuSCN↓+I-这样不但可以释放出被吸附的I3-离子,而且反应时再生出来的I-离子与未反应的Cu2+离子发生作用。在这种情况下,可以使用较小的KI而能使反应进行得更完全。但是KSCN只能在接近终点时加入,否则SCN-离子可能直接还原Cu2+离子而使结果偏低: 6Cu2++7SCN-+4H2O=6CuSCN↓+SO42-+HCN+7H+为了防止铜盐水解,反应必须在酸溶液中进行。酸度过低,Cu2+离子氧化I-离子不完全,结果偏低,而且反应速度慢,终点拖长;酸度过高,则I-离子被空气氧化为I2的反应为Cu2+离子催化,使结果偏高。大量Cl-离子能与Cu2+离子形成配离子,I-离子不能从Cu(Ⅱ)的氯配合物中将Cu(Ⅱ)定量地还原,因此最好用硫酸而不用盐酸(少量盐酸不干扰)。矿石或合金中的铜也可以用碘法测定。但必须设法防止其它能氧化I-离子的物质(如NO3-、Fe3+离子等)的干扰。防止的方法是加入掩蔽剂以掩蔽干扰离子(例如使Fe3+离子生成FeF63-配离子而掩蔽),或在测定前将它们分离除去。若有As(V)、Sb(V)存在,应将pH调至4,以免它们氧化I-离子。 三、试剂及仪器 标准溶液;溶液;1%HCl溶液;10%KSCN溶液;10%KI溶液;1%淀粉溶液;硫酸铜试样。酸式滴定管,锥形瓶(250mL),FA/JA1004型电子天平,称量瓶。 四、实验步骤 1、精确称取硫酸铜试样~(每份重量相当于20 ~ Na2S2O3标准溶液)于250毫升锥形瓶中; 2、加 H2SO4溶液3毫升和水30毫升溶解。加入10%KI溶液7~8毫升,立即用 Na2S2O33标准溶液滴定至呈浅黄色; 3、然后加入1%淀粉1毫升,继续滴定到呈浅蓝色。再加入5毫升10%KSCN溶液,摇匀后溶液蓝色转深。再继续滴定到蓝色恰好消失,此时溶液为米色CuSCN悬浮液,即为终点。

DO测定(碘量法)

碘量法测定溶解氧 碘量法(国标GB/T 7489-87)测定水中溶解氧(DO) 一、原理 水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。 二、实验用品 1、仪器:溶解氧瓶(250ml)、锥形瓶(250ml)、酸式滴定管(25ml)、移液管(50ml)、吸耳球、1000ml容量瓶、100ml容量瓶、棕色容量瓶、电子天平 2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠 三、试剂的配置 1、硫酸锰溶液:称取48g分析纯硫酸锰(MnSO 4?H 2 O)溶于蒸馏水,过滤后 用水稀释至100mL于透明玻璃瓶中保存。此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液:称取50g分析纯氢氧化钠溶解于30—40mL蒸馏水中;另称取15g碘化钾溶于20mL蒸馏水中;待氢氧化钠溶液冷却后,将上述两溶液合并,混匀,加蒸馏水稀释至100mL。如有沉淀(如氢氧化钠溶液表面吸收二氧化碳生成碳酸钠),则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,避光保存。此溶液酸化后,遇淀粉应不呈蓝色。 3、1+5硫酸溶液。 4、1%(m/V)淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。现用现配,或者冷却后加入0.1g水杨酸或0.4g氯化锌防腐。 5、0.0250mol/L(1/6K 2Cr 2 O 7 )重铬酸钾标准溶液:称取于105—110℃烘干 2h,并冷却的分析纯重铬酸钾1.2258g,溶于水,移入1000mL容量瓶中,用水稀释至标线,摇匀。 6、硫代硫酸钠标准溶液:称取6.2g分析纯硫代硫酸钠(Na 2S 2 O 3 ?5H 2 O)溶于

