文档库 最新最全的文档下载
当前位置:文档库 › 1实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响

1实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响

1实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响
1实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响

实验一 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响

一、实验目的:

1、熟练紫外—可见分光光度计的操作。

2、学习利用紫外吸收光谱检查物质的纯度的原理和方法。

3、掌握溶剂极性对*n π→跃迁,*ππ→跃迁的影响

二、仪器与试剂

1、仪器

730型紫外—可见分光光度计,带盖石英吸收池1cm 2只。

2、试剂

(1) 苯、乙醇、正己烷、氯仿、丁酮。

(2) 异亚丙基丙酮:分别用水、氯仿、正已烷配成浓度为0.4g/L 溶液。

二、实验原理

具有不饱和结构的有机化合物,如芳香族化合物,在紫外区(200~400nm)有特征的吸收,为有机化合物的鉴定提供了有用的信息。

紫外吸收光谱定性的方法是比较未知物与已知纯样在相同条件下绘制的吸收光谱,或将绘制的未知物吸收光谱与标准谱图(如Sadtler 紫外光谱图)相比校,若两光谱图的max λ和max K 相同,表明它们是同一有机化合物。极性溶剂对有机物

的紫外吸收光谱的吸收峰波长、强度及形状有一定的影响。溶剂极性增加,使*n π→跃迁产生的吸收带蓝移,而*ππ→跃迁产生的吸收带红移。

影响有机化合物紫外吸收光谱的因素,有内因(分子内的共轭效应、位阻效应、助色效应等)和外因(溶剂的极性、酸碱性等溶剂效应)由于受到溶剂极性和酸碱性的影响,将使溶质的吸收峰的波长、强度以及形状发生不同程度的变化,这是因为溶剂分子和溶质分子之间可能形成氢键,使极性溶剂分子的偶极减弱,溶质分子的极性增强,因而在极性溶剂中*ππ→跃迁所需的能量减小,吸收波长红移,而在极性溶剂中*n π→所需能量增大,吸收波长蓝移,由于物质的紫外吸收光谱是物质分子中生色团和助色团的贡献,也是物质整个分子的特征表现。例如具有π键电子的共轭双键化合物、芳香烃化合物等,在紫外光谱区都有强烈吸收,其摩尔吸光系数可达104~105数量级,这与饱和烃化物有明显的不同。利用这一特性,可以很方便地检查纯饱和烃化物中是否含有共轭双键、芳香烃等化合物杂质。

三、实验步骤

1、苯的吸收光谱的测绘

在1cm 的石英吸收池中,加入两滴苯,加盖,用手心温热吸收池底部片刻,

在紫外分光光度计上,以空白石英吸收池为参比,从220~360nm 范围内进行波长扫描,绘制吸收光谱。确定峰值波长。

2、乙醇中杂质苯的检查

用1cm 石英吸收池,以乙醇为参比溶液,在230—280nm 波长范围内测绘乙醇试样的吸收光谱,并确定是否存在苯的B 吸收带?

3、溶剂性质对紫外吸收光谱的影响

(1) 在3支5mL 带塞比色管中,各加入0.02mL 丁酮,分别用去离子、乙醇、氯仿稀释至刻度,摇匀。用1cm 的石英吸收池,以各自的溶剂为参比,在220~350nm 波长范围内测绘各溶液的吸收光谱。比较它们的max λ的变化。并加以解释。

(2) 在3支10mL 带塞比色管中,分别加入0.02mL 异亚丙基丙酮,并分别用水、氯仿、正已烷稀释至刻度,摇匀。用1cm 石英吸收池,以相应的溶剂为参比,测绘各溶液在220~350nm 范围内的吸收光谱,比较各吸收光谱max λ的变化,并加以解释。

四、注意事项

1、石英吸收池每一种溶液或溶剂必须清洗干净,并用被测溶液或参比液荡洗三次。

2、本实验所用试剂均应为光谱纯或经提纯处理。

五、思考题

1、分子中哪类电子跃迁会产生紫外吸收光谱?

答:*n π→和*ππ→跃迁会产生紫外吸收光谱。

2、为什么极性溶剂有助于*n π→跃迁向短波方向移动?而*ππ→跃迁向长波方向移动?

在*ππ→跃迁中,因激发态的极性大于基态,所以在极性溶剂中,极性溶剂对电荷分散体系的稳定能力使激发态和基态的能量都有所降低,但程度不同,前者大于后者,这就导致跃迁吸收能量较在非极性溶剂中减小,帮吸收带向长波方向移动,在*n π→跃迁中,极性溶剂对它的影响与*ππ→跃迁相反,溶剂使得*n π→跃迁的吸收带随着溶剂极性增加而向短波方向移动。

