文档库 最新最全的文档下载
当前位置:文档库 › 蛇形矩阵

蛇形矩阵

蛇形矩阵
蛇形矩阵

#include

#define N 20

int main(void)

{

inti,j,k,m,n;

char base='A';

char a[N][N]={0};

printf("请输入矩阵行、列:\n");

scanf("%d%d",&m,&n);

for(k=0;k

for(i=k;i<=n-1-k;i++)//第一区块

{

if(base == '[')

{

base = 'A';

}

a[k][i]=base++;

}

for(j=k+1;j

{

if(base == '[')

{

base = 'A';

}

a[j][n-1-k]=base++;

}

for(i=n-1-k;i>k;i--)//第三区块

{

if(base == '[')

{

base = 'A';

}

a[m-1-k][i]=base++;

}

for(j=m-1-k;j>k;j--)//第四区块

{

if(base == '[')

{

base = 'A';

}

a[j][k]=base++;

}

}

if(m%2 == 1)

{

int t1 = n-m/2-2;

for(int t = 0;t < t1;t++)

{

if(base == 'Z')

{

base = 'A';

}

a[m/2][m/2+t] = base++;

}//为基数是奇数的矩阵的中心点进行赋值}

//输出矩阵

for(i=0;i

{

for(j=0;j

printf("%-4c",a[i][j]);

printf("\n");

}

return 0;

}

控制软件说明书

控制软件说明书 PC端软件FTM 安装及应用 系统运行环境: 操作系统中英文Windows 98/2000/ NT/XP/WIN7/ Vista, 最低配置 CPU:奔腾133Mhz 内存:128MB 显示卡:标准VGA,256色显示模式以上 硬盘:典型安装 10M 串行通讯口:标准RS232通讯接口或其兼容型号。 其它设备:鼠标器 开始系统 系统运行前,确保下列连线正常: 1:运行本软件的计算机的RS232线已正确连接至控制器。 2:相关控制器的信号线,电源线已连接正确; 系统运行步骤: 1:打开控制器电源,控制电源指示灯将亮起。 绿色,代表处于开机运行状态;橙色代表待机状态。 2. 运行本软件 找到控制软件文件夹,点击FWM.exe运行。出现程序操作界面:

根据安装软件版本不同,上图示例中的界面及其内容可能会存在某些差别,可咨询我们的相关的售后服务人员。 上图中用红色字体标出操作界面的各部分的功能说明: 1. 菜单区:一些相关的菜单功能选择执行区。 2. 操作区:每一个方格单元代表对应的控制屏幕,可以通过鼠标或键盘的点选,拖拉的方式选择相应控制单元。 3.功能区:包含常用的功能按钮。 4.用户标题区:用户可根据本身要求,更改界面上的标题显示 5.用户图片区:用户可根据本身要求,更改界面上的图片显示,比如公司或工程相关LOGO图片。 6.附加功能区:根据版本不同有不同的附加项目。 7.状态区:显示通讯口状态,操作权限状态,和当前的本机时间,日期等。 如何开始使用 1. 通讯设置 单击主菜单中“系统配置”――》“通讯配置” 选择正确的通讯端口号,系统才能正常工作。 可以设置打开程序时自动打开串口。 2.系统配置