硫酸铜结晶水含量的测定

实验:硫酸铜结晶水含量的测定 教学目标:学习测定晶体里结晶水含量的方法。 练习坩埚的使用方法,初步学会研磨操作。 教学重点:测定晶体里结晶水含量的方法。 教学难点:学会误差分析。 一、实验原理 1.反应原理 2.计算原理 Δ CuSO4 ? xH2O == CuSO4 + x H2OΔm 160+18x 160 18x m1 m2 m1-m2 x=160(m1-m2)/18m2 结晶水的质量分数= (m1-m2)/ m2 3.实验成功的关键:(1)m1、m2的数值要准确,即要准确称量。 (2)加热使晶体全部失去结晶水。 二、实验用品分析 1.称量:托盘天平、研钵(用来研碎晶体) 2.加热:坩埚、坩埚钳、三脚架、泥三角、玻璃棒、酒精灯 3.冷却:干燥器。 三、实验步骤 1.研磨 2.称量:记下坩埚与晶体的总质量m1 3.加热:缓慢加热、用玻璃棒搅拌,直到蓝色晶体完全变成白色粉末,且不再有水蒸气逸出,然后放在干燥器里冷却。 4.称量:记下坩埚与无水硫酸铜的总质量m2 5.再加热称量:再加热无水硫酸铜,冷却后再称量,至连继两次称量的质量差不超过0.1g 为止。 6.计算:CuSO4 ? xH2O 理论值:w(结晶水) = 18x/(160+18x) 实际值:w'(结晶水)= (m1-m2)/ m(硫酸铜)7.误差分析: 实验一硫酸铜晶体中结晶水含量的测定 (1)测定原理:CuS04·5H20中,Cu(H2O)42+与S042-·H20,其中前者是蓝色的,后者是_______色的。5个水分子与CuS04结合力是__________,在383 K时,Cu(H2O)42+失去4个水分子,在531 K时,才能使_________中的水失去。 (2)测定标准记量: 如果用w为托盘天平称量坩埚的质量,w2为坩埚与晶体的总质量,w3是无水CuS04与坩埚再加热,放在干燥器中冷却后的质量。设x为结晶水的物质的量,则计算x的数学表达式为值只有在4.9-5.1之间,才表明实验是成功的。 (3)测定误差分析: 你认为在_________条件下会导致实验失败。你认为产生误差的可能情况有哪些? (至少写五种) 问题:脱水后的白色CuSO4 粉未为什么要放在干燥器中冷却? 重点点拨

铜精矿国家标准

铜精矿 1 范围 本标准规定了浮选铜精矿的产品分类、技术要求、试验方法、检验规则、标志、包装、运输、订货单(或合同)内容。 本标准适用于浮选方法得到的铜精矿,供炼铜用。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注年代的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明年代的引用文件,其最新版本适用于本标准。 GB/T 1250-1989 极值数值的表示方法和判定方法 GB/T 3884.1-10-2000 铜精矿化学分析方法 GB/T 8170-1987 数值修约规则 GB/T 14263-1993 散装浮选铜精矿取样、制作方法 YS/T 96-1996 散装浮选铜精矿、锌精矿中金银分析取制作方法 3 技术要求 3.1 产品分类 铜精矿按化学成分分为一级品、二级品、三级品和四级品和五级品。 3.2 化学成份 铜精矿化学成份应符合下表的规定。 铜精矿的化学成份 品级 化学成份(%) Cu不 小于 杂质含量,不大于 As Pb+Zn MgO Bi+Sb Hg F Cd 一级品320.10210.100.020.030.05二级品250.20530.300.020.050.05三级品200.20840.400.020.050.05四级品160.301050.500.020.080.05五级品130.401250.600.020.100.05 3.3 铜精矿中金、银、硫为有价元素,应报分析数据 3.4 铜精矿中水分不得大于12%;冬季应不大于8%。 3.5 铜精矿中不得混入外来夹杂物。同批精矿要求混匀。

