内燃机原理习题与答案

第一章 发动机工作循环及性能指标

[1]说明提高压缩比可以提高发动机热效率和功率的原因。 答:由混合加热循环热效率公式: 知提高压缩比可以提高发动机热效率。 [2] 为什么汽油机的压缩比不宜过高?

答:汽油机压缩比的增加受到结构强度、机械效率和燃烧条件的限制。

1ε增高将Pz 使急剧上升,对承载零件的强度要求更高,增加发动机的质量,降低发动机的使用寿命和可靠性 2ε增高导致运动摩擦副之间的摩擦力增加,及运动件惯性力的增大,从而导致机械效率下降 3ε增高导致压缩终点的压力和温度升高,易使汽油机产生不正常燃烧即爆震

[3]做出四冲程非增压柴油机理想循环和实际循环p-V 图,并标明各项损失。(见书第9页 图1-2)

[4]何为指示指标?何为有效指标?

答:指示指标:以工质在气缸内对活塞做功为基础,评价工作循环的质量。 有效指标:以曲轴上得到的净功率为基础,评价整机性能。 [5] 发动机机械损失有哪几部分组成?

答: 发动机机械损由摩擦损失、驱动附件损失、泵气损失组成。 [6] 写出机械效率的定义式,并分析影响机械效率的因素。

影响机械效率的因素:

1、转速ηm 与n 似呈二次方关系,随n 增大而迅速下降

2、负荷 负荷↓时,发动机燃烧剧烈程度↓,平均指示压力↓;而由于转速不变,平均机械损失压力基本保持不变。则由 ,机械效率下降 当发动机怠速运转时 ,机械效率=0

3、润滑油品质和冷却水温度 冷却水、润滑油温度通过润滑油粘度间接影响润滑效果。 [7] 试述机械损失的测定方法。

机械损失的测试方法只有通过实际内燃机的试验来测定。 常用的方法有:倒拖法灭缸法、油耗线法和示功图法。 (1)倒拖法

步骤:1.让内燃机在给定工况下稳定运转,是冷却水和机油温度达到给定值;

2.切断燃油供应或停止点火,同时将电力测功器转换为电动机,以原给定速度倒拖内燃机空转,并尽可能使冷却水、机油温度保持不变。此

方法规定优先采用,且不能用于增压发动机。

(2)灭缸法

此方法仅适用于多缸内燃机(非增压柴油机)

步骤:1.将内燃机调整到给定工矿稳定运转,测出其有效功率Pe 。 2.停止向一个气缸供油(或点火)

3.同理,依次使各缸熄火,测得熄火后内燃机的有效功率Pe2,Pe3……,由此可得整机的指示功率为: Pi=Pi1+Pi2+…=iPe-[Pe(1)+Pe(2)+…]

(3)油耗线法:保证内燃机转速不变,逐渐改变柴油机供油齿条的位置,测出每小时耗油量GT 随负荷Pe 变化的关系,绘制成曲线,称为负荷特性曲线,由此测得机械损失,此方法只是用于柴油机。 (4)示功图法:根据示功图测算出机械损失。

[8] 试述过量空气系数、空燃比和分子变更系数的定义。

过量空气系数:燃烧1Kg 燃料实际提供的空气量L 与理论上所需要的空气量Lo 之比称为过量空气系数。 空燃比A/F :与过量空气系数相似,也用空气量与燃料量的比值来描述混合气的浓度,成为空燃比。

分子变更系数:理论分子变更系数:燃烧后工质摩尔数M2与燃烧前工质的摩尔数M1之比。实际分子变更系数:考虑残余废气后,燃烧后的工质摩尔数M2’与燃烧前工质摩尔数M1’之比。

)1()1(1

1

11-+--?

-=-ρλλρλεηk k k t ↓↓

-=i m m p p

1ηi

m i m i e i e m p p

N N p p N N -=-===

11η

[9] 简述汽油机和柴油机的着火和燃烧方式。

汽油机:分两个阶段:火焰核心的形成和火焰的传播。气着火浓度范围为:(阿尔法)α=0.5~1.3,火花塞跳火之后,靠火花塞提供能量,不仅是局部混合气温度进一步升高,而且引起火花塞附近的混合气电离,形成火化中心,促使支链反应加速,形成火焰核心。火焰核心形成之后,燃烧过程实质上就是火焰在预混气体中传播过程。

柴油机:依靠喷射的方法,将燃油直接是喷入压缩升温后的工质,在缸内形成可燃性气体,依靠压缩后的高温自燃点火,柴油机的燃烧属于喷雾双相燃烧,也有微油滴群的油滴扩散燃烧。

[10] 已知:某汽油机的气缸数目i = 6,冲程数t = 4,气缸直径D = 100 [mm],冲程S = 115 [mm],转速n = 3000 [r/min],有效功率Ne = 100 [kW],每小时耗油量Gt = 37 [kg/h],燃料低热值hu = 44100 [kJ/kg],机械效率hm = 0.83。求:平均有效压力,有效扭矩,有效燃料消耗率,有效热效率,升功率,机械损失功率,平均机械损失压力,指示功率,平均指示压力,指示燃料消耗率,指示热效率。 解:平均有效压力:Pe=30Ne*t/(Vn*i*10-3

)=738kPa

有效扭矩: Me=9550*Ne*103

/n=318.4N ·m 有效燃油消耗率:ge=G T /Ne*103=370 g/(KN ·h )

有效热效率:ηe=We/Q1=Wi*hm/Q1=3.6/(ge*hu )*106

=0.22 升功率:P1=Ne/(Vn*i)=pe*n/(30t )*10-3

=18.45Kw/L 机械损失功率Pm=Ni —Ne ,hm=Ne/Ni Pm=20.48Kw 平均机械损失压力pm=pi —pe=151.2kPa 指示功率:Pi=Ne/hm=120.48Kw

平均指示压力:pi=30tPi/(Vn*i*n)*103

=889.14kPa 指示燃油消耗率:gi=G T /Pi*103

=307.1g/(KN ·h) 指示热效率:ηi=3.6/(gi*hu )*106

=0.27

第二章 发动机的换气过程

[1]什么是充气效率?怎样确定一台发动机的充气效率?