矩阵方程求解方法

矩阵方程求解方法 本文所述的矩阵方程是指形如Ax=b的方程,其中A是一个mxn的矩阵,称为方程的系数 矩阵。x和b是mx1的矩阵。特别的,当b=0时,这种方程又称为其次方程。本文将讨论 这种矩阵的有解条件和求解方法。 矩阵方程的有解条件 为了解释矩阵方程的有解条件,我们首先要熟悉一些概念。 一个矩阵方程的增广矩阵是系数矩阵A和b并在一起构成的矩阵,记作(A,b)。 假定 , ,则矩阵方程的增广矩阵就是 矩阵的秩定义为其行向量中极大线性无关组中包含向量的个数,等价的说法是,矩阵的秩 是r,则矩阵通过行列初等变换,变换成左上角是一个r阶单位矩阵,其他都是0的矩阵。矩阵A的秩记作r(A),其中r是英文单词rank的缩写。 有了这两个基本概念,我们就可以准确描述矩阵方程的有解条件了:矩阵方程Ax=b的有 解条件是矩阵A的秩等于增广矩阵(A,b)的秩,也就是r(A)=r(A,b)。 证明很简单,既然矩阵A的秩是r,那么肯定可以找到两个可逆的矩阵P,Q,满足 --1) 其中I r表示r阶单位矩阵。 应用到原来的方程,可以得到: --2) 我们把Q-1x当作一个未知的变量,PAQ当作系数,这就构成一个新的矩阵方程。而这个矩 阵方程的左侧系数除了前r行是有1的之外,其余行是0。为了它有解,Pb的后m-r行必 须也是0。这样(A,b)的秩必然是r。 必须注意到Q-1是可逆的,因此以Q-1x为未知变量的方程有解意味着以x为未知变量的原 方程也是有解的。

矩阵方程的解 对于矩阵方程Ax=b,如果满足r(A)=r(A,b),则矩阵方程是有解的。为了求它的解,我们首先把矩阵方程通过行列初等变换变化成前文2)式的形式,代入1)式后得到: --3) 其中Q-1x和Pb是一个列向量,我们可以把它们分割成rx1和(n-r)x1的两个矩阵,分别记作x’1和x’2,及b’1和b’2。则很显然我们可以得到: --4) 很显然,b’2必须为0,因为展开后b’2等于0 x’1 +0 x’2 =0 而由4式可以看出,x’1= b’1,x’2可以为任意向量。 所以方程最后的解为: --5) 从解的形式可以看出解空间有如下特性: 1.方程Ax=b的解空间的秩是n=r(A) 2.如果A是满秩的,则方程的解唯一。

矩阵函数的求法

二、利用零化多项式求解矩阵函数. 利用Jordan 标准型求解矩阵函数的方法比较复杂,它需要求J 和P 。下面我们介绍根据零化多项式求解矩阵函数的一种方法。 定律:n 阶方阵A 的最小多项式等于它的特征矩阵的第n 个(也就 是最后一个)不变因子n d ()λ。(可参见张远达《线性代数原理》P215) 设n 阶方阵A 的不变因子反向依次为n d (),λn 11d (),,d ()-λλ ,由它们给出的初等因子分别为 12r m m m 12r (),(),,()λ-λλ-λλ-λ ;s r 1m m r 1s (),,()++λ-λλ-λ ; ,s i i 1 m n ==∑ 由于1223n 1n d ()|d (),d ()|d (),,d ()|d ()-λλλλλλ ,故 1o r 1s ~+λλ必定出现在1r ~λλ中; 2o 若i j (i r)(j r)λ>=λ≤则i j m m ≤ 根据上述定理,A 的最小多项式 12r m m m 012r ()()()()?λ=λ-λλ-λλ-λ 即 12r m m m 12r (I A)(I A)(I A)O λ-λ-λ-= 令r i i 1m m ==∑,则可见m A 可以由02m 1A I,A,A ,,A -= 线性表示,从 而m i A (0)+λ>亦可由02m 1A I,A,A ,,A -= 线性表示。所以,矩阵函数f(A)若存在,也必定可由0m 1A ~A -线性表示。 因此,我们定义一个系数待定的(m -1)次多项式m 1 i i i 0g()c -=λ=λ∑,根据 以上论述,适当选择系数0m 1c ~c -,就可以使f (A )=g (A )

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵控制器的调试方法.