碘量法测铜

定量分析综合试验《铜合金中Cu含量的测定》 试 验 研 究 报 告

班级050911 学号15 姓名冯靖 2007年12月 铜合金中Cu含量的测定 050911 冯靖 摘要研究测定铜合金中铜的含量的方法。铜合金种类较多,主要有黄铜和各种青铜。我们采用间接碘量法测定。该方法是在弱酸性溶液中(pH=3~4),Cu2+与过量的KI作用,生成CuI沉淀和I2,析出的I2可以淀粉为指示剂,用Na2S2O3标准溶液滴定。为提高分析结果的准确度,近终点时加入硫氰酸盐,将CuI转化为溶解度更小的CuSCN沉淀。在沉淀的转化过程中,吸附的碘被释放出来,从而被Na2S2O3溶液滴定。 关键词铜合金;铜含量;间接碘量法 1 引言 一提起铜,入们便似乎觉得它不过是一种传统的古老金属材料,而事实绝非如此。一方面在现代国民经济建设中以及人民的日常生活中几乎处处少不了它;另一方面在现代国防科技高新技术中它也起着不可替代的重要作用。铜合金种类较多,主要有黄铜和各种青铜。由于铜合金中铜的含量的不同会引起其强度、硬度、耐化学腐蚀性的不同,因而需要对铜的含量进行测定。现市场已经有专门的仪器来测定,但因仪器昂贵、操作技术不易掌握,普通实验室难以普及应用。

所以,我们仍旧采用间接碘量法测定。该方法是在弱酸性溶液中(pH=3~4),Cu2+ 与过量的KI作用,生成CuI沉淀和I 2,析出的I 2 可以淀粉为指示剂,用Na 2 S 2 O 3 标准 溶液滴定[1]。实验的意义是使我们掌握Na 2S 2 O 3 溶液的配制及标定方法和间接碘量 法测定铜的原理,以及了解淀粉指标剂的作用原理等。同时也培养了我们通过查阅参考文献、自行设计实验方案的能力,在组队合作中和探讨中,独立完成实验。 2 材料与方法 2.1主要试剂 2.1.1 KI溶液(200 g·L-1)。 2.1.2 Na 2S 2 O 3 溶液(0.1 mol·L-1):称取 25g Na 2 S 2 O 3 ·5H 2 O于烧杯中,加入300~ 500mL新煮沸经冷却的蒸馏水,溶解后,加入约0.1g Na 2CO 3 ,用新煮沸且 冷却的蒸馏水稀释至1L,贮存于棕色试剂瓶中,在暗处放置3~5天后标 定。 2.1.3 粉溶液(5g·L-1):称取0.5g可溶性淀粉,加少量的水,搅匀,再加入100mL 沸水,搅匀。若需放置,可加入少量HgI 2或H 3 BO 3 作防腐剂。 2.1.4 NH 4 SCN溶液(100g·L-1); 2.1.5 H 2O 2 (30%,原装); 2.1.6 Na 2CO 3 (固体); 2.1.7 K 2Cr 2 O 7 标准溶液(C(K 2 Cr 2 O 7 )=0.01667mol·L-1); 2.1.8 KIO 3标准溶液(C(KIO 3 )=0.01667mol·L-1); 2.1.9 H 2SO 4 溶液(1 mol·L-1); 2.1.10 HCl(6mol·L-1,即1:1); 2.1.11 NH 4HF 2 (200g·L-1); 2.1.12 HAc(7mol·L-1,即:1); 2.1.13 氨水(7mol·L-1,即1:1); 2.1.14 铜合金试样。 2.2实验原理 碘量法测定铜的依据是在弱酸性溶液中(pH=3~4),Cu2+与过量的KI作用,生 成CuI沉淀和I 2,析出的I2可以淀粉为指示剂,用Na 2 S 2 O 3 标准溶液滴定。有关反应 如下:

胆矾中硫酸铜含量的测定

胆矾中硫酸铜含量的测定 一、实验目的 1、巩固铜盐中铜的测定方法,并借此测定胆矾中硫酸铜含量 2、进一步掌握铜盐中铜的测定原理和碘量法的测定方法 3、熟练掌握Na 2S 2 O 3 溶液的配制及标定 4、巩固终点的判断及观察 二、实验原理 在弱酸性条件下(PH=3~4),Cu2+与过量I-作用生成不溶性的CuI沉淀,同时析出与之计量相当的I 2 : 2Cu2+ + 5I- = 2CuI(沉淀)+ I 3 - 生成的I 2,再用Na 2 S 2 O 3 标准溶液滴定,以淀粉为指示剂,滴定至蓝色恰好褪 去为终点。 2S 2O 3 2- + I 3 - = S 4 O 6 2- + 3I- 这里的I-既是Cu2+的还原剂和沉淀剂,也是I 2 的络合剂。 由于CuI沉淀表面会吸附一些I 2,使其无法被Na 2 S 2 O 3 滴定,造成终点提前, 结果偏低。为此在滴定至临近终点时加入KSCN或NH 4 SCN ,使CuI转化为溶解度更小的CuSCN: CuI(沉淀)+ SCN- = CuSCN(沉淀)+I- 而CuSCN不吸附I 2,因而消除了由I 2 被吸附而造成的误差,提高测定结果的准 确度。 根据Na 2S 2 O 3 标准溶液的浓度,消耗的体积,及试样重量,就可以计算出胆 矾中硫酸铜含量: 2Cu2+ ~ I 3- ~2S 2 O 3 2- nCu2+=(CV)S 2O 3 2- =nCuSO 4 mCuSO 4 =(CV)S 2 O 3 2-.M CuSO 4 W%=(CV)S 2O 3 2-.M CuSO 4 /m s X 100% 三、所用试剂 K 2Cr 2 O 7 (s)、Na 2 S 2 O 3 .5H 2 O(s)、Na 2 CO 3 (s)、HCl溶液6mol.L-1

胆矾中铜的测定

实验四胆矾中铜的测定(碘量法) 一、实验目的 1.熟习硫代硫酸钠标准溶液的配制与标定。 2.掌握间接碘量法测定胆矾中铜含量的原理和方法。 3.熟悉滴定分析操作中的掩蔽技术。 二、实验原理 胆矾(CuSO4·5H2O)中的铜含量常用间接碘量法测定,Cu2+与过量I-发生如下反应: 2Cu2++ I-2Cu I↓+I 2 -I3- I 生成的I2用Na2S2O3标准溶液滴定,以淀粉为指示剂,滴定至溶液的蓝色刚好消失即为终点,由此计算出样品中铜的含量。 I2+ 2S2O32-=2I-+ S4O62- 由于Cu I沉淀强烈吸附I3-,致使分析结果偏低,为了减少Cu I沉淀对I3-的吸附,可在大部分I2被Na2S2O3溶液滴定后,再加入KSCN,使 Cu I(K sp= 5.06 ×10-12)转化为溶解度更小的CuSC N(K sp= 4.8 ×10-15) Cu I +SCN-= CuSC N↓+I- CuSCN对I3-的吸附较小,因而可提高测定结果的准确度。KSCN只能在接近终点时加入,否则SCN-可能直接还原Cu2+而使结果偏低: 6Cu2++ 7SCN-+ 4H2O=6CuSC N↓+SO42-+ HCN+ 7H+为了防止Cu2+的水解及满足碘量法的要求,反应必须在微酸性介质中进行(p H=3~4)。控制溶液的酸度常用H2SO4或HA c,而不用HC l,因Cu2+易与C l-生成C u Cl42-配离子不利于测定。 若试样中含有Fe3+,对测定有干扰,因发生反应: 2Fe3++ 2I-=2 Fe2++I2 使结果偏高,可加入NaF或N H4F,将Fe3+掩蔽为 Fe F63-。 三、仪器与试剂 仪器:碱式滴定管、锥形瓶、烧杯、量杯、分析天平。 试剂:0.1mol·L-1Na2S2O3溶液;0.1000 mol·L-1K2Cr2O7标准溶液;1 mol·L-1H2SO4溶液;0.5%淀粉溶液;5%和20%KI溶液;2mol·L-1HCl溶液;5%KSCN溶液;饱和NaF溶液。 四、实验内容

ISO 10258-2015铜精矿化学分析方法铜量的测定-滴定法

? ISO 2015 Copper sulfide concentrates — Determination of copper content — Titrimetric methods Concentrés de sulfure de cuivre — Dosage du cuivre — Méthodes titrimétriques INTERNATIONAL STANDARD ISO 10258 Second edition 2015-07-01 Reference number ISO 10258:2015(E)