答:如果把每循环吸入汽缸的工质换算成进口状态(Pa 、Ta )下的体积V1,则V1值一定比活塞排量Vh 小,两者的比值定义为充气效率,即:η

v

=G 1/G sh =M 1/M sh =V 1/V h

充气效率是评价内燃机实际换气过程完善程度的重要参数,充气效率ηv 值高,说明每循环进入一定汽缸容积的充气量越多,内燃机的功率和转矩大,动力性好。

实际内燃机充气效率可用实验方法直接测定。对于非增压内燃机,可视燃烧室没有扫气,用流量计来实测内燃机吸入的总充气量V (m 3

/h )。而理论充气量V sh 可由下式算出: Vsh=0.03inV h 由此可得实验测定的充气效率值为ηv =V/V sh

[2]试根据充气效率的分析式,说明提高充气效率的措施。

答:由式

r

T p p T a a v +-=11

100εε

ξ

η知提高进气终了压力a p ,适当减少进气终了温度a T 可提高充气效率。

[3]影响充气效率的因素有哪些?是如何影响的? 答:1.进气终了压力Pa :Pa 值越大,ηv 越大; 2.进气终了温度Ta :Ta 上升,ηv 下降;

3.压缩比ε与残余废气系数γ:ε增加,ηv 略有上升,γ增加,ηv 下降;

4.配气定时:合理的配气定时可使ηv 增大;

5.进气状态:进气温度Ts 升高,ηv 增加,进气压力Ps 下降,Pa 随之下降,且Pa/Ps 的比值基本不变,对ηv 影响不大。 [4]汽车由平原行驶高原地区,发动机的功率下降是不是由于充气效率下降所致?为什么?

答:不是,进气压力Ps 下降,Pa 随之下降,且Pa/Ps 的比值基本不变,对ηv 影响不大。原因是高原地区空气稀薄,进气量减少使发动机的功率下降。

[5]柴油机和汽油机的进气管应如何布置?

答:柴油机的进气管应与排气管分置两侧,避免排气管给进气管加热

化油器式汽油机进气管应与排气管同置一侧,这样可以改善混合气形成,但是会使充气效率下降 电喷汽油机的进气管应与排气管分置两侧,避免排气管给进气管加热 [6]如何利用进气惯性效应和波动效应增大进气量?

答:惯性效应:转速升高,气流惯性增大,进气迟闭角应增大。

----可变气门正时技术(VVT-i,VTEC)

波动效应:转速升高,发动机吸气频率增大,应缩短进气管。

----可变进气管长度技术

[7]什么是换气损失,它由哪些部分组成?并作图说明。

答:换气损失就是理论循环换气功与实际循环换气功之差。换气损失由排气损失和进气损失两部分组成。

内燃机原理习题与答案

换气损失功 = X+(Y+W )排气损失功Y+W 进气损失功X 泵气损失功(X+Y-d)

图中X,Y中间有一条水平虚线,曲线最右边有一条竖直虚线(也就是将W,d都封闭起来)

第三章车用发动机的废气涡轮增压

[1]试述增压比、增压度、压气机喘振、涡轮机阻塞的定义。

答:增压比:增压比Πκ是指增压后气体压力Pκ与增压前气体压力Po之比。

增压度:增压度Ψκ是指发动机在增压后的功率与增压前的功率之比。

压气机踹振:在一定转速下,当空气流量减少到低于一定数值时,压气机的工作便开始不稳定,气流发生强烈的脉动,引起整台压气机剧烈振动,甚至导致损坏,同时发出粗暴的踹息声,这种不稳定工况称为踹振。

涡轮机阻塞:当涡轮机转速一定,随着膨胀比Pt*/P2的增大,流量随着增加,当膨胀比增加到某一临界时,流量达到最大值,不再增加,这种现象称为涡轮机的阻塞现象。

[2] 废气涡轮增压对发动机性能有什么影响?

答:(一)动力性↑,升功率↑,经济性↑

(二)排气污染及噪声↓

(三)加速性↓

(四)发动机的低速扭矩偏低

(五)起动性与制动性↓

(六)热负荷、机械负荷↑

[3]什么是恒压系统、脉冲系统?对它们进行比较?

答:恒压系统:这种增压系统的特点是涡轮前排气管内压力基本是恒定,它把柴油机所有的排气管都连接于一根排气总管,而排气总管的截面积又尽可能做得大,排气管实际上起到了集气箱的作用,由于集气箱起了稳压作用,因而在排气总管内的压力振荡是较小的。

脉冲系统:特点是使排气管中的压力造成尽可能大的压力变动,把涡轮增压器尽量靠近汽缸,把排气管做得短而细,并且几个缸连一根排气管。这样每一根排气管中就形成几个连续的互不干扰的排气脉冲波进入废气涡轮机中,同时把涡轮的喷嘴环,根据排气管的数目分组隔开,使互不干扰。

脉冲可利用能量大于恒压系统。

脉冲系统有利于扫气。

脉冲系统加速性能好。

脉冲系统结构复杂、流动损失大。

低增压:脉冲系统

高增压:恒压系统

[4]高增压系统为什么必须加装中冷器?

答:将增压器出口的增压空气加以冷却,一方面可以提高充气密度,从而提高柴油机功率,另一方面也可以降低柴油机压缩始点的温度和整个循环的平均温度,从而降低柴油机的热负荷和排气温度。冷却增压空气尽管是降低热负荷的最合理的措施之一,但只有在增压压力较高时才是合适的,低增压时没有必要设置中冷器。

第四章柴油机混合气形成

[1] 简述柴油机混合气形成的两个基本方式和特点。

答:1、空间雾化混合特点:○:1对燃料喷雾要求高(采用多孔喷嘴),经济性好。○2对空气运动要求不高○3初期空间分布燃料多,工作粗暴2、油膜蒸发混合特点:○1对燃料喷雾要求不高○2放热先缓后急,工作柔和,噪声小○3低速性能不好,冷起动困难。

[2] 简述喷雾特性参数。

答:油束射程L:也称油束的贯穿距离。L的大小对燃料在燃烧室中的分布有很大的影响。如果燃烧室尺寸小,射程大,就有较多的燃油喷到燃烧室壁上。反之如果L过小,则燃料不能很好地分布到燃烧室空间,燃烧室中空气得不到充分利用。因此油束射程必须根据混合气形成方式的不同要求与燃烧室的大小相互配合。

喷雾锥角β:他与喷油器结构有很大关系。对相同的喷油器结构,一般用β来标志油束的紧密程度,β大说明油束松散,β小说明油束紧密。

雾化质量:表示然后喷散雾化程度,一般是指喷雾的细度和均匀度。细度可用油束中的油粒的平均直径来表示。均匀度是指喷注中油粒直径相同的程度,油粒的尺寸差别越小,说明喷雾均匀度越高。

[3] 简述孔式喷嘴和轴针式喷嘴的特点。

孔式喷嘴

孔数: 1~5个,φ = 0.25~0.8 mm。

雾化好,但易阻塞

轴针式喷嘴

φ = 1~3 mm ,雾化差,但有自洁作用,不易阻塞

[4] 简述产生进气涡流的方法?