16入8出矩阵控制器的调试方法 1、矩阵控制器的接口认识 VIDEO-IN 视频信号输入 VIDEO-OUT 视频信号输出 VIDEO-IR 环路输出(相当于视频分支器) AUDIO-IN 音频输入 ARM 报警模块,本系统报警模块有16路报警输入合2路报警联动输出2、控制数据线的连接 CODE1:主要用于连接键盘、报警主机、多媒体控制器等设备 CODE2:主要用于连接解码器、智能高速球、码分配器、码转换器等设备 CODE3:主要用于连接网络矩阵 CODE4:主要用于连接计算机、DVR等设备 3、矩阵控制器的功能 A、视频切换控制 矩阵系统的中央处理模块控制所有摄像机输入和监视器输出的视频切换。切换可通过键盘的操作、或执行系统切换队列、或报警的自动响应功能等来控制; B、系统切换(自由切换、程序切换、群组切换、报警切换); C、报警响应(当接收到报警信号时,切换摄像机输入到指定监视器上面去); D、屏幕显示 在监视器屏幕上显示摄像机标题、日期、状态和标识,硬盘录象机本身提供了该功能,但矩阵控制器上的图象通常没有经过硬盘录象机,必须通过矩阵控制器进行字符叠加; E、摄像机控制 F、优先级别权限(大型矩阵系统当中会有多个键盘,可以设定每个键盘的权限,允许响应高级别的用户去控制摄像机而不响应低级别用户) G、系统分区 键盘对监视器的分区、监视器对摄像机的分区、键盘对摄像机的分区、键盘对报警点控制的分区 H、菜单设置

由菜单提供了系统设置和编程功能。菜单直接显示在第一好监视器上; I、数据保存(编程数据可保存10年以上) 4、矩阵系统的操作 4.1 键盘密码登陆LOCK+0000+OFF 4.2 键盘密码锁定LOCK+0000+ON 4.3 修改键盘密码(置键盘开关至PROG,输入4位密码,按键盘上LOCK,再按键盘上ACK,置键盘开关到OFF) 4.4 指定监视器数字+MON 4.5 在指定监视器上显示指定图象数字+CAM 4.6 云台的控制直接通过摇杆转动,摇杆在中间位置时,云台不转动,云台自动巡航键盘输入0+AUX+ON 云台停止巡航0+AUX+OFF 4.7 镜头的控制键盘上CLOSE/OPEN,控制光圈,NEAR/FAR 控制变倍,WIDE/TELE 控制聚焦 4.8 高速球预置位设置键盘开关调整到PROG 调整到需要设置的预置位角度图象,输入该预置点序号,按键盘上SHOT+ON,转动PROG到OFF状态 4.9 关闭某个预置位调整键盘开关到PROG 输入预置位序号+SHOT+OFF,调整键盘开关到OFF 4.10 调用预置位输入预置位序号+SHOT+ACK 4.11 设置巡视队列键盘输入PATRN+ON+预置位序号+SHOT+预置位序号+SHOT+SHOT+预置位序号+SHOT+预置位序号+SHOT+预置位序号+OFF 4.12 运行巡航队列巡航队列号+PATRN+ACK 5、切换方式选择 5.1 系统自由切换经过适当的编程,按键盘0+RUN,可在监视器上显示一组指定的视频输入,每个视频输入显示一段设定的时间(不常用)键盘输入数字+TIME,设置每个画面停留的时间,输入指定的摄像机序号+ON+摄像机序号+ON+OFF 5.2 系统程序切换通过菜单编程,能在监视器上自动地按照顺序显示一列指定的视频输入,每个视频停留一段时间;调用方式——程序切换序号+RUN 5.3 同步切换通过菜单编程,将一组摄像机图象顺序地切换到一组设定的监视