ISO 10258:2015(E) ii ? ISO 2015 – All rights reserved COPYRIGHT PROTECTED DOCUMENT ? ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.ISO copyright office Ch. de Blandonnet 8 ? CP 401CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11Fax +41 22 749 09 47copyright@https://www.wendangku.net/doc/ae6918892.html, https://www.wendangku.net/doc/ae6918892.html,

碘量法检测方法

碘量法检测方法: 碘值及不饱和值的测定 1 主题内容与适用范围 本标准规定了采用韦氏(Wijs)法测定表面活性剂的碘值。 本标准使用于具有不饱和度的脂肪酸类、醇类、胺类、动植物油脂类以及由它们制成的表面活性剂的碘值测定。 2 引用标准 GB 601 化学试剂滴定分析(容量分析)用标准溶液的制备。 3 术语 碘值:在本标准规定的操作条件下,每100g样品所吸收的碘的质量(克),以gI2/100g试样表示。 4 原理 试样在溶剂中溶解后,加入韦氏试剂。经一特定的反应时间,再加入碘化钾溶液和水。用硫代硫酸钠标准滴定溶液滴定分析出的碘。 5 试剂和溶液 5.1 实验室用蒸馏水(GB 6682):三级水; 5.2 三氯甲烷(GB 682); 5.3 四氯化碳(GB 688); 5.4 碘(GB 675); 5.5 碘化钾(GB 1272)溶液,150g/L; 5.6 盐酸(GB 622)溶液:1+1溶液,将浓盐酸用等量水稀释; 5.7 碘酸钾(GB 651)溶液:c(KIO3)=0.04mol/L,将碘酸钾在105~110℃干燥1h,然后称取2.140g碘酸钾,精确至0.0002g,并溶解于水中,稀释至1L; 5.8 硫代硫酸钠(GB 637)标准滴定溶液:c(Na2S2O3)=0.1mol/L,按GB 601中 4.6条规定配制; 5.9 淀粉指示液:称0.5g淀粉和1g碘化汞,用少量水混合后加到100mL沸水中,煮沸3min. 6 仪器 6.1 碘量瓶:250、500ml; 6.2 移液管:10、25ml; 6.3 滴定管:50ml. 7 测定步骤 7.1 韦氏试剂的制备:将19g一氯化碘溶解在1L冰乙酸(GB 676)中,搅匀后置于棕色小口玻璃瓶内,在25℃以下保存。 7.2 试样的称量 根据预计的碘值的不同称取试样的质量,如下表所示: 预计的碘值,gI2/100g试样试样质量,g 表面活性剂、脂肪酸、醇、动植物油脂脂肪胺<55-2021-5051-100101-150151-200 3.001.000.400.200.130.1 1.50.85-1.060.64-0.790.25-0.530.18-0.320.13-0.20 7.3 试样的测定 称取的试样(精确至0.0002g)放入干燥的250ml碘量瓶中,加入30ml三氯甲烷(5.2),使试样完全溶解。精确吸取10ml韦氏试剂加入瓶中,瓶塞用碘化钾溶液(5.5)湿润后,立即将瓶盖紧,摇动碘量瓶,使瓶中溶液充分混合,并置