答:异气屏、切向气道,旋转气道。

[5] 柴油机燃烧过程分为哪几个阶段,绘图分阶段阐述柴油机燃烧过程的进行情况。

答:第I阶段滞燃期,图中的1-2段。从喷油开始(点1)到压力线与纯压缩线的分离点(点2)止。点2视为燃油开始着火点。

第II阶段速燃期,图中的2-3段。从气缸压力偏离纯压缩线开始急剧上升点2起,到最高压力点3止。

第III阶段缓燃期,图中的3-4段。从最高压力点(点3)开始到最高温度点(点4`)止。

第IV阶段补燃期,图中4-5段。从缓燃期终点(点4)到燃油基本燃烧完为止。

[6] 为什么应尽量减少发动机的补燃?

答:在高速柴油机中,由于燃油和空气形成混合气时间短,混合不均匀,总有一些燃油不能及时燃烧,要拖到膨胀过程燃烧。由

于这部分热量是在活塞远离上止点时放出,故做功的效果很差。同时还会增加传给冷却水的热量,并使排气温度升高,零件热负

荷增加,使柴油机经济性和动力性下降,所以应尽量减少发动机的补燃。

[7] 简述影响着火延迟期的各种因素,着火延迟期对柴油机性能的影响。

答:影响着火延迟期的因素:1)压缩温度,随着压缩温度上升着火延迟期下降。2)压缩压力,其他条件相同时,燃烧室压力增加,着火延迟期缩短3)喷油提前角其实是温度压力和反应物焰前反应时间对着火延迟的综合影响。角越大,喷油时缸内温度和压力越低,因而反应速度越慢,反应时间越长。4)转速,影响有双重性,对以时间计的Ti随n增加而缩短,压缩比E越低,n对Ti影响越明显。n增大后以曲轴转角计的着火延迟期可能增大5)油品,柴油机中含烷烃量越多,含芳香烃越少,着火延迟期越短。

着火延迟期对柴油机性能的影响:

1)对平均有效压力和功率的影响:最佳着火延迟期Tiop,小于其时,找回延迟期过短,最高燃烧压力在上止点前过早出现,使压缩过程中消耗的负功过大,散热损失增加,Pe下降;大于时,峰值在上止点后过迟出现,燃烧过程推迟,热效率降低,Pe下降。

2)对燃油消耗的影响:U形

3)对烟度和排气温度的影响:过短,预混合燃烧阶段烧掉的燃料量减少,而扩散燃烧阶段燃烧的燃油量增多,后燃增加,烟度升高。对排气温度呈—/状,(上升)。

[9] 什么是喷油泵的速度特性?

答:油量调节拉杆位置一定,每循环供油量随转速n的变化关系。

[10]简述柴油机的不正常喷射现象及原因。

答:不正常喷射现象:二次喷射不稳定喷射穴蚀

原因:二次喷射高压油管残余油压过高,高压油管内压力波引起。

不稳定喷射喷油系统结构参数匹配不当。

穴蚀高压油管下降过快,高压油路中会产生油的蒸气泡。气泡

[11]简述柴油机直喷式和分隔式燃烧室特点。

答:直喷式:相对散热面积小,无节流损失,经济性好,容易起动

压升比高,工作粗暴,对喷油系统要求高。

分隔式:相对散热面积大,节流损失大,经济性差,不易起动

压升比小,工作柔和,排放好,对喷油系统要求低

[12] 简述柴油机电控燃油喷射系统的分类,并说明共轨系统工作原理。

答:分类:位置控制型和时间控制型

工作原理:在这类系统中,燃油在供油泵内增压后先供入燃油分配

管,再由燃油分配管分配到各缸喷油器,喷油器直接由ECU控制其启闭(P99-p100)

(共轨系统没有写)

第五章汽油机混合气形成与燃烧

[1] 汽油机与柴油机相比,在燃烧过程的划分、着火方式、着火延迟期的影响、混合气的形成、机械负荷和热负荷、压缩比、组织缸内气流运动的目的以及燃烧过程的主要问题方面,各有什么不同?

汽油机

柴油机

燃烧过程的划分 滞燃期-急燃期-补燃期 滞燃期-速燃期-缓燃期-补燃期 着火方式 点燃式

压燃式

着火延迟期影响 着火延迟期长燃烧充分剧烈 着火延迟期长,工作粗暴 混合气的形成 汽缸外部形成 汽缸内形成 机械热负荷 中等 大 压缩比 小

组织气流运动 加快燃烧速度

加速混合

燃烧过程中的主要问题

1、 点火提前角增大爆震增大

2、 负荷增大,爆震减小

3、 大气压力下降,经济性,动力性下降

喷油提前角升高,放热多,工作粗暴

[2] 什么是理想化油器和简单化油器特性。

答:理想化油器特性是指在转速一定的情况下,发动机所需求的混合气浓度随负荷而变化的关系。 简单化油器特性是指在转速一定的情况下单纯依靠喉管真空度ΔPn 决定供油量的特性。 [3] 与化油器式汽油机相比,汽油喷射系统有哪些优点? 答:与化油器式汽油机相比,电控汽油喷射系统有以下优点:

①电控汽油喷射系统易于控制燃油供给量,实现混合气空然比及点火提前角的精确控制,使发动机无论在什么情况下都能处于最佳运行状态。 ②电控汽油喷射系统可以提高发动机功率。

③由于汽油喷射系统不对进气加热,使得压缩温度较低,不易发生爆震,顾可采用较高的压缩比来改善热效率。 ④电控汽油喷射系统的燃油雾化是由喷油器的特性决定的与发动机转速无关,故起动性能良好。

⑤电控汽油喷射系统的自由度大,对动力性、经济性和排放等可以实现多目标控制;因工况变化,海拔高度,温度变化等对供油系统的影响可以非常容易地校正。

⑥电控汽油喷射系统具有良好的耐热性能。

内燃机原理习题与答案

[4] 画图说明汽油机燃烧过程分为哪几个时期,并简述各个时期的特点。 答: 第Ⅰ阶段:滞燃期(1—2) 第Ⅱ阶段:速燃期(2—3) 第Ⅲ阶段:缓燃期(3—4) 第Ⅳ阶段:补燃期(4—5)

滞燃期从喷油开始到压力线与强压缩线的分高点上,点1视为燃油开始着火点 速燃期从汽缸压力偏离纯压缩线开始急剧上升,点2走到最高3止 缓燃期从最高压力点3开始到最高温度点4止

补燃期从最高温度点4开始到最低压力点5燃料基本燃烧完为止。 [5].什么是爆震燃烧?影响它的因素有哪些?画出爆震时的P-V 图.

