文档库 最新最全的文档下载
当前位置:文档库 › 雅可比迭代法和高斯-赛德尔迭代法

雅可比迭代法和高斯-赛德尔迭代法

雅可比迭代法和高斯-赛德尔迭代法
雅可比迭代法和高斯-赛德尔迭代法

题目:使用雅可比迭代法和高斯-赛德尔迭代法求解线性方程组,C语言实现

本人编写了一个特定的解决方案程序,并且利用其对课本156页例1进行验证,主要代码和运行结果如下:

1.代码:

# include

# include

# define N 3

/*

*使用雅可比迭代法和高斯-赛德尔迭代法求解线性方程组

*/

main(){

float NF2(float *x,float *y);

float A[N][N],b[N],sum=0;

float x[N],y[N]={0},x0[N];

int i,j,n=0;

//输入系数矩阵

printf("please input the Coefficient Matrix:");

for(i=0;i

for(j=0;j

scanf("%f",&A[i][j]);

}

}

//输入常数矩阵

printf("please input the Constant Matrix:");

for(i=0;i

scanf("%f",&b[i]);

}

//输入解的初值

printf ("Please input the initial vector: ");

for(i=0;i

scanf("%f",&x0[i]);

}

//输出系数矩阵

printf("show your the Coefficient Matrix:\n");

for(i=0;i

for(j=0;j

printf("%3.1f ",A[i][j]);

}

printf("\n");

}

//输出成数矩阵

printf("show your the Constant Matrix:\n");

for(i=0;i

printf("%3.1f\n",b[i]);

}

//输出解的迭代初值

printf("show your the Initial Vector:\n");

for(i=0;i

{

printf("%3.1f\n",x0[i]);

}

/*

*利用雅可比迭代法求解线性方程组

*/

for(i=0;i

{

x[i]=x0[i];

}

for(n=0;;n++){

//计算下一个值

for(i=0;i

sum=0;

for(j=0;j

if(j!=i){

sum=sum+A[i][j]*x[j];

}

}

y[i]=(1/A[i][i])*(b[i]-sum);

//sum=0;

}

//判断误差大小

if(NF2(x,y)>0.01){

for(i=0;i

x[i]=y[i];

}

}

else

break;

}

printf("经过%d次雅可比迭代解出方程组的解:\n",n+1); for(i=0;i

printf("%f ",y[i]);

/*

*利用高斯-赛德尔迭代法求解线性方程组

*/

for(i=0;i

{

x[i]=x0[i];

y[i]=0;

}

for(n=0;;n++){

//计算下一个值

for(i=0;i

sum=0;

for(j=0;j

sum=sum+A[i][j]*y[j];

}

for(j=i+1;j

sum=sum+A[i][j]*x[j];

}

y[i]=(1/A[i][i])*(b[i]-sum);

//sum=0;

}

//判断误差大小

if(NF2(x,y)>0.01){

for(i=0;i

x[i]=y[i];

}

}

else

break;

}

printf("\n经过%d次高斯-赛德尔迭代解出方程组的解:\n",n+1);

for(i=0;i

printf("%f ",y[i]);

}

}

//求两个向量差的二范数函数

float NF2(float *x,float *y){

int i;

float z,sum1=0;

for(i=0;i

sum1=sum1+pow(y[i]-x[i],2);

}

z=sqrt(sum1);

}

2.运行结果

高斯-赛德尔迭代法matlab程序

disp('划分为M*M个正方形') M=5 %每行的方格数,改变M可以方便地改变剖分的点数 u=zeros(M+1);%得到一个(M+1)*(M+1)的矩阵 disp('对每个剖分点赋初值,因为迭代次数很高,所以如何赋初值并不重要,故采用对列线性赋值。') disp('对边界内的点赋初值并使用边界条件对边界赋值:') for j=1:M-1 for i=1:M-1 u(i+1,j+1)=100*sin(pi/M*j)/M*(M-i);%对矩阵(即每个刨分点)赋初值 end end for i=1:M+1 u(1,i)=100*sin(pi*(i-1)/M);%使用边界条件对边界赋值 u(1,M+1)=0; end u tic %获取运行时间的起点 disp('迭代次数为N') N=6 %迭代次数,改变N可以方便地改变迭代次数 disp('n为当前迭代次数,u为当前值,结果如下:') for n=1:N for p=2:M i=M+2-p; for j=2:M u(i,j)=0.25*(u(i,j-1)+u(i+1,j)+u(i-1,j)+u(i,j+1));%赛德尔迭代法 end end n %输出n u %输出u end disp('所用的时间:') t=toc %获取算法运行需要的时间 [x,y]=meshgrid(0:1/M:1,0:1/M:1); z=u(1,:); for a=2:M+1 z=[z;u(a,:)];%获取最终迭代的结果,幅值给z,z的值代表该点的点位值 end mesh(x,y,z)%绘制三维视图以便清楚地显示结果 mesh(x,y,z,'FaceColor','white','EdgeColor','black') %绘制三维视图以便清楚地显示结果