无水硫酸铜中铜含量的测定

实验六无水硫酸铜中铜含量的测定—间接碘量法 一、预习内容 1、氧化还原滴定法—碘量法 2、碘量法的应用示例——铜合金中铜的测定 二、实验目的 1、熟练掌握Na2S2O3溶液浓度的标定 2、学习间接碘量法测定铜的含量 三、实验原理 在弱酸性介质中,Cu2+与过量的KI生成CuI沉淀,并定量析出I2,用标准Na2S2O3溶液滴定生成的I2,根据标准Na2S2O3溶液的浓度及消耗量可以计算出试样中铜的含量。反应方程式如下: Cu2++4I-=2Cu I↓+I2 I2+2S2O32-=2I-+S4O62- 分析过程: HNO3 (1) H2SO4 过量KI CuI↓Na2S2O3 铜试样——→Cu2+, NO————————→Cu2+———→I2 ————→I-△ (2)NaOH调至中性 pH=3~4 淀粉注意:(1)介质的pH=3~4,若pH太高,Cu2+会水解,若pH太低,I-易被空气氧化为I2,并且Cu2+对该氧化反应有催化作用,使测定结果偏高。用NH4HF2调节pH,NH4HF2可分解为HF与F-,形成HF-F-缓冲溶液。HF的PKa=3.18,HF-F-缓冲溶液的缓冲范围为 2.18~4.18,符合要求,同时,F-可与Fe3+形成FeF63-掩蔽了Fe3+,Fe3+能氧化I-。 (2)CuI 会吸附I2,为了使吸附的I2,近滴定终点时加入NH4SCN,使CuI 转化为溶解度更小的CuSCN(CuI:Ksp=10-11.96,CuSCN:Ksp=10-14.32。),NH4SCN 不能过早加入,它会还原I2,使测定结果偏低。 (3)过量KI的作用:还原剂,沉淀剂,络合剂。 (4)Na2S2O3溶液的浓度要重新标定,标定方法同上次实验。标定Na2S2O3溶液的浓度可用的基准物质有K2Cr2O7、KIO3、纯铜等。若用纯铜标定,与测定时条件相同,可以抵消方法的系统误差。 四、实验步骤 1、Na2S2O3溶液浓度的标定 准确移取K2Cr2O7标准溶液25.00cm3置于碘量瓶中,加5cm3浓度为6mol dm-3的盐酸溶液,加10cm320%的KI溶液,加盖水封,于暗处放置5min。加20cm3H2O,立即用Na2S2O3溶液滴定至淡黄色,加8滴淀粉指示剂,继续滴定

间接碘量法测定铜盐中铜的含量

间接碘量法测定铜盐中铜的含量 一、实验目的: 1、掌握铜盐中铜的测定原理和碘量法的测定方法; 2、学习终点的判断和观察。 二、实验原理: 在弱酸性溶液中(pH=3~4)Cu2+与过量的I -作用生成不溶性的CuI沉淀并定量析出I2:2Cu2++ 5I- =2CuI↓ + I3- 生成的I2用Na2S2O3标准溶液滴定,以淀粉为指示剂,滴定至溶液的蓝色刚好消失即为终点。 I3 -+ 2S2O32-=3I-+ S4O62- 由于CuI沉淀表面吸附I2故分析结果偏低,为了减少CuI沉淀对I2的吸附,可在大部分I2被Na2S2O3溶液滴定后,再加入NH4SCN,使CuI沉淀转化为更难溶的CuSCN沉淀。 CuI + SCN- = CuSCN↓+ I - CuSCN吸附I2的倾向较小,因而可以提高测定结果的准确度。 根据Na2S2O3标准溶液的浓度,消耗的体积及试样的重量, 计算试样中铜的含量。 三、实验步骤: CuSO4中铜的测定:准确称取CuSO4·5H2O试样0.5~0.6 g两份,分别置于锥形瓶中,加5ml 1 mol/L H2SO4溶液和100 ml水使其溶解,加入100g/L KI溶液10ml,立即用Na2S2O 3标准溶液滴定至浅黄色,然后加入2ml淀粉作指示剂,继续滴至浅蓝色。再加100g/L KSCN 10ml,摇匀后,溶液的蓝色加深,再继续用Na2S2O 3标准溶液滴定至蓝色刚好消失为终点。 四、数据记录和处理 2、铜盐中铜的测定

注:CuSO 4·5H 2O 的摩尔质量M=249.68 g/mol 。 五、问题讨论 1.本实验加入KI 的作用是什么? 答:本实验中的反应式为: 23252Cu I CuI I +--+=↓+ 222334623S O I S O I ---- +=+ 从上述反应可以看出,I -不仅是Cu 2+的还原剂,还是Cu +的沉淀剂和I -的络合剂。 2.本实验为什么要加入NH 4SCN ?为什么不能过早地加入? 答:因CuI 沉淀表面吸附I 2,这部分I 2不能被滴定,会造成结果偏低。加入NH 4SCN 溶液,使CuI 转化为溶解度更小的CuSCN ,而CuSCN 不吸附I 2从而使被吸附的那部分I 2释放出来,提高了测定的准确度。但为了防止I 2对SCN -的氧化,而NH 4SCN 应在临近终点时加入。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

相关文档
相关文档 最新文档