爆震是燃烧室中末端混合气在火焰前锋面到达之前发生的自燃,在燃烧室中产生多个火焰中心,引发爆炸式燃烧反应。 造成爆震最主要有以下几点原因: 一、燃料品质

二、末端混合气的压力和温度 三、火焰前锋传到末端混合气的时间

四、表面点火 (P-V 图无)

[6].简述使用因素对汽油机爆震燃烧的影响。

1.混合气浓度:0.8-0.9时,缸内燃烧温度最高,火焰传播速度最大,压力等也较高,爆震倾向加大。

2.点火提前角过大时,爆震倾向加大,反之亦然。

3.转速增加,火焰传播速度增加,爆震倾向减小

4.负荷

5.大气状况,当大气压低时,汽缸充气量较小,混合气变浓,压缩终了时压力较小,爆震倾向减小。

[7] 什么是表面点火?如何产生?并画早燃时的P-V图。

答:在汽油机中凡是不靠电火花点火而由燃烧室内炽热表面点燃混合气

的现象统称为表面点火,产生于燃烧室内炽热表面。图(图4-31 P125)

[8] 说明转速和负荷对点火提前角的影响?

答:转速↑,火焰传播速度↑,t1减小,爆燃倾向减小。;

转速↑,曲轴单位时间内转过的角度↑,最佳点火提前角↑

负荷↓→缸内p↓,T↓→爆燃趋势↓

负荷↓→↑θ

[9] 什么是稀薄燃烧?它对汽油机的性能有何影响?

答:稀薄燃烧指空燃比大于25的混合气燃烧。稀薄燃烧对汽车机的经济性,动力性都有所提高,热负荷降低延长了发动机的寿命。

[10]汽油机的不正常燃烧、不规则燃烧各有哪些?

答:不正常燃烧 1爆震 2 表面点火

不规则燃烧 1循环间的燃烧变动 2 各缸间的燃烧差异

[11]汽油机的爆震与柴油机的工作粗暴有什么异同?

答:两者发生的阶段和气缸内的状况是不同的柴油机工作粗暴发生在急燃期始点,压升比大,但气缸内压力还是均匀的,而汽油机的爆震发生在急燃期的终点,气缸内有压力波冲击现象,相同点:他们都是自燃的结果。

第六章发动机特性

[1 ]什么是内燃机工况?有哪三类典型工况?

答:内燃机的实际运行状况成为内燃机的工况。第一类工况称为恒速工况,内燃机在某一恒定转速下工作,负荷发生变化。

第二类工况,内燃机功率与转速成一定函数关系

第三类工况,内燃机功率与转速之间没有一定的函数关系,功率与转速都独立在很大范围内变化。

[2] 什么是内燃机速度特性、外特性、负荷特性、柴油机调速特性

答:1.内燃机速度特性指内燃机油门位置不变时,其性能指标随转速而变化的关系

2.外特性值指内燃机油门全开且不变时,其性能指标随转速而变化的关系

3负荷特性是指内燃机转速不变时其经济性指标随负荷而变化的关系

4.柴油机调速特性在调速器起作用时,柴油机的性能指标随转速负荷变化的关系。

[3] 试分析汽油机、柴油机负荷特性曲线的变化,并比较其不同特点。

答:1.转矩Me曲线

汽油机:当转速由低速开始上升时,由于ηvηi 上升,ηm下降,Me有所增加,对应于某一转速时,Me达到最大值,转速继续升高,由于ηvηi ηm 同时下降,Me随转速较快地下降,相对于柴油机而言,me曲线变化较陡。

柴油机:地转速时,me增加,高转速是,me下降不明显,曲线变化平缓,甚至有的是一直微微上倾。

2,功率Pe曲线

汽油机:转速从低值增加时,由于Me与n同时增加,Pe迅速上升,直到转矩达最高点后,继续提高转速,Pe上升逐渐缓慢,至某一转速后,Pe 达最大值。转速再升,Pe下降。

柴油机:由于me变化平坦,在一定转速范围内,Pe几乎与n成正比增加。

3.ge曲线

汽油机:ge在中间某一转速最低,转速升高或降低,ge都增大。

柴油机:ge在中间某一转速最低,但整个曲线变化不大。

[4] 试分析汽油机、柴油机速度特性曲线的变化,并比较其不同特点。

答:1.汽油机

Pe曲线:低速时,随着n增加,me增加,Pe增加。高速时,随着n增加,me下降,Pe增加。

ge曲线:低速时,n增加,ηi增加ηm减少,ge下降。高速时,n增加,ηi减少ηm减少,ge增大

2..柴油机

Pe曲线:因Me变化平坦,在一定的转速范围内,Pe几乎与转速成正比增加。

Ge曲线:综合ηiηm的变化,ge是在中间某一转速时最低,但整个曲线变化不大。

[5] 绘制全程式调速器的速度特性形式的调速特性曲线图,并在调速范围内任意描述一点“B”的工作状况。

答案在176页,因为是图不好搞。

[6] 进行负荷特性、速度特性实验的目的是什么?

答:进行负荷特性、速度特性试验在标定工况下测量发动机的某几项性能指标来综合评价发动机工作的经济性。

[7] 什么是扭矩储备系数、扭矩适应性系数和转速适应性系数?

答:扭矩储备系数:u=(Memax-Meh)x100%

扭矩适应系数:Km=Memax/Meh 其中:Meh:标定工况的转矩

Memax:外特性曲线上最大转矩

转速适应系数:Kn=nH/nT :最大功率的转速

[8] 试述万有特性曲线的测取方法。

答:万有特性是以转速为横坐标,平均有效压力为纵坐标在图上画的等燃油消耗曲线和等功率曲线。绘制步骤:

A、将不同转速的负荷特性以Pe为横坐标,ge为纵坐标,画在统一坐标上;

B、在万有特性图上横坐标以一定比例转速,总做白哦Pe比例应与负荷特性Pe比例相同;

C、将负荷特性图逆转90°,放在万有特性图左方,并将不同车速的相应负荷特性曲线与某燃油消耗率的各支点移到所有特性图中相应转速坐标上,标上记号。再将ge值相等的各点连成光滑曲线,即等燃油消耗率曲线。