矩阵n次方的几种求法的归纳

矩阵n 次方的几种求法 1.利用定义法 () () ,,ij kj s n n m A a B b ??==则() ,ij s m C c ?=其1122...ij i j i j in nj c a b a b a b =+++ 1 n ik kj k a b ==∑称为A 与B 的乘积,记为C=AB ,则由定义可以看出矩阵A 与B 的乘积C 的第i 行第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的第j 列的对应元素乘积之和,且由定义知:第一个矩阵的列数与第二个矩阵的行数要相[]1 同。 例1:已知矩阵34 125310210134A ??? ?=- ? ???,44 5 130621034510200B ??? ? ? = ? ? ??,求AB 解:设C AB ==() 34 ij c ?,其中1,2,3i =;1,2,3,4j = 由矩阵乘积的定义知: 111526533032c =?+?+?+?=121122543231c =?+?+?+?= 131321553030 c =?+?+?+?=14102051305 c =?+?+?+?= 21150623101c =-?+?+?+?= 22110224129c =-?+?+?+?= 23130125107c =-?+?+?+?= 24100021102c =-?+?+?+?= 310516334015c =?+?+?+?= 320112344222c =?+?+?+?= 330311354016c =?+?+?+?= 34001031403c =?+?+?+?= 将这些值代入矩阵C 中得:

C AB ==34 323130519721522163??? ? ? ??? 则矩阵A 的n 次方也可利用定义的方法来求解。 2.利用矩阵的分块来求解 这类方法主要是把一个大矩阵看成是由一些小矩阵组成,就如矩阵 由数组成的一样在运算中将这些小矩阵当做数一样来处理,再由矩阵乘法的定义来求解这些小矩阵的乘积所构成的矩阵。即设 () () ,,ij kj s n n m A a B b ??==把A ,B 分解成一些小矩阵: 1111l t tl A A A A A ?? ?= ? ???K M O M L ,1111 r l lr B B B B B ?? ? = ? ??? K M O M L ,其中ij A 是i j s n ?小矩阵且1,2...i t =,1,2...j l =,且12...t s s s s +++= ,12...l n n n n +++=;ij B 是j k n m ?小矩阵且1,2...j l =,1,2...k r =;且12...l n n n n +++=, 12...r m m m m +++=;令C AB ==1111r t tr C C C C ?? ? ? ??? K M O M L ,其中ij C 是i j s m ?小矩阵且1,2...i t =,1,2,...,j r =,且12...t s s s s +++=, 12...r m m m m +++=;其中1122...ij i j i j il lj C A B A B A B =+++。这里我们应注意:矩阵A 列的分法必须与矩阵B 行的分法一[]1 致。

计算方法_矩阵LU分解法

clear all; %A=LU矩阵三角分解法 n=input('输入方矩阵的维数: '); for i=1:n for j=1:n A(i,j)=input('依次输入矩阵元素:'); end end %输入一个n阶方形矩阵 for j=1:n L(j,j)=1; %Doolittle分解,L对角元素全为1 end for j=1:n U(1,j)=A(1,j); end %U的第一行 for i=2:n L(i,1)=A(i,1)/U(1,1); end %L的第一列 for k=2:n for j=k:n sum1=0; for m=1:k-1 sum1=sum1+L(k,m)*U(m,j); end %求和 U(k,j)=A(k,j)-sum1; end for i=k+1:n sum2=0; for m=1:k-1 sum2=sum2+L(i,m)*U(m,k); end %求和 L(i,k)=(A(i,k)-sum2)/U(k,k); end end L %输出下三角矩阵L U %输出上三角矩阵U

运行结果:(示例) 输入方矩阵的维数: 4 依次输入矩阵元素: 1 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 3 依次输入矩阵元素:0 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素:-1 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 5 依次输入矩阵元素:9 A=LU分解后则可以求解Ax=b线性方程组,相关计算参考计算方法,这里不再详细介绍。

矩阵的基本运算

矩阵的基本运算 (摘自:华东师范大学数学系;https://www.wendangku.net/doc/a86964532.html,/)§3.1 加和减 §3.2矩阵乘法 §3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算 §3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩 §3.1 加和减

如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B= 1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回: C = 2 6 10 6 10 14 10 14 0 如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如: x= -1 y=x-1= -2 0 -1 2 1 §3.2矩阵乘法 Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍. §3.2.1 矩阵的普通乘法 矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同. 如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B, 结果为 C=×==

即Matlab返回: C = 19 22 43 50 如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵. §3.2.2 矩阵的Kronecker乘法 对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为: 由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与 B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘 法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B: A= B= 则由以下命令可以求出A和B的Kronecker乘积C: A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B) C = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

图的矩阵表示及习题-答案汇总

177 图的矩阵表示 图是用三重组定义的,可以用图形表示。此外,还可以用矩阵表示。使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。矩阵是研究图的重要工具之一。本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。 定义9.4.1 设 G =是一个简单图,V =?v 1,v 2,…,v n ? A (G )=(ij a ) n ×n 其中: 1j i v v v v a j i j i ij =???=无边或到有边到 i ,j =1,…,n 称A (G )为G 的邻接矩阵。简记为A 。 例如图9.22的邻接矩阵为: ?????? ? ? ?=011110101101 1010)(G A 又如图9.23(a)的邻接矩阵为: ?????? ? ? ?=0001101111000010 )(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质: ①邻接矩阵的元素全是0或1。这样的矩阵叫布尔矩阵。邻接矩阵是布尔矩阵。 ②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178 ③邻接矩阵与结点在图中标定次序有关。例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。 ?????? ? ? ?='001010110001 1100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可 得到A ′(G )。称A ′(G )与A (G )是置换等价的。 一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。可以证明置换等价是n 阶布尔方阵集合上的等价关系。 虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。 ④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j 的入度。 ⑤零图的邻接矩阵的元素全为零,叫做零矩阵。反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。 设G =为有向图,V =?v 1,v 2,…,v n ?,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。故a ij 表示从v i 到v j 长度为1的路的条数。 设A 2=AA ,A 2=(2 ij a )n ×n ,按照矩阵乘法的定义, nj in j i j i ij a a a a a a a +++= 22112 若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长 度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过 v k 无长度为2的路,k =1,…,n 。故2 ij a 表示从v i 到v j 长度为2的路的条数。 设A 3=AA 2,A 3=(3 ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++= 若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2 的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0, ik a =0或2kj a =0, 则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。故3 ij a 表示从v i 到v j 长度为3的路的条数。 …… 可以证明,这个结论对无向图也成立。因此有下列定理成立。 定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素 k ij a 等于从v i 到v j 长度为k 的路的条数。其中k ii a 为v i 到自身长度为k 的回路数。 推论 设G =是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,

STM32 矩阵键盘控制

// PA0~PA3行控制线 // PA4~PA7列控制线 #include #include "Delay.h" #include "key_4x4.h" #define KEY_X (0X0F << 0) #define KEY_Y (0XF0 << 0) unsigned char const Key_Tab[4][4]=//键盘编码表 { {'D','C','B','A'}, {'#','9','6','3'}, {'0','8','5','2'}, {'*','7','4','1'} }; //没有得到键值返回0,否则返回相应的键值 unsigned char Get_KeyValue(void) {//使用线反转法 u8 i=5,j=5; u16 temp1,temp2; RCC->APB2ENR|=1<<2; //使能PORTA时钟 RCC->APB2ENR|=1<<0; //开启辅助时钟 AFIO->MAPR&=0XF8FFFFFF; //清除MAPR的[26:24]AFIO->MAPR|=0X04000000; //关闭JTAG GPIOA->CRL&=0XFFFF0000; GPIOA->CRL|=0X00003333; //PA0~PA3 推挽输出 GPIOA->CRL&=0X0000FFFF; //PA4~PA7 输入 GPIOA->CRL|=0X44440000; //PA4~PA7默认上拉 GPIOA->ODR&=~KEY_X ; //PA0~PA3置0 if(((GPIOA->IDR >> 4) & 0X0F)<0x0f) // 读取PA12~PA15的值{ delay_ms(70); //按键消抖 if((GPIOA->IDR >>4 & 0x0f)<0x0f) temp1=(GPIOA->IDR >>4 & 0x0f); switch(temp1) {