有机溶剂分类

有机溶剂分类 一、烃类溶剂 1.烃 只含有碳氢两种元素的有机化合物叫烃。根据结构将烃类分为脂肪烃和芳香烃。脂肪烃包括脂肪链烃和脂环烃。开链结构的脂肪烃根据结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。芳香烃是含有苯环特殊结构的烃类。根据具体结构分为单环芳烃、多环芳烃和稠环芳烃。 烃类溶剂根据来源分为两类:由石油分馏得到的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制得到的成分单一烃类溶剂是烃的纯溶剂。纯溶剂价格较高,通常只用于一些特殊用途中。 2.溶剂油 石油是由多种烃类组成的混合物,经过分馏处理得到不同沸点范围的产品。根据沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。其中沸点范围在30~90℃以戊烷和己烷为主要成分的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。在工业生产中常做溶剂使用,称为溶剂油或溶剂汽油。近年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包含的烃类成分复杂。在一定情况下也可以做溶剂使用,如美国干洗业使用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。因此广义上溶剂油包括多种沸程范围的烃类混合物以及己烷、苯、甲苯、二甲苯纯烃类溶剂。为了叙述上的方便,本书介绍的溶剂油是指由石油分馏得到的烃类混合物溶剂。 (1)溶剂油按沸程分类根据分馏过程的沸程,溶剂油大致分为三类:把沸程在100℃凋以下的称为低沸点溶剂油,如工业上的6号抽提溶剂油,沸程为60~90℃;把沸程在100~150℃的称为中沸点溶剂油,如橡胶溶剂油,沸程在80~120℃;把沸程高于150℃的称为高调沸点溶剂油,如油漆溶剂油,沸程为140—200℃,油墨溶剂油干点达360℃都属于高沸点溶剂油。从沸程范围看,溶剂油大多数属于汽油馏分。 (2)溶剂油的化学成分溶剂油是各种烃类的混合物,主要成分有开链烷烃、烯烃、环烷烃和芳香烃。由于烯烃化学性质活泼、安定性差,不适合作溶剂使用,所以一般溶剂油中含烯烃很少,成分以其他三类烃为主。 低沸程溶剂油,如6号抽提溶剂油,120号橡胶溶剂油,200号油漆溶剂油中主要成分是烷烃和环烷烃。有时称为脂肪烃类溶剂,脂肪烃溶剂油成分有直链烷烃、支链烷烃、环烷烃。由于不同结构烷烃的溶解性能不同,所以又可以根据其主要成分进一步分类,如以支链烷烃为主要成分的溶剂油,称为异构烷烃溶剂油,它的溶解性能优于一般脂肪烃溶剂油而高沸程溶剂油中甲苯、二甲苯等芳烃含量较大称为芳烃类溶剂油,如近年兴起的高沸点芳烃溶剂油主要成分就是分子中含9个碳原子的芳烃。 溶剂油的性能与其化学成分有密切关系,由于烃类的溶解能力顺序为:芳烃>环烷烃>链烷烃。所以相同沸程的溶剂油中含链烷烃、环烷烃多的比含芳烃较多的溶剂油苯胺点高、贝壳松脂丁醇值低,溶解能力差。 纯芳香烃溶剂油虽然溶解能力强,但毒性也大,因此目前工业上出现用高芳香烃溶剂油和低芳香烃溶剂油来代替苯、甲苯、二甲苯等纯芳香烃溶剂使用的趋势。这样虽然溶解能力稍有降低,但降低了溶剂油的毒性,也降低了生产成本。而且为降低溶剂油的毒性,各国对溶剂油中的芳香烃含量都作出限制,如油漆溶剂油中芳香烃的含量要求在15%以下。

常见有机化合物的紫外吸收光谱

常见有机化合物的紫外吸收光谱 1. 饱和烃 饱和单键碳氢化合物只有σ电子,因而只能产生σ→σ*跃迁。由于σ电子最不容易激发,需要吸收很大的能量,才能产生σ→σ*跃迁,因而这类化合物在200nm以上无吸收。所以它们在紫外光谱分析中常用作溶剂使用,如正已烷、环乙烷、庚烷等。 2.不饱和脂肪烃 ◆含孤立不饱和键的烃类化合物。具有孤立双键或三键的烯烃或炔烃,它们都产生π→π*跃迁,但多数在200nm以上无吸收。如已烯吸收峰在171nm,乙炔吸收峰在173nm,丁烯在178nm。若烯分子中氢被助色团如-OH、-NH2、-Cl等取代时,吸收峰发生红移,吸收强度也有所增加。 ◆含共轭体系的不饱和烃。具有共轭双键的化合物,相间的π键相互作用生成大π键,由于大π键各能级之间的距离较近,电子易被激发,所以产生了K吸收带,其吸收峰一般在217~280nm。K吸收带的波长及长度与共轭体系的长短、位置、取代基种类等有关,共轭双键越多,波长越长,甚至出现颜色。因此可据此判断共轭体系的存在情况。 ◆芳香化合物。苯的紫外吸收光谱是由π→π*跃迁组成的三个谱带,即E1、E2、具有精细结构的B吸收带。当苯环上引入取代苯时,E2吸收带和B吸收带一般产生红移且强度加强。稠环芳烃母体吸收带的最大吸收波长大于苯,这是由于它有两个或两个以上共轭的苯环,苯环数目越多,λmax越大。例如苯(255nm)和萘(275nm)均为无色,而并四苯为橙色,吸收峰波长在460nm。并五苯为紫色,吸收峰波长为580nm。

◆杂环化合物。在杂环化合物中,只有不饱和的杂环化合物在近紫外区才有吸收。以O、S或NH取代环戊二烯的CH2的五元不饱和杂环化合物,如呋喃、噻吩和吡咯等,既有π→π*跃迁引起的吸收谱带,又有n→π*跃迁引起的谱带。

实验1紫外可见吸收光谱实验报告

实验一:紫外—可见吸收光谱 一、实验目的 1.熟悉和掌握紫外—可见吸收光谱的使用方法 2.用紫外—可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L;b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电 子、有形成双键的π电子、 有未成键的孤对n电子。外 层电子吸收紫外或者可见 辐射后,就从基态向激发态 (反键轨道)跃迁。主要有 四种跃迁,所需能量ΔE 大小顺序为σ→σ*> n→σ*>π→π>n→π* 吸收带特征典型基团 σ→σ*主要发生在远紫外区C-C、C-H(在紫外光区观测不到) 跃迁一般发生在150~250nm,因此在紫 n→σ* -OH、-NH 2 、—X、-S 外区不易观察到 跃迁吸收带波长较长,孤立跃迁一般发 π→π* 芳香环 生在200nm左右 跃迁一般发生在近紫外区(200~400n n→π* C=O、C=S、—N=O、-N=N-、C=N ; m) 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围 700-365nm 扫描速度高速;采样间隔: 0.5nm 2、甲基紫的测定

(1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准(2)标准曲线的测定 分别将5ug/ml、 10ug/ml 、15ug/ml、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始"键,进行扫描,保存 3、甲基红的测定 (1)校准基线 将空白样品(乙醇)放到比色槽中,点击“基线"键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始" 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml—1吸光度 50。665 10 1.274 152.048