其他曲线做法类似。

[9] 试述车用柴油机装调速器的必要性。

答:调速装置就是通过油量调节机构改变柴油机燃油供应量,将其转速调节到规定的转速范围,并且根据其所驱动负荷的变化自动地调节循环供油量,使其转速稳定在一定范围的装置。

[10] 试述稳定调速率、瞬时调速率和调速器不灵敏度的定义。

答:瞬时调速率:它是评价调速器过度过程的指标,柴油机在标定工况下运转,然后突卸全部负荷,转速瞬时到达n2,再经过数次波动后,稳定在n3进行运转,则瞬时调速率δ1=(n2-n1)/n h

N2-—突卸负荷后的最大瞬时转速(r/min);

N1—突卸负荷前柴油机转速,(r/min);

Nh—柴油机的标定转速(r/min);

稳定调速率:调速器的稳态调速率是指当操纵手柄在标定供油位置不变时,空车稳定转速与全负荷稳定转速之差同标定转速比值百分数,可用公式表示为:δrt=(n1-n3)100%/ne

δrt用来衡量调速器的准确性,是调速器的静态特征,其数值小,表示调速器的准确性愈好。

灵敏度:调速器工作时,由于喷油泵和调速器的各种机构中存在着摩擦,需要有一定的力来克服,因为机构中摩擦阻力阻止套筒的移动,所以不论柴油机转速增加减少,调速器都不会立即作出反应,改变供油量。例如发动机工作转速为200r/min,调速器可能对转速在n1=197r/min到n2=203r /min范围内的变动都不作反应。这种现象称为调速器的不灵敏性。这两个起作用的极限转速之差与发动机平均转速Nm之比称为不灵敏度,即:e=(n2-n1)/Nm

式中n1-----当发动机负荷增大时调速器开始起作用时的转速(r/min);

n2-----当发动机负荷减小时调速器开始起作用时的转速(r/min);

Nm-----发动机的平均转速(r/min)。

第七章内燃机噪声及排放污染

[1] 汽车有害气体的主要污染源有哪些?

答:(1)以HC为主要成分(约占HC总排量的25%),并含有CO等其它成分的窜气,从曲轴箱排出

(2)在不同运行工况,从排气管排出不同成分的CO、HC(约占HC总排量的55%)及NO等有害气体

(3)汽油从油箱、化油器浮子室及油泵接头处蒸发,散发出HC(约占HC总排量的20%)

[2] 汽油机、柴油机的排放污染物主要各有哪些成份?控制的主要污染物各是哪些?

答:主要有一氧化碳,氮氧化物,碳氢化合物,颗粒。

主要有害颗粒在汽油机里是铅化合物,在柴油机是炭烟。此外还有醛(—CHO)、臭氧及其他致癌物质等。

[3] 发动机控制排放污染物的方法有哪三类,各有哪些?

答:1.前处理(1)汽油的处理(2)代用燃料(3)曲轴箱强制通风系统(4)汽油蒸发控制系统

2机内处理(1)废气再循环系统(2)改进燃烧系统(3)改进点火系统(4)改进燃油供给系统(5)采用汽油喷射

3后处理(1)二次空气喷射(2)热反应器(3)催化转换器

[4] 简述CO、NOx、HC、碳烟的生成机理。

CO:当空气不足,A/F<14.7时,则有部分燃料不能完全燃烧,生成CO;

Nox:高温富氧;

HC:汽油的燃烧很复杂,任何发动机都可能发生不完全燃烧,在排气中都会有少量的HC;

碳烟:高温富氧,汽缸中空气不足,混合不佳,或者由于燃气膨胀而使汽缸局部温度下降到炭反应温度以下,则炭不能进一步燃烧而保持其固体状

态排出汽缸外。废气中是否出现碳烟取决于膨胀期间温度过分下降以前燃料是否能足够快与空气混合燃烧。

[5] 简述发动机的运转因素对CO 、NOx 、HC 、碳烟的影响。

答:1、当车速增加时,CO 很快下降,至中速以后变化不大。

2、负荷一定时,随转速升高HC 排放很快下降;负荷增大时,HC 排放降低。

3、随转速升高,供给混合气逐渐加浓,缸内温度升高,NOX 排放也增加。

4、当汽车低温起动不久及怠速工况时,容易产生白烟;在柴油机尚未完全预热或低负荷运转时,容易产生蓝烟;在柴油机大负荷时,汽车、爬坡及超负荷时,容易产生黑烟。 (此题答案不太确定) [6] 汽车和发动机的主要噪声源各有哪些?

汽车的噪声源主要有:驱动装置(包括发动机、离合器、变速器、辅助装置),排气系统,轮胎咱面不平度,制动,车轮激水和雨水,进气系统,行驶迎面风,车内通风设备。

发动机噪声源主要有:燃烧噪声,活塞敲击声,配气机构噪声,喷油泵噪声,齿轮噪声,进气噪声,排气噪声,风扇噪声。

2-1 内燃机的动力性能和经济性能指标为什么要分为指示指标和有效指标两大类?表示动力性能的指标有哪 些?它们的物理意义是什么?它们之间的关系是什么?表示经济性能的指标有哪些?它们的物理意义是什么?它 们之间的关系是什么?答:(1)指示性能指标是以工质对活塞做功为基础的指标。能评定工作循环进行的好坏。有效性 能指标是以曲轴的有效输出为基础的指标,能表示曲轴的有效输出。 (2)动力性能指标:功率、转矩、转速、平均有效压力、升功率。

(3)功率:内燃机单位时间内做的有效功。转矩:力与力臂之积。转速:内燃机每分钟的转数。Pe=Ttq.n/9550 (4)经济性能指标:有效热效率,有效燃油消耗率be 。

(5)有效热效率:实际循环的有效功与为得到此有效功所消耗的热量之比值。 ηet=We/Q1

有效燃油消耗率:单位有效功的耗油量。关系:be=3.6*106/ηet 。Hu

2-4 平均有效压力和升功率在作为评定发动机的动力性能方面有何区别?答平均有效压力是一个假想不变的压力,其作用在活塞顶上使活塞移动一个行程所做的功等于每循环所做的有效功,升功率是在标定的工况下,发动机每升气缸工作容积所发出的有效功率。 区别:前者只反应输出转矩的大小,后者是从发动机有效功率的角度对其气缸容积的利用率作出的总评价,它与Pme 和n 的乘积成正比。(Pl=Pme ·n/30T )

2-5充量系数的定义是什么?充量系数的高低反映了发动机哪些方面性能的好坏?答(1)充量系数每个循环吸入气缸的空气量换算成的进气管状态下的体积。V1与活塞排量Vs 之比(Φc =V1/Vs )(2)充量系数高地反映换气过程进行完善程度。 2-8 过量空气系数的定义是什么?在实际发动机上怎样求得?