几何光学中的矩阵方法

几何光学中的矩阵方法 几何光学是基于几何学研究光学的基本方法。几何光学,尤其是矩阵方法在研究光学系统成像时有着巨大的优势。本文通过论述矩阵方法在几何光学中的应用,介绍描述傍轴光线成像的光学ABCD矩阵。同时进一步将矩阵方法拓展至非傍轴光线,得到描述任意光线成像的严格ABCD矩阵。 在光学研究中,当光波长远小于研究对象的尺寸时,通常会利用几何光学方法来研究光线的传播。几何光学中光线的传播遵循三个基本定律:1. 光在自由空间中沿直线独立传播;2. 光的折射定律;3. 光的反射定律。虽然几何光学忽略了光的波动性,无法解释干涉、衍射等物理现象,但是其在光学系统成像性质的研究中有着巨大的优势。 光学系统成像的核心是光学系统变换。1840年C. Gauss建立了高斯光学,用来研究理想光学系统傍轴成像(即满足傍轴近似的光线的成像)性质。傍轴近似下,光线与光学系统中心轴的夹角很小,可以使用小角近似关系,。在这种近似下,光学系统变换退化为线性变换,因此可以用矩阵方法来进行描述。矩阵方法最初是由R. A. Sampson引入几何光学,用来处理几何像差等问题错误!未找到引用源。。之后矩阵方法拓展至研究非傍轴成像,为非傍轴成像的研究提供了新的方法。 本文分为两部分,第一部分着重于傍轴近似下的矩阵方法,介绍ABCD矩阵对光学系统变换的描述。第二部分拓展至包括非傍轴光线的任意光线的传播,介绍并推导严格ABCD矩阵。 一傍轴光线成像与矩阵 上述结论基于傍轴近似,研究的是理想光学系统的傍轴成像。然而实际成像系统中,非傍轴光线成像造成的影响往往是不可忽略的。非傍轴光线与傍轴光线往往不是成像于同一点,即非傍轴光线与傍轴光线成像之间存在差异,称之为几何像差。实际成像中,我们需要关注成像质量,即需要去衡量几何像差的大小。这种情况下,傍轴ABCD矩阵是无法解决的。我们需要引入可以描述非傍轴光线的ABCD矩阵,即严格ABCD矩阵。 二任意光线成像与严格ABCD矩阵 对于任意光线的成像,我们希望同样能够用矩阵进行描述,同时能够保持与傍轴ABCD矩阵相似的形式。因此我们尝试去除傍轴近似,来得到严格的变换关系,即严格ABCD矩阵错误!未找到引用源。。 对于共轴光学系统,光线成像依旧可以分成自由空间传播、折射与反射三种情况。首先我们讨论折射情况。从几何学的角度,我们首先作出入射光线与折射光线所在直线。设折射点为,在入射光线所在的直线上作,在折射光线所在直

行阶梯形矩阵方法总结

行阶梯形矩阵方法总结 导读:行阶梯形矩阵,Row—Echelon Form,是指线性代数中的矩阵。 阶梯形矩阵 如果: 所有非零行(矩阵的行至少有一个非零元素)在所有全零行的上面。即全零行都在矩阵的底部。 非零行的首项系数(leading coefficient),也称作主元,即最左边的首个非零元素(某些地方要求首项系数必须为1),严格地比上面行的首项系数更靠右。 首项系数所在列,在该首项系数下面的元素都是零(前两条的推论)。 这个矩阵是行阶梯形矩阵: 化简后的行阶梯形矩阵(reduced row echelon form),也称作行规范形矩阵(row canonical form),如果满足额外的条件:每个首项系数是1,且是其所在列的唯一的非零元素。例如: 注意,这并不意味着化简后的行阶梯形矩阵的左部总是单位阵。例如,如下的矩阵是化简后的行阶梯形矩阵: 因为第3列并不包含任何行的首项系数。 矩阵变换到行阶梯形 通过有限步的行初等变换,任何矩阵可以变换为行阶梯形。由