实验三、有机化合物的紫外吸收光谱及溶剂效应解读

实验一、有机化合物的紫外吸收光谱及溶剂效应 目的要求: 1、学习用紫外吸收光谱进行化合物的定性分析。 2、学习苯环上取代基的引入对最大吸收波长的影响。 3、了解一元取代苯的紫外光谱的实验规则。 4、熟悉各个吸收带。 基本原理 影响有机化合物紫外吸收光谱的因素,有内因和外因。由于受到溶剂极性的影响,溶质的吸收峰的波长、强度以及形状都会发生不同程度的变化。这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,因而在极性溶剂中π→π*跃迁所需能量减消,吸收波 长红移,而在极性溶剂中n→π*跃迁所需能量增大,吸收波长蓝移。 E带和B带是芳香族化合物的特征吸收。它们均由π→π*跃迁产生,当苯环上有取代基时,E带和B带的吸收峰也随之变化。如苯甲酸的E吸收带红移至230nm;ε=11600;B吸收带红移至273nm;ε=970;乙酰苯胺的E吸收带红移至241nm;ε=14000。 本实验通过苯甲酸、乙酰苯胺、苯在乙醇和环己烷的溶剂中紫外吸收光谱的测绘,说明内因和外因对有机化合物紫外吸收光谱的影响;了解一元取代苯的紫外光谱的实验规则,即在苯环上有一元取代基时,复杂的B谱带一般都简单化,并且各谱带的最大吸收波长发生红移,εmax一般增大。 一、仪器 1、紫外-可见分光光度计。型号:760CRT 二、试剂 1、苯甲酸、苯、乙酰苯胺、乙醇和环己烷均为分析纯 2、a 苯甲酸的环己烷溶液0.08g.100ml-1 b 乙酰苯胺的环己烷溶液0.08g.100ml-1 c 苯的环己烷溶液1:250 d 苯甲酸的乙醇溶液0.04g.100ml-1 e 乙酰苯胺的乙醇溶液0.08g.100ml-1 f 苯的乙醇溶液1:250 三、实验条件 1、波长扫描范围:190~300(400) 2、参比: 3、slit: 0.01nm

常用有机溶剂分类48901

常用有机溶剂分类及干燥 第一类溶剂 是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如: 苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。 第二类溶剂 是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下: 2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。第三类溶剂 是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的

情况下,残留溶剂的量不高于0.5%是可接受的,但高于此值则须证明其合理性。这类溶剂包括: 戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。 除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其合理性。 一些溶剂因为种种原因总是含有杂质,这些杂质如果对溶剂的使用目的没有什么影响的话,可直接使用。可是在进行化学实验和进行一些特殊的化学反应时,必须将杂质除去。虽然除去全部杂质是有困难的,但至少应该将杂质减少到对使用目的没有妨碍的限度。除去杂质的操作称为溶剂的精制,故溶剂的精制几乎都要进行脱水,其次再除去其他的杂质。 1.溶剂的脱水干燥: 溶剂中水的混入往往是由于在溶剂制造,处理或者由于副反应时作为副产物带入的,其次在保存的过程中吸潮也会混入水分。水的存

种常见有机溶剂

种常见有机溶剂

————————————————————————————————作者:————————————————————————————————日期:

77种常见有机溶剂 溶剂名沸点溶解性毒性 *液氨 -33.35℃ 特殊溶解性:能溶解碱金属和碱土金 属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒?*甲胺 -6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃?二甲胺 7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 *乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性?戊烷36.1与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷 39.75与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强 *二硫化碳46.23 微溶于水,与多种有机溶剂混溶麻醉性,强刺激性?*溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大?*丙酮56.12 与 1,1-二氯水、醇、醚、烃混溶低毒,类乙醇,但较大? 乙烷 57.28与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 *氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性?*甲醇 64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性, 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷 68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。麻醉性,刺激性 三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 ?1,1,1-三氯乙烷 74.0 与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒类溶剂 *四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 *乙酸乙酯 77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性?*乙醇 78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性?丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性

紫外光谱答案(学习资料)

第一章紫外光谱 一、简答 1.丙酮的羰基有几种类型的价电子。试绘出其能级图,并说明能产生何种电子跃迁?各种跃迁可在何区域波长处产生吸收? 答:有n电子和π电子。能够发生n→π*跃迁。从n轨道向π反键轨道跃迁。能产生R带。跃迁波长在250—500nm之内。 2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。 答:(1)的后者能发生n→π*跃迁,吸收较长。(2)后者的氮原子能与苯环发生P→π共轭,所以或者吸收较长。 3.与化合物(A)的电子光谱相比,解释化合物(B)与(C)的电子光谱发生变化的原因(在乙醇中)。 答:B、C发生了明显的蓝移,主要原因是空间位阻效应。 二、分析比较 1.指出下列两个化合物在近紫外区中的区别: 答:(A)和(B)中各有两个双键。(A)的两个双键中间隔了一个单键,这两个双键就能发生π→π共轭。而(B)这两个双键中隔了两个单键,则不能产生共轭。所以(A)的紫外波长比较长,(B)则比较短。 2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n→π*跃迁及π→π* 跃迁有何影响?用能级图表示。 答:对n→π*跃迁来讲,随着溶剂极性的增大,它的最大吸收波长会发生紫移。而π→π*跃迁中,成键轨道下,π反键轨道跃迁,随着溶剂极性的增大,它会发生红移。