雅可比迭代法

2013-2014(1)专业课程实践论文 题目:雅可比迭代法

一、算法理论 设有方程组),...,2,1(1 n i b x a i j n j ij ==∑= 记作,b Ax = (1) A 为非奇异阵且),,...,2,1(0n i a ij =≠将A 分裂为U L D A --=,其中 D =????????????????nn a a a 22 11,L =-??? ????? ???? ????-00001,21323121n n n n a a a a a a U =-?? ? ?? ? ? ? ????????-0000,122311312n n n n a a a a a a 将式(1)第)....2,1(n i i =个方程用ii a 去除再移项,得到等价方程组 (),,...,2,111n i x a b a x n i j j j ij i ii i =??? ? ? ?? -=∑≠= (2) 简记作 ,0f x B x += 其中 ().,111 0b D f U L D A D I B ---=+=-= 对方程组(2)应用迭代法,得到解式(1)的雅可比迭代公式 () () ()()()()()????????? ?? ? ??- ==∑≠=+,1,...,11002010n i j i k j ij i ii k i t n x a b a x x x x x , 初始向量 (3)

其中()()()()()T k n k k k x x x x ,,...,21=为第k 次迭代向量。设()k x 已经算出,由式(3)可计算下一次迭代向量()(),,...,2,1,...;2,1,01n i k x k ==+ 显然迭代公式(3)的矩阵形式为 ()()()()???+=+,010f x B x x k k ,初始向量 其中0B 称为雅可比方法迭代矩阵。

MATLAB样例之雅克比迭代法

要求: 下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的: 7*x1+x2+2*x3=10 x1+8*x2+2*x3=8 2*x1+2*x2+9*x3=6 雅克比迭代法的matlab代码:(老师写的) A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(any(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); while 1 x1=B*x0+f K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end 高斯-赛德尔迭代法matlab代码:(自己改的)

A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(all(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); x00=x0; while 1 x11=B*x0+f; x00(1,1)=x11(1,1); x12=B*x00+f; x00(2,1)=x12(2,1); x13=B*x00+f; x00(3,1)=x13(3,1); x1=x00 K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end

高斯赛德尔法潮流计算

高斯——赛德尔法潮流计算 潮流计算高斯——赛德尔迭代法(Gauss一Seidel method)是求解电力系统潮流的方法。潮流计算高斯——赛德尔迭代法又分导纳矩阵迭代法和阻抗矩阵迭代法两种。前者是以节点导纳矩阵为基础建立的赛德尔迭代格式;后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。 本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:高斯---赛德尔法的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵和各节点电压、功率。通过实验教学加深学生对高斯---赛德尔法概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。 高斯---赛德尔法潮流计算框图

[1]系统节点的分类 根据给定的控制变量和状态变量的不同分类如下 ①P、Q节点(负荷节点),给定Pi、Qi求Vi、Si,所求数量最多; ②负荷节点,变电站节点(联络节点、浮游节点),给定P Gi、Q Gi的发电机 节点,给定Q Gi的无功电源节点; ③PV节点(调节节点、电压控制节点),给定P i、Q i求Q n、S n,所求数量 少,可以无有功储备的发电机节点和可调节的无功电源节点; ④平衡节点(松弛节点、参考节点(基准相角)、S节点、VS节点、缓冲节 点),给定V i,δi=0,求P n、Q n(V s、δs、P s、Q s)。 [2]潮流计算的数学模型 1)线性的节点电压方程YV=I 根据S=V错误!未找到引用源。可得非线性的节点电压方程(错误!未找到引用源。为I的共轭) YV=I=错误!未找到引用源。=错误!未找到引用源。

雅可比迭代法与矩阵的特征值

实验五 矩阵的lu分解法,雅可比迭代法 班级: 学号: :