1)过量空气系数:燃烧1kg 燃料的实际空气量与理论空气量之比。(2)实际发动机中Φa 可由废气分析法求得,也可用仪器直接测得;对于自然吸气的四冲程内燃机,也可由耗油量与耗气量按下式求的(Φa =Aa/BLo )

2-9 内燃机的机械损失由哪些部分组成?详细分析内燃机机械损失的测定方法,其优、缺点及适用场合。答(1)机械损失组成:1活塞与活塞环的摩擦损失。2轴承与气门机构的摩擦损失。3.驱动附属机构的功率消耗。4风阻损失。5驱动扫气泵及增压器的损失。(2)机械损失的测定:1示功图法:由示功图测出指示功率Pi ,从测功器和转速计读数中测出有效功率Pe ,从而求得Pm,pm 及ηm 的值。优:在发动机真实工作情况下进行,理论上完全符合机械损失定义。缺:示功图上活塞上止点位置不易正确确定,多缸发动机中各缸存在一定的不均匀性。应用:上止点位置能精确标定的场合。

2倒拖法:发动机以给定工况稳定运行到冷却水,机油温度达正常值时,切断对发动机供油,将电力测功器转换为电动机,以给定转速倒拖发动机,并且维持冷却水和机油温度不变。这样测得的倒拖功率即为发动机在该工况下的机械损失功率。缺点:1倒拖工况与实际运行情况相比有差别2求出的摩擦功率中含有不该有的Pp 这一项。3在膨胀,压缩行程中,p-v 图上膨胀线与压缩线不重合。4上述因素导致测量值偏高。应用:汽油机机械损失的测定。

3灭缸法:在内燃机给定工况下测出有效功率Pe ,然后逐个停止向某一缸供油或点火,并用减少制动力矩的办法恢复其转速。重新测定其有效功率。则各缸指示功率为(Pr )x=(Pe-Pe )x 。总指示功率。Pi=∑(Pi)x 。然后可求出Pm 和ηm.优点:无须测示功图,也无须电力测功器。缺点:要求燃烧不引起进。排气系统的异常变化。应用:只适用于多缸发动机,且对增压机及汽油机不适用。

4油耗线法:将负荷特性实验时获得的燃油消耗率曲线延长并求出横坐标的交点,就可得到Pmm 。优点:无须电力测功器和燃烧分析仪。缺点:只是近似方法,低负荷附近才可靠。应用:除节气门调节的汽油机和中高增压的柴油机。 3-2 试推导混合加热理论循环热效率的表达式。答:

)/'/(

)//'(1

/1)'()'(11/21Ta Tz Ta Tz k Ta Tc Ta Tz Ta Tb Tz Tz k Tc Tz Ta Tb Q Q t -+---=-+---=-=ηλ

ρρελερλερλερλερλελεεεk

k c k c

k k c

k c

k c k c k c k c k c

k vb vz Tz Tb Tz Tb Ta Tz Ta Tb vz vz Ta Tz Tz Tz Ta Tz pc pz Ta Tc Tc Tz Ta Tz vc va Ta Tc 010

1

01

1

01

01

011

1

1

1)/1(

)/(////'//''//)/'(//'/';

)/(/====?===?===?===-----------

3-7 内燃机的实际循环与理想循环相比,存在着哪些损失?试述各种损失形成原因。

答:工质的影响;实际工质不是理想气体,其中CO2.水蒸气等三原子气体在燃烧过程中不断增强,使工质比热容增大,且随温度升高而增大,使气体温度下降,同时燃烧产物存在高温分解及在膨胀过程中复合放热现象。传热损失:实际循环中,缸套内壁面、活塞顶面以及气缸盖底面等与缸内工质直接相接触的表面,始终与工质发生着热量交换,在压缩初期,缸壁对工质加热,但燃烧和膨胀期,工质大量向壁面传热。换气损失:理论循环中不考虑气体流动阻力损失实际循环中,在吸入新鲜充量及排出废气时有膨胀损失,活塞推出功损失和吸气功损失。燃烧损失:燃烧速度的有限性使压缩负功增加及最高压力下降 另外还存在不完全燃烧损失。

4-1 试分析内燃机进、排气门提前开启和迟后关闭的原因。其数值的大小与哪些因素有关?答:排气提前:(1)排气门提前开启可以增大在膨胀行程下止点时的流通面积,使排气顺畅,减小排气冲程的活塞推出功。排气门迟后关闭可避免排气流动截面积的过早减小而造成的排气阻力增加,使活塞推出功和缸内残余废气增加,另外还可以利用排气管内气体流动的惯性抽吸一部分废气,实现过后排气。进气门提前开启可增大开始充量进气时得进气截面积,减小气流阻力,增加进气气缸的新鲜充量。进气门迟后关闭可利用气流惯性实现向气缸的过后充气,增加缸内充量。

(2)汽油机排气门提前角小些,柴油机大些,增压柴油机更大。节气门调节的内燃机(点燃式)的进气提前角较小,柴油机进气提前角较大,增压则更大。

另外,转速高的发动机有较大的气门提前角及迟闭角。所以影响因素有:机型,是否增压,转速高低。 4-3试述影响充量系数的各个主要因素以及提高充量系数的技术措施。

(1)影响充量系数的主要因素:进气阻力损失,排气阻力损失,高温零件对进气过程中新鲜充量的加热,配气正时及气门升程规律的影响。(2)提高充量系数的技术措施:1.降低进气系统的流动阻力。2.采用可变配气系统技术(可变凸轮机构,可变气门正时)。3.合理利用进气谐振。4.降低排气系统的流动阻力。5.减少对进气充量的加热。

4-7分析说明几种典型的二冲程发动机扫气方案的优缺点:

答:横流扫气:优点:结构简单,制造方便,可以降低内燃机高度尺寸。缺点:气缸顶部易残留废气,扫排气口之间易产生新鲜充量短路,扫气效果差,进排气口两侧缸壁热负荷不同,易造成 活塞与气缸受热不均。回流扫气:无新鲜充量短路,扫气效果比横流扫气好,结构简单,制造方便。直流扫气:优点:扫气品质最好,新鲜充量不与废气参混,工作条件好(扫气空气玲却)。缺点:保留了四冲程内燃机的气门结构,结构复杂。 4-9增压前后发动机的性能参数是如何变化的?答:增压后内燃机性能参数的变化:指示热效率略有增加,机械效率提高。(升)功率增加。燃油消耗率降低。当转速不变时,则转矩增加。