三、试回答下列各问题 1.某酮类化合物λhexane max=305nm,其λEtOH max=307nm,试问,该吸收是由n→π*跃迁还 是π→π*跃迁引起的? 答:乙醇比正己烷的极性要强的多,随着溶剂极性的增大,最大吸收波长从305nm变动到 307nm,随着溶剂极性增大,它发生了红移。化合物当中应当是π→π反键轨道的跃迁。 2.化合物A在紫外区有两个吸收带,用A的乙醇溶液测得吸收带波长λ1=256nm, λ2=305nm,而用A的己烷溶液测得吸收带波长为λ1=248nm、λ2=323nm,这两吸收带分 别是何种电子跃迁所产生?A属哪一类化合物?答:λ1属于π→π*跃迁;λ2属于n→ π*跃迁。属于不饱和苯环化合物。 3.某化合物的紫外光谱有B 吸收带,还有λ1max=240nm,ε1max=130000 及λ2max =319nm,ε2max=50 两个吸收带,次化合物中有何电子跃迁?含有什么基团? 答:λ=240nm,ε=1.34×104吸收带为K带,说明分子中含有生色团,是π→π*跃迁引起 的。B,K,R,苯环及含杂原子的不饱和基团,π→π*,n→π λ=319nm,ε=50吸收带为R吸收带,说明分子中含有助色团,是n→π*跃迁引起的。 4. 已知化合物的分子式为C7H10O,可能具有β,α不饱和羰基结构,其K 吸收带波长 λmax =257nm(乙醇中),请推测结构。 四.计算下述化合物的λmax 略 3.试估计下列化合物中哪一种化合物的λmax最大,哪一种化合物的λmax最小,为什么?. 解:(b) > (a) >≈ (c) (b) 中有两个共轭双键,存在K吸收带,(a)中有两个双键,而(c )中只有一个双键. O OH O CH3 O CH3 (a)(b)(c)

紫外吸收光谱法测定苯的含量

江南大学实验报告 实验名称紫外吸收光谱法测定苯的含量 一、实验目的 1、了解紫外光谱法测定苯的原理及方法。 2、了解TU-1901双光束紫外可见分光光度计的使用。 3、学习利用吸收光谱曲线进行化合物鉴定和纯度检查。 二、实验原理 许多有机化合物或其衍生物,在可见光或紫外光区有吸收光谱,各种物质分子有其特征的吸收光谱。吸收光谱的形状和物质的特性有关,可作为定型鉴定的依据,而在某选定的波长下,测量其吸收光度即可对物质进行定量分析。紫外吸收光谱用于定量分析时,符合朗伯比尔定律,即A=κbc,式中A为吸光度,κ为摩尔吸收系数,b为液层厚度。 三、仪器和试剂 1、仪器 TU-1901型紫外-可见分光光度计,1cm石英比色皿,5ml吸量管,10ml容量瓶。 2、试剂 苯(色谱纯),乙醇(AR、95%),0.1g/L苯标准溶液。 四、实验步骤 1、吸收曲线的绘制 将装有参比溶液和标准试样的比色皿放入光路中,在紫外分光光度计上,从波长200-300nm,每隔0.5nm扫描出苯的吸收曲线。指出苯的B吸收带,找出B吸收带的最大吸收波长。2、试样中苯含量的测定 (1)苯标准曲线的绘制分别吸取1.0ml、2.0ml、3.0ml、4.0ml、5.0ml0.1g/l的苯标准溶液于5只10ml容量瓶中,用乙醇稀释至刻度,摇匀。用1ml石英比色皿,以乙醇做参比溶液,在最大吸收波长处分别测定其吸光度。 以吸光度为纵坐标,苯的含量为横坐标绘制标准曲线。 (2)测定乙醇试样中苯的含量准确吸取含苯的试样5ml于10ml容量瓶中,用乙醇稀释至刻度,摇匀,用1cm石英比色皿,以乙醇做参比溶液,在最大吸收波长处测定试样溶液的吸光度,根据苯标准曲线查的相应的样品浓度。 3、结束工作 (1)实验结束,关闭紫外工作软件、电脑电源。 (2)取出吸收池,清洗晾干放入盒内保存。 (3)清理台面,填写仪器使用记录。 五、实验结果 最大吸收波长λmax=254.50nm

常用有机溶剂的物化性质

推荐答案 2006-3-4 00:20 【中文名称】甲苯;甲基苯;苯基甲烷 【英文名称】toluene;toluol;methylbenzene 【结构或分子式】 【相对分子量或原子量】92.14 【密度】0.866 【熔点(℃)】-95 【沸点(℃)】110.8 【闪点(℃)】4.4(闭式) 【蒸气压(Pa)】907(0℃);2920(20℃);74194(100℃) 【折射率】1.4967 【性状】 无色易挥发的液体,有芳香气味。 【溶解情况】 不溶于水,溶于乙醇、乙醚和丙酮。 【用途】 用于制造糖精、染料、药物和炸药等,并用作溶剂。 【制备或来源】 由分馏煤焦油的轻油部分或由催化重整轻汽油馏分而制得。 【其他】 化学性质与苯相像。蒸气与空气形成爆炸性混合物,爆炸极限为1.2~7.0%(体积)。