实验五 矩阵的LU 分解法,雅可比迭代 一、目的与要求: ? 熟悉求解线性方程组的有关理论和方法; ? 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; ? 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 二、实验内容: ? 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解 各种方法的优缺点。 三、程序与实例 ? 列主元高斯消去法 算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+?表示 1) 消元过程 对k=1,2,…,n-1 ①选主元,找{}n ,,1k ,k i k +∈使得 k ,i k a = ik a n i k max ≤≤ ②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。 ③如果k i k ≠,则交换第k 行与第k i 行对应元素位置, j i k j k a a ? j=k,┅,n+1 ④消元,对i=k+1, ┅,n 计算 kk ik ik a a l /= 对j=l+1, ┅,n+1计算 kj ik ij ij a l a a -= 2) 回代过程 ①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。 ②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算 ii n i j j ij n i i a x a a x /11,??? ? ? ?- =∑+=+ 程序与实例 程序设计如下:

#include #include using namespace std; void disp(double** p,int row,int col){ for(int i=0;i>p[i][j]; } } int findMax(double** p,int start,int end){ int max=start; for(int i=start;iabs(p[max][start])) max=i; } return max; } void swapRow(double** p,int one,int other,int col){ double temp=0; for(int i=0;i

高斯-赛德尔迭代法解线性方程组

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), )(1111 1) ()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

雅克比矩阵知识介绍

雅可比矩阵(Jacobi方法) Jacobi 方法 Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论 1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得 Q T AQ = diag(λ 1 ,λ 2 ,…,λ n ) (3.1) 其中λ i (i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。 2) 在正交相似变换下,矩阵元素的平方和不变。即设A=(a ij ) n×n ,Q交矩阵, 记B=Q T AQ=(b ij ) n×n , 则 Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。 1 矩阵的旋转变换 设A为n阶实对称矩阵,考虑矩阵 易见 V ij (φ)是正交矩阵, 记 注意到B=V ij A的第i,j行元素以及的第i,j列元素为

可得 ≠0,取φ使得则有 如果a ij 对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。 设由式(3.4) 可得 这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由(3.2)可

知,对角元素的平方和单调增加。 2. Jacobi方法 通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。计算过程如下 1)令k=0, A(k) =A 2) 求整数i,j, 使得 3) 计算旋转矩阵 4) 计算A(k+1) 5) 计算 6) 若E(A(k+1))<ε, 则 为特征值,

高斯赛德尔与超松弛迭代法

分别运用高斯赛德尔迭代法和超松弛迭代法解线性方程组:????? ??-=????? ??????? ??--243024410143034321x x x 。 1. 高斯赛德尔迭代法 编程思路:高斯赛德尔迭代法实在雅克比迭代法的基础上进行优化得到的,即在进行迭代时,将已经算得的第k+1步的迭代值代入第k+1步后边的变量的计算当中去,从而加快了迭代速度。 程序代码: function varargout=Gauss_Seidelli(varargin) A=[4 3 0;3 4 -1;0 -1 4]; b=[24 30 -24]'; x0=[0;0;0]; x=Gauss_Seidel(A,b,x0) function x=Gauss_Seidel(A,b,x0) n=100;%最大迭代次数 ee=0.0001;%精度 n1=length(b); for i=1:n x1=x0; for j=1:n1 s=0; for k=1:n1 if k~=j s=s+A(j,k)*x0(k); end end x0(j)=(b(j)-s)/A(j,j); end if norm(x1-x0)

2. 超松弛迭代法 该方法是在高斯赛德尔迭代法的基础上将前一步的结果)(k i x 和)1( k i x 进行适当的线性组合以加速收敛,松弛因子ω的选择是关键,当1<ω<2时,即为超松弛迭代法。 程序代码: function varargout=SORli(varargin) clc A=[4 3 0;3 4 -1;0 -1 4]; b=[24;30;-24]; x0=[0;0;0];w=1.3; x=SOR(A,b,x0,w); for i=1:3 fprintf('%4.2f ',x(i)); end fprintf('\n'); function x=SOR(A,b,x0,w) %AX=b %x0初始点 %w 为 松弛因子 n=100;%最大迭代次数 ee=0.0001;%精度 n1=length(b); for i=1:n x1=x0; for j=1:n1 s=0; for k=1:n1 if k~=j s=s+A(j,k)*x0(k); end end x0(j)=(1-w)*x0(j)+w*(b(j)-s)/A(j,j); end if norm(x1-x0)