于行初等变换保持了矩阵的行空间,因此行阶梯形矩阵的行空间与变换前的原矩阵的行空间相同。 行阶梯形的.结果并不是唯一的。例如,行阶梯形乘以一个标量系数仍然是行阶梯形。但是,可以证明一个矩阵的化简后的行阶梯形是唯一的。 一个线性方程组是行阶梯形,如果其增广矩阵是行阶梯形。类似的,一个线性方程组是简化后的行阶梯形或'规范形',如果其增广矩阵是化简后的行阶梯形。 【行阶梯形矩阵方法总结】 1.数学线性代数之矩阵学习总结 2.线性代数矩阵课件 3.银行工作总结的写作方法 4.矩阵检测试题 5.琵琶行描写音乐的方法 6.学习方法的总结 7.新人银行柜员个人总结 8.银行后勤总结 上文是关于行阶梯形矩阵方法总结,感谢您的阅读,希望对您有帮助,谢谢

矩阵控制键盘操作说明

矩阵控制键盘操作说明 键盘概述 控制器是智能电视监控系统中的控制键盘,也是个监控系统中人机对话的主要设备。可作为主控键盘,也可作为分控键盘使用。对整个监控系统中的每个单机进行控制。 键盘功能 1.中文/英文液晶屏显示 2.比例操纵杆(二维、三维可选)可全方位控制云台,三维比例操纵杆可控制摄像机的变倍 3.摄像机可控制光圈开光、聚集远近、变倍大小 4.室外云台的防护罩可除尘和除霜 5.控制矩阵的切换、序切、群组切换、菜单操作等 6.控制高速球的各种功能,如预置点参数、巡视组、看守卫设置、菜单操作等 7.对报警设备进行布/撤防及报警联动控制 8.控制各种协议的云台、解码器、辅助开头设置、自动扫描、 自动面扫及角度设定 9.在菜单中设置各项功能 10.键盘锁定可避免各种误操作,安全性高 11.内置蜂鸣器桌面上直接听到声音,可判断操作是否有效 技术参数 1.控制模式主控、分控 2.可接入分控数16个 3.可接入报警模块数239个 4.最大报警器地址1024个 5.最大可控制摄像机数量1024个 6.最大可控制监视器数量 64个 7.最大可控制解码器数量 1024个 8.电源 AC/DC9V(最低500mA的电源) 9.功率 5W 10.通讯协议Matri、PEL-D、PEL-P、VinPD 11.通讯波特率1200 Bit/S,2400 Bit/S,4800 Bit/S ,9600Bit/S, Start bit1,Data bit8,Stop bit1

键盘按键说明 Focus Far 聚焦远 Focus Near 聚焦近 Zoom Tele 变倍大 Zoom Wide 变倍小 DVR 设备操作 DVR 功能键 Shift 用户登入 Login 退出键 Exit 报警记录查询 List 进入键盘主菜单 MENU 启动功能 F1/ON 关闭功能 F2/OFF 液晶显示区