二甲苯分子量106.16。无色透明液体,芳香气味。有三种异构体:邻二甲苯(o-Xylene),相对密度(25℃/4℃)0.87599,凝固点-25.3℃,沸点144.4℃,折射率1.50295,闪点(闭口)17.4℃,燃点500℃,粘度(25℃)0.75mPa·s;间二甲苯(m-xy1ene),相对密度(25℃/4℃)0.8599,凝固点-47.87℃,沸点139.1℃,闪点(开口)25℃,燃点527.8℃。折射率1. 4946;对二甲苯(p=xy1ene),相对密度(25℃/4℃)0.8567,凝固点13.26℃,沸点138.35℃,闪点(闭口)25℃.折射率1.49325。 一般的二甲苯是混合二甲苯.为邻二甲苯(10%一15%)、间二甲苯(45%-70%)、对二甲苯(15%-25%)及少量乙苯的混合物,相对密度(20 ℃/4℃)约为0.86,溶解度参数δ=8.8-9.0。溶于乙醇、乙醚,不溶于水。易燃,蒸气与空气形成爆炸性混合物,爆炸极限1. 09%-6.6%(vol)。有毒,毒性比苯和甲苯为小,空气中最高容许浓度为100mg /m3。 二甲苯可用作溶剂和稀释剂。贮存于阴凉、通风的库房内,远离火种、热源。 二甲苯根据来源和制法分为石油二甲苯和焦化二甲苯。石油二甲苯是石油轻馏分经予加氢精制,催化重整和分离所得;焦化二甲苯是粗苯经过洗涤、分馏所得。 乙酸乙酯 化学式CH3COOC2H5。又称“醋酸乙酯”,无色、有芬芳气味的液体,沸点77℃,熔点-83.6℃,密度0.901g/cm3,溶于乙醇、氯仿、乙醚和苯等。易起水解和皂化反应。可燃,其蒸气和空气形成爆炸混合物。在香料和油漆工业中用作溶剂,也是有机合成的重要原料。 (CH3COOC2H5) 无色液体,有水果香味。沸点77℃。与醇醚互溶,微溶于水,比水轻。易燃,与水在一定条件下水解成对应的醇和酸,在稀硫酸条件下加热,发生可逆反应生成乙醇和乙酸,反应不够完全。在氢氧化钠溶液中加热,水解相当完全,生成乙酸钠和乙醇。主要用作油漆、涂料、硝酸纤维素、树脂等的溶剂。实验室里用乙醇与乙酸在浓硫酸的吸水和催化作用下加热制取。反应器常用烧瓶或试管,并有回流装置,并用冷凝管蒸出乙酸乙酯。接受器里放有饱和碳酸钠溶液,以除去酯中杂入的乙酸并降低酯在水里的溶解度。工业上还用乙醛缩合法制取。需催化剂、助催化剂,使2分子乙醛生成1分子乙酸乙酯。 无色、易挥发、中性的可燃性液体,带有果香气味。熔点为-83.6℃,沸点为77.06℃,相对密度为0.9003,微溶于水。 乙酸乙酯具有酯的一般性质。它主要由乙醇与乙酸、乙酸酐等合成。乙醇与乙酸的酯化反应为可逆平衡反应,速率很慢,加入少量酸作催化剂可加快达成平衡的

高中化学实验三: 有机化合物的紫外-可见吸收光谱及溶剂效应

实验三:有机化合物的紫外-可见吸收光谱及溶剂效应 一、实验目的 1、了解紫外-可见分光光度法的原理及应用范围。 2、了解紫外-可见分光光度计的基本构造及设计原理。 3、了解苯及衍生物的紫外吸收光谱及鉴定方法。 4、观察溶剂对吸收光谱的影响。 二、实验原理 紫外-可见分光光度法是光谱分析方法中吸光测定法的一部分。 1、紫外-可见吸收光谱的产生 紫外可见吸收光谱是由于分子中价电子的跃迁而产生的。这种吸收光谱决定于分子中价电子的分布和结合情况。分子内部的运动分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。因此分子具有电子能级、振动能级和转动能级。通常电子能级间隔为1至20eV,这一能量恰落在紫外与可见光区。每一个电子能级之间的跃迁,都伴随着分子的振动能级和转动能级的变化,因此,电子跃迁的吸收线就变成了内含有分子振动和转动精细结构的较宽的谱带。 芳香族化合物的紫外光谱的特点是具有由π→π*跃迁产生的3个特征吸收带。例如,苯在184nm附近有一个强吸收带,ε=68000;在204nm处有一较弱的吸收带,ε=8800;在254nm附近有一个弱吸收带,ε=250。当苯处在气态时,这个吸收带具有很好的精细结构。当苯环上带有取代基时,则强烈地影响苯的3个特征吸收带。 2、紫外-可见光谱分析法的应用 1)化学物质的结构分析; 2)有机化合物分子量的测定; 3)酸碱离解常数的测定; 4)标准曲线法测定有机化合物的含量; 5)络合物中配位体/金属比值的测定; 6)有机化合物异构物的判别等。 3、紫外-可见分光光度计的基本构造 三、实验仪器与试剂 仪器:Cary500紫外-可见-近红外分光光度计 比色管(带塞):5mL10支,10mL3支; 移液管:1mL6支,0.1mL2支

紫外吸收光谱法测定双组分混合物

紫外吸收光谱法测定双组分混合物 一、实验目的 1、 掌握单波长双光束紫外可见分光光度计的使用。 2、 学会用解联立方程组的方法,定量测定吸收曲线相互重叠的二元混合物。 二、方法原理 根据朗伯—比尔定律,用紫外--可见分光光度法很容易定量测定在此光谱区有吸收的单一成分。由两种组分组成的混合物中,若彼此都不影响另一种物质的光吸收性质,可根据相互间光谱重叠的程度,采用相对的方法来进行定量测定。如:当两组分吸收峰部分重叠时,选择适当的波长,仍可按测定单一组分的方法处理;当两组分吸收峰大部分重叠时(见图1),则宜采用解联立方程组或双波长法等方法进行测定。 图1 高锰酸钾、重铬酸钾标准溶液吸收曲线 解联立方程组的方法是以朗伯--比尔定律及吸光度的加和性为基础,同时测定吸收光谱曲线相互重叠的二元组分的一种方法。 从图2可看出,混合组分在λ1处的吸收等于A 组分和B 组分分别在λ1处的吸光度之和A A+B λ1 ,即: A A+B λ1 = κA λ1bc A + κB λ1bc B 同理,混合组分在λ2处吸光度之和A A+B λ2 应为: A A+B λ2 = κA λ2bc A + κB λ2bc B 若先用A 、B 组分的标样,分别测得A 、B 两组分在λ1和λ2处的摩尔吸收系数κA λ1、κA λ2和κB λ 1 、κB λ2;当测得未知试样在λ1和λ2的吸光度A A+B λ1和A A+B λ2后,解下列二元一次方程组: A A+B λ1 = κA λ1 b c A + κB λ1 b c B