高斯-赛德尔迭代法

一、 实验目的与要求 对于线性方程组?????=++=++=++69228281027321 321321x x x x x x x x x 1. 用高斯-赛德尔迭代法求此方程组的近似解(终止迭代过程的最大允许迭代次数N ,近似解的误差限eps ,均由用户设定); 2. 通过数值实验说明,求此线性方程组的近似解时,高斯-赛德尔迭代法的收敛速度比雅可比迭代法的收敛速度要快一些。(用同样精度要求的条件来比较迭代次数) 二、 实验方案(程序源文件) 运用MATLAB 软件编辑M 文件如下: function EX() a=input('请输入系数矩阵a :'); b=input('请输入矩阵b:'); N=input('请输入最大迭代次数N :'); esp=input('请输入近似解的误差限:'); if any(diag(a))==0 error('系数矩阵错误,迭代终止!') end D=diag(diag(a)); X0=zeros(size(b)); x1=0; x2=0; x3=0; X1=[x1;x2;x3]; h=inv(D)*b; B=inv(D)*(D-a); B1=triu(B); B2=tril(B); k=1; fprintf('高斯-赛德尔迭代法 \n'); fprintf('第0次迭代得:') disp(X1'); while k<=N x1=h(1,1)+B1(1,:)*X0; X1=[x1;x2;x3]; x2=h(2,1)+B1(2,:)*X0+B2(2,:)*X1; X1=[x1;x2;x3]; x3=h(3,1)+B2(3,:)*X1; X1=[x1;x2;x3]; if norm(X1-X0,inf)

雅克比迭代法和高斯-赛德尔法解线性方程组(C++)

作业:① 分别用J 法和G-S 法求解下列方程,并讨论结果。 123122*********x x x -?????? ??? ?= ??? ? ??? ??????? #include using namespace std; //J 法解线性方程 int main(){ int m,n,i,j,times=0,mtimes; double s,sum,max; cout<<"请输入系数矩阵行数m 、列数n :"<>m>>n; if(m>A[i][j]; cout<<"请输入常数向量B :"<>B[i]; cout<<"请输入最大允许误差s:"<>s; cout<<"请输入最大迭代次数:"<>mtimes; cout<<"请输入一零级向量X:"<>X[i]; T[i]=X[i];//T[]存放上一次迭代结果 }

matlab Jacobi迭代法Gauss-seidel和SOR迭代

1.Jacobi迭代法 例1 用jacobi迭代法求解代数线性代数方程组,保留四位有效数字(err=1e-4) 其中A=[8 -1 1;2 10 -1;1 1 -5];b=[1 ;4; 3]。 解:编写jacobi迭代法的函数文件,保存为jacobi.m function [x,k]=jacobi(A,b,x0,eps,N) % 求解Ax=b;x0为初始列向量;eps为误差容限;N为最大迭代次数 % 输出x为近似解;k为迭代次数 n=length(A); x=zeros(n,1); for k=1:N for i=1:n ――――――― end if norm(x-x0,inf)

end x0=x; end 编写主程序如下 format long clear A=[8 -1 1;2 10 -1;1 1 -5]; b=[1 ;4; 3]; x0=[0.125; 0.4 ;-0.6 ]; % x0为初始列向量N为最大迭代次数err=1e-4; % err为误差容限 N=25; % N为最大迭代次数 [x,k]=jacobi(A,b,x0,err,N) 得到结果如下 x = 0.22492315625000 0.30561995000000 -0.49388680000000

k = 6 2.Gauss-seidel迭代法 例2 用Gauss-seidel迭代法求解代数线性代数方程组,保留四位有效数字(err=1e-4) 其中A=[8 -1 1;2 10 -1;1 1 -5];b=[1 ;4; 3]。 解:编写Gauss-seidel迭代法的函数文件,保存为gaus.m function [x,k]=gaus(A,b,x0,eps,N) % 求解Ax=b;x0为初始列向量;eps为误差容限;N为最大迭代次数% 输出x为近似解;k为迭代次数 n=length(A); x=zeros(n,1); for k=1:N for i=1:n ―――――― end if norm(x-x0,inf)