5-2 何谓缸内滚流?滚流对燃烧过程有何影响?答:(1)缸内滚流:在近气过程中形成的绕气缸轴线垂直线旋转的有组织的空气旋流。影响:滚流在压缩过程中,动量衰减较少;可保持到压缩行程末期;活塞接近上止点时,大尺度滚流破裂成众多小尺度涡流,使湍流强度和湍流动能增加,大大提高火焰传播速率,改善发动机性能。

5-6 爆燃的机理是什么?如何避免发动机出现爆燃?答:机理:爆燃是终燃混合气的快速自燃,在正常火焰未到达前,终燃混合气内部最宜着火部位出现火焰中心,这些火焰中心以很高的速率传播火焰,迅速将终燃混合气燃烧完毕,使得压力升高率dp/dt 急剧波动,出现爆燃。防止发动机爆燃措施:1推迟点火2合理设计燃烧室形状及布置火花塞位置,缩短火焰传播距离3终燃混合气冷却。4增加流动,使火焰传播速度增加。5利用燃烧室扫气和冷却作用。

5-12 何谓稀燃、层燃系统?稀燃、层燃对汽油机有何益处?答:(1)稀燃系统:采用稀薄混合气并用一定措施组织混合气快速燃烧的系统。层燃系统:在火花间隙周围布局形成具有良好着火条件的较浓混合气,而在燃烧室大部分区域是较稀的混合气,混合气浓度从火花室开始由浓到稀逐步过渡的燃烧系统。(2)稀燃、层燃可以提高循环热效率,降低油耗,适当提高压缩比而不至引起爆燃,还可以降低排放。

5-15 柴油机燃烧过程滞燃期定义是什么?柴油机滞燃期的影响因素有哪些?答:(1)滞燃期:从喷油开始到压力开始急剧升高为止的这一段时间。(2)影响因素:压缩温度、压力、喷油提前角、转速、燃料性质等。

5-19 分析比较直喷式和分隔式柴油机的优缺点。答:直喷式和分隔式可通过燃烧室的不同而确定。直喷式:1)浅盆式:(1)混合气形成主要靠燃油的油喷雾化,对喷雾要求高;(2)要求油束与燃烧室形状相配合,燃料要尽可能地分布到整个燃烧室空间;(3)燃烧室中一般不组织空气涡流运动;(4)燃烧室基本上是一个空间,形状简单,结构紧凑;(5)最高燃烧压力及压力升高率较高,工作粗暴;(6)对转速和燃料较敏感;(7)

)

1()1(1

1

1)

()(1

1)

/'/()//'(1

/1001

1

10110-+---

=-+---=-+---

=-----ρλλλρεελελρεελλρηp p

p k

k c

k c p k c p k c k c p p k

t

k k Ta Tz Ta Tz k Ta Tc Ta Tz Ta Tb

过量空气系数较大。2)深坑式:对燃油系统要求较低,空气利用率大大增加,并保持燃油消耗率低和起动容易的优点。3)涡流式:(1)利用强压缩涡流对喷雾质量要求低;(2)对转速变化不敏感;(3)空气利用率高;(4)排放低;(5)冷启动困难。分隔式:(1)可以在较小的过量空气系数下工作,对供油系统要求不高;(2)混合气对转速敏感性不高;(3)气流流动产生强烈的涡流,使主燃烧室压力升高大大缓和;(4)对燃料种类不敏感,有害排放低;(5)流动散热损失大经济性差。

7-1 对压燃式内燃机燃料供给与调节系统的基本要求是什么?答:(1)能产生足够高的喷射压力,以保证燃料良好的雾化,混合气形成以及燃烧;(2)对每一工况应精确,及时地控制每个循环喷入气缸的燃料量,当工况一定时,每个循环喷油量应一致,各缸喷油量应当均匀;(3)在整个工况范围内尽量保持最佳的喷油时刻,喷油的持续期和理想的喷油规律;(4)能保证柴油机安全,可靠的工作。

7-10 说明压燃式内燃机有哪些异常喷射现象和它们可能出现的工况。简述二次喷射产生的原因、造成的危害及消除方法。答:(1)可能出现的工况:二次喷射:大负荷高速运转的情况下;气穴和穴蚀:小负荷;不稳定喷射:低怠速工况(2)二次喷射的原因:燃油在高压的作用下的可压缩性和压力波在高压油路中的传播和反射;危害:喷油持续期延长,雾化质量差,燃烧不完全且后燃严重,燃油消耗率及烟度增加,排温升高,性能恶化,零件过热,甚至产生喷孔积器堵塞;消除措施:减少高压油路的容积,适当增大喷孔直径,适当增大出油阀弹簧刚度与开启压力,加大出油阀减压容积,采用阻尼或者等压式出油阀。

7-11 喷油泵速度特性校正方法有哪几种?简述各种校正方法的原理。答:液力校正和机械校正两种。①液压校正:通过改变出油阀结构和形状,利用出油阀上下小孔或者出油阀与阀座之间间隙的节流作用,削弱出油阀在柴油机低速范围内的减压作用,达到增加油喷量;改善喷油泵速度特性的目的。②机械矫正:利用调速弹簧或凸轮机构改变柱塞的有效行程,以增加低速时的循环油量。

7-12 分析两极式和全程式机械调速器工作特性不同的原因。答:①两者调速弹簧的预紧力刚度不同,全程式调速器在怠速弹簧起作用即飞锤走完怠速行程以后,调速弹簧能连续参加工作,可保证调速范围的连续性,而两级试调速器要等到转速升到标定转速时,调速弹簧才起作用。②两级式调速器转动操纵杆能拉动喷油泵油量调解齿杆,而全程式调速器只是改变了牵引杆的转动点与杠杆比。

7-14压燃式内燃机电控高压喷射有哪两大类,比较位移控制方式与时间控制方式的特点。答①分类:位移控制方式,时间控制方式。②特点:位移控制方式:在原来机械控制循环喷油量和喷油正时的基础上,用线位移或角位移的电磁执行机构或电磁液压执行机构来控制循环供油量,还可以用来改变柱塞行程的办法,改变喷油正时和供油速率。时间控制方式:在高压油路中用高速电磁阀的启闭来控制喷油泵和喷油器的喷油过程。喷油量的多少由喷油压力和喷油器针阀的开启时间长短决定,喷油正时由控制电磁阀的开启时刻确定。