A A+Bλ2 = κAλ2 b c A + κBλ2 b c B 即可求得A、B两组分各自的浓度c A和c B。 c A= (A A+Bλ1 ·κBλ2 - A A+Bλ2 ·κBλ1) / ( κAλ1 ·κBλ2 - κAλ2 ·κBλ1) c B= (A A+Bλ1 - κAλ1 · c A) /κBλ1 一般来说,为了提高检测的灵敏度,λ1和λ2宜分别选择在A、B两组分最大吸收峰处或其附近。 图2高锰酸钾、重铬酸钾标准溶液及混合溶液的吸收曲线 三、仪器和试剂 1.紫外可见分光光度计(UV/VIS 916型);1cm比色皿; 2.容量瓶、移液管、烧杯; 3.0.0200mol/L KMnO4标准溶液(其中含H2SO4 0.5mol/L,含KIO4 2g/L); 4.0.0200mol/L K2Cr2O7标准溶液(其中含H2SO4 0.5mol/L,含KIO4 2g/L)。 四、实验步骤 1.分别吸取一定量的0.0200mol/L K2Cr2O7标准溶液,稀释配制成浓度为0.0008 mol/L、0.0016 mol/L、0.0024 mol/L、0.0032 mol/L、0.0040 mol/L的系列标准溶液。编号1~5。 2.分别吸取一定量的0.0200mol/L KMnO4标准溶液,稀释配制成浓度为0.0008 mol/L、0.0016 mol/L、0.0024 mol/L、0.0032 mol/L、0.0040 mol/L的系列标准溶液。编号6~10。 3.按照分光光度计操作规程,开启仪器。 4.绘制标准溶液在375~625nm围的吸收光谱图,找到最大吸收波长(λ1和λ2)。并测定它们在最大吸收波长(λ1和λ2)处的吸光度。 操作步骤: 4.1 波长扫描(定性) A.用去离子水作为空白,做基线;

常见有机溶剂极性表

有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等; ②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等;⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。 有机溶剂具有脂溶性,因此除经呼吸道和消化道进入机体内外,尚可经完整的皮肤迅速吸收,有机溶剂吸收入人体后,将作用于富含脂类物质的神经、血液系统,以及肝肾等实质脏器,同时对皮肤和粘膜也有一定的刺激性。不同有机溶剂其作用的主要靶器官和作用的强弱也不同,这决定于每一种有机溶剂的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 常用溶剂的极性顺序: 水(极性最大) > 甲酰胺 > 乙腈 > 甲醇 > 乙醇 > 丙醇 > 丙酮 > 二氧六环 > 四氢呋喃 > 甲乙酮 > 正丁醇 > 醋酸乙酯 > 乙醚 > 异丙醚 > 二氯甲烷 > 氯仿 > 溴乙烷 > 苯 > 氯丙烷 > 甲苯 > 四氯化碳 > 二硫化碳 > 环己烷 > 己烷 > 庚 烷 > 煤油(极性最小) 有机溶剂的极性根据官能团和对称性可初步判断,具体的需参照极性参数,如下

表示有机溶剂的极性,关系到其物理化学性质、如介电常数、偶极矩或折射率。这种表示方法把所有的溶剂看作是连续作用的介质,而不是看作由各个分子组成的非连续统一体,并且未考虑到溶剂和溶质之间的特殊的相互作用。

紫外-可见光谱分析-----化合物结构鉴定剖析

化合物结构鉴定紫外-可见光谱分析作业

1.说明纳米Ru、Rh、Ir 等十种纳米材料的紫外可见光谱(附图) 2.说明马尾紫、孔雀绿、多氯代酚、苏丹、peo-ppo-peo、pvp等十种有机物或聚合物的紫外可见光谱(附图) 解答如下: 1(1)、纳米ZnS的紫外-可见光谱分析 紫外吸收光谱表征: 紫外-可见吸收光谱可观察能级结构的变化,通过吸收峰位置变化可以考察能级的变化。由图5可知,硫化锌在200~340 nm波长范围内对紫外光有较强的吸收。 1(2)、NiFeAu纳米材料的紫外-可见光谱分析 紫外吸收光谱表征:

上图比较了相关纳米粒子的紫外-可见吸收光谱.图b是NiFeAu纳米粒子分散在正己烷中的紫外-可见吸收光谱可以看出NiFeAu纳米粒子在约557nm有一个较宽的吸收峰.对比用同样方法合成的NiFe图a在所测试的范围内无特征的吸收峰可以判断多功能性NiFeAu纳米粒子具有源于Au表面等离子共振吸收的光学性质.与用同样方法合成的纳米Au粒径8nm在可见光区526nm有强的吸收峰相比图c NiFeAu纳米粒子的吸收峰形明显变宽并出现红移该观察说明除了粒径大小变化的因素Fe和Ni的存在影响了Au的表面等离子共振吸收也间接证明了NiFeAu纳米复合粒子的生成.Au的特征吸收峰的峰形和强度不同原因在于纳米粒子的组成发生了变化.根据纳米颗粒光学响应模型Mie理论表面等离子共振吸收是由入射光频率和金属纳米颗粒中的自由电子的集体发生共振时产生的而表面等离子共振吸收的共振条件对纳米颗粒周围的环境十分敏感纳米粒子的组成结构尺寸形状电解质或者粒子间的相互作用力不同特征吸收峰的强度和形状都会受到影响而不一样. 1(3)、TiO 纳米材料的紫外-可见光谱分析 2 紫外吸收光谱表征:

1实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响_.