雅可比迭代法

雅可比迭代法 雅可比迭代法 班级:计算062 姓名:王保翔 3060811028 目的意义:设方程组Ax=b的系数矩阵A 非奇异而且aii 裂为A=D+L+U,可以使计算简便。其中D 00...an2 ............ ,将 A分 , a120 0 ............ 思想:A=D+L+U,其中D

00...an2 ............ n , a120 0 ............ 1aii 将方程组 j 乘以,得到等价的方程组

n ,i=1,2,…n 算法: Step1:给定一组x,即初值。 Step2:用for循环计算: n x[k+1]=(b[i]- Step3:当abs(x[k+1]-x[k]) 程序: #include #define p 0.1 #define N 5 void main() { int i,j,k,s,n; double x[N],a[N][N],b[N],q[N],c[N],d[N]; double t,u; printf("Input n:"); scanf("%d",&n); for(i=0;i printf("Input x[%d],b[%d]:",i,i); scanf("%lf,%lf",&x[i],&b[i]); } for(i=0;i printf("Input a[%d][%d]:",i,j); scanf("%lf",&a[i][j]); }

for(i=0;i printf("a=%lf\n",a[i][j]); for(k=0; ;k++) { t=0; for(s=0;s for(i=0;i d[i]=x[i]; for(j=0;j if(j!=i) u=u+a[i][j]*d[j]; else continue; } printf("u=%lf\n",u); x[i]=(b[i]-u)/a[i][i]; q[i]=x[i]-d[i]; printf("x[%d]=%lf\n",i,x[i]); } for(i=0;i if(q[i]>=0) c[i]=q[i]; else c[i]=-q[i]; t=t+c[i]; } if(t } printf("k=%d\n",k); for(i=0;i printf("x[%d]=%lf\n",i,x[i]); }算例及运算结果: 分析:输入初始向量和矩阵为数经过k次迭代后输出x的值,结果正确可靠。参考文献 [1]刑志栋,矩阵数值分析,陕西:陕西科学技术出版社, 2019。 [2]谭浩强,C 语言程序设计,北京:清华大学出版社,2019。 [3]翁惠玉,c语言程序设计思想与方法,北京:人民邮电出版社,2019

高斯-赛德尔迭代法的算法及程序设计

题目:高斯-赛德尔迭代法的算法及程序设计 摘要 本文通过理论与实例对线性方程组的解法、收敛性及误差分析进行了探讨.在对线性方程组数值解法的讨论下用到了高斯-赛德尔迭代法,进一步研究和总结了高斯-赛德尔迭代法的理论与应用,使我们在分析问题与编辑程序时能更好的把握对高斯-赛德尔迭代法的应用。 关键词 Gauss-Seidel迭代法;收敛性;误差分析;流程图;Mathematica编程

目录 第一章高斯-赛德尔迭代法 (1) §1.1 高斯-赛德尔迭代法的提出 (1) §1.1.1 高斯-赛德尔迭代法的思想理论 (1) §1.1.2 高斯-赛德尔迭代法的定义及表达形式 (2) §1.2 高斯-赛德尔迭代法的收敛性 (1) §1.3 高斯-赛德尔迭代法的误差分析 (1) 第二章高斯-赛德尔迭代法的程序设计 (1) §2.1 高斯-赛德尔迭代法在上机中的应用 (1) §2.1.1 高斯-赛德尔迭代法的流程图 (1) §2.1.2 高斯-赛德尔迭代法的源程序 (1) 参考文献 (22) 附录 (23)

第一章 高斯-赛德尔迭代法 考虑线性方程组 Ax b = 其中为非奇A 异矩阵,对于由工程技术中产生的大型稀疏矩阵方程组(A 的阶数很大n 但零元素很多),利用迭代法求解线性方程组是合适Ax b =的.在计算机内存和运算两方面,迭代法通常都可利用中A 有大量零元素的特点. 本章将介绍迭代法中的高斯-赛德尔法的思想理论、收敛性及误差分析. §1.1 高斯-赛德尔迭代法的提出 §1.1.1 高斯-赛德尔迭代法的思想理论 在研究雅可比迭代法时,计算1k i x +时,已得(1)(1) (1) 12 1 ,,,k k k i x x x +++-(这些分别为121,,,i x x x -的第k+1次近似),Gauss-Seidel 迭代法认为在计算时启用新值,从而产 生 1(1) (1) ()11 1()i n k k k i i ij j ij j j j i ii x b a x a x a -++==+=--∑∑. 具体原理如下图所示 ()k x →→→