动态矩阵控制算法

MATLAB 环境下动态矩阵控制实验 一 算法实现 设某工业对象的传递函数为:G P (s)=e -80s /(60s+1),采用DMC 后的动态特性如图1所示。在仿真时采样周期T=20s ,优化时域P=10,控制时域M=2,建模时域N=20。 MATLAB 程序1: g=poly2tfd(1,[60 1],0,80);%通用传递函数模型转换为MPC 传递函数模型 delt=20; %采样周期 nt=1; %输出稳定性向量 tfinal=1000; %截断时间 model=tfd2step(tfinal,delt,nt,g);%传递函数模型转换为阶跃响应模型 plant=model; %进行模型预测控制器设计 p=10; %优化时域 m=2; %控制时域 ywt=[];uwt=1; %设置输入约束和参考轨迹等控制器参数 kmpc=mpccon(plant,ywt,uwt,m,p);%模型预测控制器增益矩阵计算 tend=1000;r=1; %仿真时间 [y,u,yrn]=mpcsim(plant,model,kmpc,tend,r);%模型预测控制仿真 t=0:20:1000; plot(t,y) xlabel('图1 DMC 控制系统的动态阶跃响应曲线(time/s)'); ylabel('响应曲线'); 0100 2003004005006007008009001000 0.2 0.4 0.6 0.8 1 1.2 1.4 图1 DMC 控制系统的动态阶跃响应曲线(time/s) 响应曲线 图中曲线为用DMC 控制后系统的阶跃响应曲线。从图中可以看出:采用DMC 控制后系统的调整时间小,响应的快速性好,而且系统的响应无超调。该结果是令人满意的。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

Drazin谱和算子矩阵的Weyl定理

263Vol.26,No.3 20068JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION Aug.,2006 Article ID:1000-341X(2006)03-0413-10Document code:A Drazin Spectrum and Weyl’s Theorem for Operator Matrices CAO Xiao-hong1,2,GUO Mao-zheng1,MENG Bin1 (1.LMAM,School of Mathematical Sciences,Peking University,Beijing100871,China; 2.College of Math.&Info.Sci.,Shaanxi Normal University,Xi’an710062,China) (E-mail:xiaohongcao@https://www.wendangku.net/doc/a86964532.html,) Abstract:A∈B(H)is called Drazin invertible if A has?nite ascent and descent.Let σD(A)={λ∈C:A?λI is not Drazin invertible}be the Drazin spectrum.This paper shows that if M C= A C0B is a2×2upper triangular operator matrix acting on the Hilbert space H⊕K,then the passage fromσD(A)∪σD(B)toσD(M C)is accomplished by removing certain open subsets ofσD(A)∩σD(B)from the former,that is,there is equality σD(A)∪σD(B)=σD(M C)∪G, where G is the union of certain holes inσD(M C)which happen to be subsets ofσD(A)∩σD(B). Weyl’s theorem and Browder’s theorem are liable to fail for2×2operator matrices.By using Drazin spectrum,it also explores how Weyl’s theorem,Browder’s theorem,a-Weyl’s theorem and a-Browder’s theorem survive for2×2upper triangular operator matrices on the Hilbert space. Key words:Weyl’s theorem;a-Weyl’s theorem;Browder’s theorem;a-Browder’s theorem; Drazin spectrum. MSC(2000):47A53,47A55 CLC number:O177.2 1.Introduction Let H and K be in?nite dimensional Hilbert spaces,let B(H,K)denote the set of bounded linear operators from H to K,and abbreviate B(H,H)to B(H).If A∈B(H),writeσ(A)for the spectrum of A andσa(A)for the approximate point spectrum of A,ρ(A)=C\σ(A).If A∈B(H), we use N(A)for the null space of A and R(A)for the range of A.For A∈B(H),if R(A)is closed and dim N(A)<∞,we call A upper semi-Fredholm operator,and if dim H/R(A)<∞,then A is called lower semi-Fredholm operator.LetΦ+(H)(Φ?(H))be the set of all upper(lower) semi-Fredholm operators.A is called Fredholm operator if dim N(A)<∞and dim H/R(A)<∞. Let A be semi-Fredholm and let n(A)=dim N(A)and d(A)=dim H/R(A),then we de?ne the index of A by ind(A)=n(A)?d(A).An operator A is called Weyl if it is a Fredholm operator of index zero,and is called Browder if it is Fredholm“of?nite ascent and descent”.We write α(A)andβ(A)for the ascent and the descent for A∈B(H)respectively.The essential spectrum

相关文档