实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响 一、实验目的: 1、熟练紫外—可见分光光度计的操作。 2、学习利用紫外吸收光谱检查物质的纯度的原理和方法。 3、掌握溶剂极性对跃迁,跃迁的影响 二、仪器与试剂 1、仪器 730型紫外—可见分光光度计,带盖石英吸收池1cm 2只。 2、试剂 (1 苯、乙醇、正己烷、氯仿、丁酮。 (2 异亚丙基丙酮:分别用水、氯仿、正已烷配成浓度为0.4g/L溶液。 二、实验原理 具有不饱和结构的有机化合物,如芳香族化合物,在紫外区(200~400nm有特征的吸收,为有机化合物的鉴定提供了有用的信息。 紫外吸收光谱定性的方法是比较未知物与已知纯样在相同条件下绘制的吸收光谱,或将绘制的未知物吸收光谱与标准谱图(如Sadtler紫外光谱图相比校,若两光谱图的和相同,表明它们是同一有机化合物。极性溶剂对有机物的紫外吸收光谱的吸收峰波长、强度及形状有一定的影响。溶剂极性增加,使跃迁产生的吸收带蓝移,而跃迁产生的吸收带红移。 影响有机化合物紫外吸收光谱的因素,有内因(分子内的共轭效应、位阻效应、助色效应等和外因(溶剂的极性、酸碱性等溶剂效应由于受到溶剂极性和酸碱性的影响,将使溶质的吸收峰的波长、强度以及形状发生不同程度的变化,这是因为溶剂分子和溶质分子之间可能形成氢键,使极性溶剂分子的偶极减弱,溶质分子的极性

增强,因而在极性溶剂中跃迁所需的能量减小,吸收波长红移,而在极性溶剂中所需能量增大,吸收波长蓝移,由于物质的紫外吸收光谱是物质分子中生色团和助色团的贡献,也是物质整个分子的特征表现。例如具有键电子的共轭双键化合物、芳香烃化合物等,在紫外光谱区都有强烈吸收,其摩尔吸光系数可达104~105数量级,这与饱和烃化物有明显的不同。利用这一特性,可以很方便地检查纯饱和烃化物中是否含有共轭双键、芳香烃等化合物杂质。 三、实验步骤 1、苯的吸收光谱的测绘 在1cm的石英吸收池中,加入两滴苯,加盖,用手心温热吸收池底部片刻,在紫外分光光度计上,以空白石英吸收池为参比,从220~360nm范围内进行波长扫描,绘制吸收光谱。确定峰值波长。 2、乙醇中杂质苯的检查 用1cm石英吸收池,以乙醇为参比溶液,在230—280nm波长范围内测绘乙醇试样的吸收光谱,并确定是否存在苯的B吸收带? 3、溶剂性质对紫外吸收光谱的影响 (1 在3支5mL带塞比色管中,各加入0.02mL丁酮,分别用去离子、乙醇、氯仿稀释至刻度,摇匀。用1cm的石英吸收池,以各自的溶剂为参比,在220~350nm波长范围内测绘各溶液的吸收光谱。比较它们的的变化。并加以解释。 (2 在3支10mL带塞比色管中,分别加入0.02mL异亚丙基丙酮,并分别用水、氯仿、正已烷稀释至刻度,摇匀。用1cm石英吸收池,以相应的溶剂为参比,测绘各溶液在220~350nm范围内的吸收光谱,比较各吸收光谱的变化,并加以解释。 四、注意事项 1、石英吸收池每一种溶液或溶剂必须清洗干净,并用被测溶液或参比液荡洗三次。

常用有机溶剂

一、乙醇(ethyl alcohol,ethanol) 1.理化性质: (1)分子式C2H6O (2)相对分子质量46.07 (3)结构式CH3CH2OH (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 (7)相对密度(水=1):0.79 (8)相对密度(空气=1):1.59 (9)溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、酸酐、碱金属、胺类。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):12 (3)引燃温度(℃):363 (4)爆炸下限(%):3.3 (5)爆炸上限(%):19.0 二、甲醇(methyl alcohol,Methanol) 1. 理化性质: (1)分子式CH4O (2)相对分子质量32 (3)结构式CH3OH (4)外观与性状:无色澄清液体,有刺激性气味。 (5)熔点(℃):-97.8 (6)沸点(℃):64.8 (7)相对密度(水=1):0.79 (8)相对密度(空气=1):1.11 (9)溶解性:与水混溶,可混溶于醇、醚等多数有机溶剂。 (10)禁忌物:强氧化剂、酸类、酸酐、碱金属。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):11 (3)引燃温度(℃):385 (4)爆炸下限(%):5.5 (5)爆炸上限(%):44.0

乙酸乙酯,醋酸乙酯(ethyl acetate,acetic ester) 1.理化性质: (1)分子式:C4H8O2 (2)相对分子质量88.10 (3)结构式 CH3-C-OCH2CH3 (4)外观与性状:无色澄清液体,有芳香气味,易挥发。 (5)熔点(℃):-83.6 (6)沸点(℃):77.2 (7)相对密度(水=1):0.90 (8)相对密度(空气=1):3.04 (9)溶解性:微溶于水,可混溶于醇、酮、醚、氯仿等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、碱类。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):-4 (3)引燃温度(℃):426 (4)爆炸下限(%):2.0 (5)爆炸上限(%):11.5 二氯甲烷(dichloromethane) 1.理化性质: (1)分子式:CH2Cl2 (2)相对分子质量84.94 (3)结构式H2CCl2 (4)外观与性状:无色透明液体,有芳香气味。 (5)熔点(℃):-96.7 (6)沸点(℃):39.8 (7)相对密度(水=1):1.33 (8)相对密度(空气=1):2.93 (9)溶解性:微溶于水,溶于乙醇、乙醚。 (10)禁忌物:碱金属、铝。 危险类别: (1)燃烧性:可燃 (2)闪点(℃): (3)引燃温度(℃):615 (4)爆炸下限(%):12 (5)爆炸上限(%):19