实验五矩阵的LU分解法雅可比迭代

实验五矩阵的LU分解法,雅可比迭代 实 验 报 告 学院:计算机科学与软件学院班级:116班 姓名:薛捷星 学号:112547

一、目的与要求: 熟悉求解线性方程组的有关理论和方法; 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 二、 实验内容: 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解各种方法的优缺点。 三、 程序与实例 列主元高斯消去法 算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+?表示 1) 消元过程 对k=1,2,…,n-1 ①选主元,找{}n ,,1k ,k i k +∈使得 k ,i k a =ik a n i k max ≤≤ ②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。 ③如果k i k ≠,则交换第k 行与第k i 行对应元素位置, j i kj k a a ? j=k,┅,n+1 ④消元,对i=k+1, ┅,n 计算 kk ik ik a a l /=

对j=l+1, ┅,n+1计算 kj ik ij ij a l a a -= 2) 回代过程 ①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。 ②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算 ii n i j j ij n i i a x a a x /11,??? ? ? ?- =∑+=+ 程序与实例 例1 解方程组 ?? ? ??=++-=++-=++035 .3643x .5072x .1835x .2137.2623x .43712x 347x .1 1.183 3.555x 2.304x 0.101x 321321321 输出结果如下: X[0]=-0.398234 X[1]= 0.013795 X[2]= 0.335144 程序如下: #include #include main() { int i,j,p,o,l,q; double a[3][4]={{0.101,2.304,3.555,1.183},{-1.347,3.712,4.623,2.137},{-2.835,1.072,5.643,3.035}}; double x[3],z[4]; printf("列主元消去法\n"); for(j=0;j<2;j++) { for(i=j+1;i<3;i++) { if(fabs(a[j][j])

雅可比迭代实验报告

雅可比迭代法求解线性方程组的实验报告 一、实验题目 分别利用雅可比迭代法和高斯-塞德尔迭代法求解以下线性方程组: 使得误差不超过 0.00001。 二、实验引言 1.实验目的 ①掌握用迭代法求解线性方程组的基本思想和步骤,熟悉计算机fortran 语言; ②了解雅可比迭代法在求解方程组过程中的优缺点。 2.实验意义 雅克比迭代法就是众多迭代法中比较早且较简单的一种,求解方便实用。 三、算法设计 1.雅可比迭代法原理: 设有线性方程组Ax=b 满足0≠ii a , 将方程组变形为: x=Bx+f, 则雅可比 (Jacobi)迭代法是指f Bx X k k +=+)1(,即 由初始解逐步迭代即可得到方程组的解。 算法步骤如下: ?????=+--=-+-=--2.453.82102.7210321 321321x x x x x x x x x

步骤1.给定初始值)0()0(2)0(1,,,n x x x ?,精度e,最大容许迭代次数M ,令k=1。 步骤2.对i=1,2,…,n 依次计算 )0()1()0()1(11| |) n ,2,1,0(/)(i i i i i ii ii j n i j j ij j x x x x e i a a x a b x →-=?=≠-=∑≠=, 步骤3.求出}{max 1i n i e e ≤≤=,若ε

四、程序设计program jacobi implicit none integer::i,j integer::k save k real,parameter::e=0.001 integer,parameter::n=3 real::x(n),y(n),b(n)

雅克比迭代法

雅克比迭代方法的使用 一.雅克比迭代法的目的及意义 无论差值公式与求积公式的建立,还是常微分方程的差分格式的构造,其基本思想是将其转化为代数问题来处理,特别是归结为线性方程组。在科学计算与工程计算中,线性方程组会经常遇到。因此,线性方程组的解法在数值分析中占有极其重要的地位。而线性方程组的迭代法,其基本思想是将联立方程组的求解,归结为重复计算一组彼此独立的线性表达式,这就是问题得到了简化。 二.算法描述 1.输入数据。 2.对所计算的一系列X 进行赋初值,即x(1)=x(2)=x(36)=0. 3.通过雅克比迭代公式) ,(/))(*),()(()(1i i a j x j i a i b i y n j i i ∑≠=-=计算y(1),y(2),y(3). 4.判断(x(i)-y(i))的绝对值中最大值是否小于精度系数,若小于的话,直接输出结果;否侧,返回上述3过程,直到(x(i)-y(i))的绝对值中最大值小于精度系数。 流程图如下所示: . ≠ = 三.程序设计 开始 输入数据 ),(/))(*),()(()(1i i a j x j i a i b i y n j i i ∑≠=-=e i y i x n i <-≤≤)()(max 1 K=n 输出迭代失败标志 输出y1,y2,y 3 K=k+1 X(i)=y(i)结束 K=1