7-16 简述电控汽油喷射系统的组成和各部分的主要功用。①电控汽油喷射系统的组成:传感器,电控器,执行器②传感器:将发动起工况与环境的多种信号及时并尽可能真是的传递给电控器。电控器:接收和处理传感器的所有信息,发出各种控制指令给执行器或直接显示控制参数。执行器:根据电控器发出的信号,产生相应的动作以实现所要求的控制。

7-17试对汽油机多点喷射系统于单点喷射系统进行比较,并分析其应用前景。(1)进气道多点喷射:对喷油压力要求不高,有利于降低制造成本,能实现燃油供给量的精确控制及在各缸之间的均匀分配。目前发展成为轿车汽油机的主流产品且应用范围不断扩大。

(2)中央单点喷射:在进入各缸的燃油量的控制精度与均匀性方面达不到进气道多点喷射的水平,但其功能优于化油器,且制造成本低。在经济型轿车上有较广泛的应用。

7-19试述电控器的功能。功能:根据来自各传感器的输入信号及其他开关信号,用控制软件并结合存储的各种标定数据与图表进行分析计算,决定如何控制,并以相应的电信号向执行器发出各种控制指令。

8-2 CO、HC 和 NOx 对环境和人体的危害作用在什么地方?它们的危害各自有何特殊性?

(1)CO:与血红蛋白的结合生成羰基血红蛋白,相对减少了氧血红蛋白,损害血红蛋白对人体组织的供氧能力,危害极大。(2)HC:烷烃对人体健康无直接影响。烯烃经代谢后变成对基因有毒的环氧衍生物,是造成光化学烟雾因素之一。芳香烃对血液,肝脏和神经系统有害。多环芳香烃及其衍生物有致癌作用。醛类对眼黏膜,呼吸道和血液有害。(3)NOx:NO本身毒性不变,但在大气中氧化成NO2后,被人体吸入后与水结合成硝酸,引起咳嗽哮喘肺气肿和心肌损伤。NOx是形成光化学烟雾因素之一。

8-4点燃式与压燃式内燃机之间在 CO、HC 和 NOx 生成机理方面有何异同?(1)CO:点燃机主要是怠速加浓、加速加浓、加速加浓及全负荷时功率混合气偏浓时生成较多CO。压燃机是由于混合气混合不均,燃烧室中局部缺氧或Φa过大,燃烧室温度过低而产生较多CO。(2)HC:点燃机生成HC与壁面淬熄,狭隙效应,润滑油膜的吸附和解吸,燃烧室中沉积物有关。柴油机生成HC主要是喷柱的外围形成过稀的混合气,使燃料始终不能完全燃烧,另外,压力室容积对排放影响较大。(3)NOx:都是高温富氧下的产物,点燃机是在Φa从0.9增加时,氧分压增大效应大于温度下降效果而使NOx排放增大,在Φa=1.1时出现峰值,压燃机是随负荷增大时,平均空燃比α 减小而温度升高时,NOx排放增加。点燃机中推迟点火与压燃机中推迟喷油均可降低NOx排放。

8-6为针对 NOx 排放优化点火和喷油定时,要对燃烧系统进行怎样的改进?答:点火与喷油正时后,对燃烧系统的调整应是优化燃烧过程,加速燃烧,使燃烧更完全。对汽油机,可采用更紧凑的半球形,帐篷形燃烧室,用较大的行程缸径比S/D和多气门结构与火花塞中置。对柴油机,直喷式燃烧室可增大燃烧室的有效容积比,用长行程、低转速柴油机,另外,可适当提高压缩比和加强缸内气流湍运动。

8-8柴油机的微粒与 NOx 排放之间存在什么矛盾?如何缓解此矛盾?答:(1)增压的同时采取推迟喷油措施,增压可降低PM,推迟喷油又防止NOx 排放增加。(2)优化喷油规律,初期用低喷油速率以抑制NOx的生成,喷油中期急速喷油,加速扩散燃烧,防止DS大量生成。(3)用低排放喷油器,合理安装喷油器,使每束油雾获得相同的与空气混合的条件,使燃料混合均匀,则PM和NOx均减少。(4)提高喷油压力,改善喷雾质量,也可使燃料与空气混合较好。(5)气流组织与多气门技术,使燃料与空气混合更均匀。(6)适当提高压缩比与推迟喷油相配合。

8-17合理应用三效催化转化器的前提是什么?催化转化器对怠速排放有什么影响?答:(1)前提:空燃比在理论空燃比附近变化。(2)汽油机怠速时,混合气偏浓,CO和HC排放较高,而此时三效催化剂对CO和HC的转化效率较低,而对NOx转化一直较高,所以此时效果很差。

8-20柴油机排放微粒捕集器的技术关键是什么?试评价其发展和应用前景。答:技术关键:简便可靠的DPF再生。发展:早期脱机再生—正在开发的有热再生和催化再生。应用前景:催化再生中的连续再生捕集器(CRT)已在实际试用中有很好的效果和应用前景。

9-5试比较柴油机和汽油机在负荷特性曲线和速度特性曲线走向的差异,并分析其原因。

(1)负特性曲线:汽油机负特性曲线(be曲线)在柴油机上面,汽油机的曲线较陡,柴油机平坦,二者都是在中等偏大的负荷范围下,be最低;原因:汽油机的压缩性比柴油机低,be大,be曲线在柴油机之上,在小负荷区,汽油机由于节气门的节流作用,造成较大的泵气损失,使be的上升比柴油机更快。(2)速度特性曲线:转矩:汽油机转矩随转速的增加而较快的降低,柴油机则较缓慢;功率:汽油机功率随转速的增大非线性增加,柴油机基本上呈线性增加;燃油消耗率:汽油机的be随转速的增加先缓慢下降,然后上升,柴油机类似变化但较平坦;原因:汽油机Ttq变化取决于φc、ηm、η的乘积,随η的变化而ηit在中等转速时达到最大值,低速和高速均有下降,φc在中等低速达到最大值,n大φc下降,n低φc也下降,ηm随n增大降低,所以汽油机外特性Ttq曲线随n的提高而下降,只是在最低速度范围才有一小段随n下降而下降的情况,汽油机be 取决于ηit、ηm,由上分析也知汽油机be曲线随n变化的走向。

9-7请根据汽油机和柴油机的特性曲线,综合评价两种发动机的动力性和经济性。

(1)动力性:柴油机能输出较大的转矩汽油机能达到较大的转速,相同转速下柴油机能发出较大的功率。(2)经济性:柴油机经济性优于汽油机且柴油机经济工作范围较宽,且靠近中等负荷,汽油机经济工作区则靠近高负荷区。

忽略此处..

相关推荐
相关主题
热门推荐