紫外吸收光谱实验报告

利用紫外吸收光谱检查物质纯度 紫外-可见分光光度法测定水中苯酚含量 一、实验目的 1.学会使用Cary50型紫外-可见分光光度计 2.掌握紫外-可见分光光度计的定量分析方法 二、原理简介 紫外-可见吸收光谱是由分子外层电子能级跃迁产生,同时伴随着分子的振动能级和转动能级的跃迁,因此吸收光谱具有带宽。紫外-可见吸收光谱的定量分析采用朗伯-比尔定律,被测物质的紫外吸收的峰强与其浓度成正比,即: 其中A是吸光度,I、分别为透过样品后光的强度和测试光的强度,为摩尔吸光系数,b为样品厚度。 由于苯酚在酸、碱溶液中吸收波长不一致(见下式),实验选择在碱性中测试,选择测试的波长为288nm左右,取紫外-可见光谱仪波长扫描后的最大吸收波长。 Cary50是瓦里安公司的单光束紫外-可见分光光度计。仪器原理是光源发出光谱,经单色器分光,然后单色光通过样品池,达到检测器,把光信号转变成电信号,再经过信号放大、模/数转换,数据传输给计算机,由计算机软件处理。 三、仪器与溶液准备 1、Cary50型紫外-可见分光光度计 2、1cm石英比色皿一套

3、25 ml容量瓶5只,100 ml容量瓶1只,10ml移液管二支 配置250 mg/L苯酚的标准溶液:准确称取0.0250 g苯酚于250 mL烧杯中,加入去离子水20 mL使之溶解,加入0.1M NaOH 2mL,混合均匀,移入100 mL容量瓶,用去离子水稀释至刻度,摇匀。 取5只25 mL容量瓶,分别加入1.00、2.00、3.00、4.00、5.00 mL苯酚标准溶液,用去离子水稀释至刻度摇匀,作为标准溶液系列。 将溶剂,标准溶液,待测水样依此装入石英比色皿。按测试程序的提示,依次放入样品室中进行测试。 四、测试过程 1、确认样品室内无样品 2、开电脑进入Window 系统 3、点击进入Cary50 主菜单 4、双击Cary-WinUV图标 5、在Win-UV 主显示窗口下,双击所选图标“SCAN”以扫描测定吸收曲线:取上述标准系列任一溶液装进1cm石英比色皿至4/5,以装有蒸馏水的1cm石英比色皿作为空白参比,设定在220-350 nm波长范围内扫描,获得波长-吸收曲线,读取最大吸收的波长数据。 6、在Win-UV 主显示窗口下,双击图标“Concentration”进入定量分析主菜单 7、设定测试分析步骤: (l)单击Setup功能键,进入参数设置页面。在Wavelength处填入由步骤5获取的波长数据。 (2)按Cary Control 、Standards、Options、Samples、Reports、Auto store顺序,分别设置好菜单中每页的参数。按OK回到“Concentration”界面主菜单。 (3)单击View莱单,选择需要显示的内容。 例如基本选项Toolbar,buttons,Graphics,Report。 (4)单击Zero,提示“Load blank press OK to read” (放空白按OK读),放入空白蒸馏水到样品室内,按OK测试,测完取出样品。 (5)单击Start, 出现标准/样品选择页。选Selected for Analysis(选择分析的标准和样品)。此框的内容为准备分析的标准和样品。 (6)按OK进行分析测试。 依Presentstdl的提示:放入标准1然后按OK键进行读数。放标准2按OK进行读数。直到全部标准读完。 (7)出现“Present Samplel Press OK to read”提示框,根据提示,放入样品1按OK开始读样品,直到样品测完。

【精选】紫外吸收光谱法练习题

第二章:紫外吸收光谱法 一、选择 1. 频率(MHz)为4.47×108的辐射,其波长数值为 (1)670.7nm (2)670.7μ(3)670.7cm (4)670.7m 2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其 能级差的大小决定了 (1)吸收峰的强度(2)吸收峰的数目 (3)吸收峰的位置(4)吸收峰的形状 3. 紫外光谱是带状光谱的原因是由于 (1)紫外光能量大(2)波长短(3)电子能级差大 (4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 4. 化合物中,下面哪一种跃迁所需的能量最高 (1)σ→σ*(2)π→π*(3)n→σ*(4)n→π* 5. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收 波长最大 (1)水(2)甲醇(3)乙醇(4)正己烷6. 下列化合物中,在近紫外区(200~400nm)无吸收的是 (1)(2)(3)(4) 7. 下列化合物,紫外吸收λmax值最大的是 (1)(2)(3)(4) 二、解答及解析题 1.吸收光谱是怎样产生的?吸收带波长与吸收强度主要由什

么因素决定? 2.紫外吸收光谱有哪些基本特征? 3.为什么紫外吸收光谱是带状光谱? 4.紫外吸收光谱能提供哪些分子结构信息?紫外光谱在结构 分析中有什么用途又有何局限性? 5.分子的价电子跃迁有哪些类型?哪几种类型的跃迁能在紫 外吸收光谱中反映出来? 6.影响紫外光谱吸收带的主要因素有哪些? 7.有机化合物的紫外吸收带有几种类型?它们与分子结构有什 么关系? 8.溶剂对紫外吸收光谱有什么影响?选择溶剂时应考虑哪些 因素? 9.什么是发色基团?什么是助色基团?它们具有什么样结构 或特征? 10.为什么助色基团取代基能使烯双键的n→π*跃迁波长红 移?而使羰基n→π*跃迁波长蓝移? 11.为什么共轭双键分子中双键数目愈多其π→π*跃迁吸收带 波长愈长?请解释其因。 12.芳环化合物都有B吸收带,但当化合物处于气态或在极性溶剂、非极性溶剂 中时,B吸收带的形状有明显的差别,解释其原因。 13.pH对某些化合物的吸收带有一定的影响,例如苯胺在酸性介质中它的K吸收带和B吸收带发生蓝移,而苯酚在碱性介质中其K吸收带和B吸收带发生红移,为什么?羟酸在碱性介质中它的吸收带和形状会发生什么变化? 14.某些有机化合物,如稠环化合物大多数都呈棕色或棕黄色,许多天然有机 化合物也具有颜色,为什么?

相关文档