program main implicit none integer::i,j,k,l=30 ,m=3, n=3 real::e=0.0001 real::y(3),x(3)=(/0,0,0/) real::b(3)=(/7.2,8.3,4.2/) real::a(3,3)=(/10,-1,-1,-1,10,-1,-2,-2,5/) do k=0,l write(*,*) k,x(1),x(2),x(3) do i=1,n do j=1,m if((i-j)/=0) then y(i)=y(i)+(-a(i,j)/a(i,i))*x(j) end if end do y(i)=y(i)+b(i)/a(i,i) end do if (max(abs(y(1)-x(1)),abs(y(2)-x(2)),abs(y(3)-x(3)))

高斯-赛德尔迭代

实验题目:数值分析之高斯-赛德尔迭代 学生姓名: 专业: 学号: 完成日期:

实验题目: 数值分析之高斯-赛德尔迭代 学生姓名: 学号: 完成日期: 2011.10.21 1 实验目的 利用高斯-赛德尔迭代法求解线性方程组 ??? ??=++=++=++6 9228281027321 321321x x x x x x x x x 2 实验步骤 2.1 算法原理 高斯-赛德尔迭代是计算 1 (+k x 的第i 个分量)1(+k i x ,利用了已经计算出得最新分量 )1,...,2,1() 1(-==+i j x k j .高斯-赛德尔迭代法可以看作雅克比迭代法的一种改进.高斯-赛 德尔迭代法没迭代一次只需计算一次矩阵与向量的乘法 2.2 算法步骤 选取分裂矩阵M 为A 的下三角部分,即选取L D M -=(下三角矩阵),N M A -=, 于是得到解b Ax =的高斯-赛德尔(Gauss-Seidel )迭代法 ????=+=+,...,1,0,,) () 1()0(k f Bx x x k k 初始向量 (2.4) 其中.)(,)()(1 1 1 b L D f G U L D A L D I B ----=≡-=--=称U L D G 1 )(--=为解 b Ax =的高斯-赛德尔迭代法的迭代矩阵. 下面给出高斯-赛德尔迭代法的分量计算公式.记 T k n k i k k x x x x ),...,,...,()() ()(1) (= 由(2.4)式有 ,)() () 1(b Ux x L D k k +=-+ 或 ,) () 1() 1(b Ux Lx Dx k k k ++=++ 即

雅克比迭代法

雅克比迭代法 上机题目: 用雅克比迭代法解线性方程组 上机程序: #include #include main() { double A[3][3]={{5,2,1},{-1,4,2},{2,-3,10}},b[3]={-12,20,3}; // 输入系数矩阵A 和右端向量b double n=3, tol=1.0e-3,x[3]={-3,1,1}; // 输入方程大小n,误差限tol,和初始向量x double y[3]; // 记录每次迭代产生的新的近似解 double maxerr; // maxerr 记录相邻两个数值解想x 与y 的差的绝对值的最大的那个分量。 int k,i,j; printf("此线性方程组的增广矩阵如下:\n "); // 下面循环是输出增广矩阵(A, b) for (k=0;k

printf("误差限是%f \n",tol); // 输出误差限 printf(" Jacobi迭代解序列X^(k) max|x^(k+1)-x^(k)| \n "); printf("x^%d = ",k=0); for(i=0;itol); }

高斯-赛德尔迭代法解线性方程组复习过程

高斯-赛德尔迭代法解线性方程组

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为

?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1( )1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include #include #include #define MAX_n 100 #define PRECISION 0.0000001 #define MAX_Number 1000 void VectorInput(float x[],int n) //输入初始向量 { int i; for(i=1;i<=n;++i) { printf("x[%d]=",i); scanf("%f",&x[i]); } } void MatrixInput(float A[][MAX_n],int m,int n) //输入增广矩阵 { int i, j; printf("\n===Begin input Matrix elements===\n"); for(i=1;i<=m;++i) { printf("Input_Line %d : ",i); for(j=1;j<=n;++j) scanf("%f",&A[i][j]); } } void VectorOutput(float x[],int n) //输出向量

相关文档
相关文档 最新文档