文档库 最新最全的文档下载
当前位置:文档库 › 其他重要不等式【学生版】

其他重要不等式【学生版】

其他重要不等式【学生版】
其他重要不等式【学生版】

自招竞赛秋季数学讲义

其他重要不等式

赫尔的不等式,闵可夫斯基不等式,钟开来不等式以及阿贝尔不等式的证明以及应用。

知识梳理、例题精讲

一、 幂平均不等式

幂平均不等式:设12,,,n x x x

R +∈ ,且αβ<,有

1

11212()()n n x x x x x x n n

αααββββα++++++≤ ,等号当且仅当12n x x x === 时取到。

注:调和平均值相当于1α=-,算术平均值相当于1α=,均方根平均值相当于2α=,

几何平均值则则相当于1

120lim(

)n

x x x n

ααααα→+++ ,大小关系由幂平均不等式显而易见。 【例1】 【题目来源】

【题目】设i x R +∈(1,2,,)i n = ,求证:

10111020120

(

)()()()n n n n n n n n x x x x x x x

x x x x x x x -++++≥+++ 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】3 【例2】 【题目来源】

【题目】对于1p ≥,0q >,120n a a a ≥≥≥> ,120n b b b <≤≤≤ 或

120n a a a <≤≤≤ ,120n b b b ≥≥≥> ,证明111

1()()n

p p i n

p q i i n

q q

i i

i i a a

n b

b -+===≥∑∑

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】3 【例3】

【题目来源】第四届CMO

【题目】设12,,,n x x x 都是正数(2)n ≥,且1

1n

i

i x

==∑,

求证:1

1

n

n

i i ==≥

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例4】

【题目来源】2010中国国家集训队测验题

【题目】给定整数2n ≥和正实数a ,正实数12,,n x x x 满足121n x x x = ,求最小的实数

(,)M M n a =,使得1

1

n

i i

M

a s x =≤+-∑

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】5

二、 权方和不等式

权方和不等式:设1212,,,,,,,n n x x x y y y R +∈ ,

若0m >或1m <-,则

11

111()()n

m m i n

i i n

m m

i i

i i x x y

y ++===≥

∑∑∑

若10m -<<,则

11

111()()n

m m i n

i i n

m m

i i

i i x x y

y ++===≤

∑∑∑

【例5】

【题目来源】28届IMO 预选题

【题目】设,,a b c 是一三角形的三条边长,1

()2

s a b c =

++,求证: 22

()3

n n n n a b c b c c a a b -++≥+++,n Z +∈ 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】3

三、 琴生不等式

琴生不等式:若连续函数()f x 在区间I 内下凸(或上凸),则对任意12,,,n x x x I ∈ 及任

意12,,,n R λλλ+

∈ ,且

1

1n

i

i λ

==∑,则有

11221122()()()()n n n n f x x x f x f x f x λλλλλλ+++≤+++

或11221122()()()()n n n n f x x x f x f x f x λλλλλλ+++≥+++

判断函数下凸(上凸)的办法:

(1) 设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内任意两数12,x x 都有

1212()()

(

)()22

x x f x f x f ++≤≥,则称()f x 为(,)a b 上的下(上)凸函数 (2) 当函数()f x 二阶可导时,其凸性可根据二阶导数的符号来确定

即()0f x ''>→()f x 在D 上严格下凸

()0f x ''<→()f x 在D 上严格上凸

注:下凸函数有时也被成为凸函数,上凸函数有时也被成为凹函数。 【例6】 【题目来源】

【题目】设,,x y z 是正实数,且1xyz =,证明:

3333

(1)(1)(1)(1)(1)(1)4

x y z y z x z x y ++≥++++++

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例7】

【题目来源】36届IMO

【题目】设,,a b c 为正实数,且1abc =,求证:3331113

()()()2

a b c b a c c a b ++≥

+++ 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例8】

【题目来源】21届CMO 【题目】实数列{}n a 满足:112a =

,112k k k

a a a +=-+-,1,2,,k n = 。证明不等式: 121212111[

1]()(1)(1)(1)2()n n n n n

a a a n a a a n a a a +++-≤---+++

【证明】

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】5

四、 卡尔松不等式

卡尔松不等式:设0ij a >(1,2,,,1,2,,)i n j m == ,则

111

11

1

()

m

m

n

n

m

m ij

ij

i i j j a a ====≥∑∑∏∏,其中

等号当且仅当

,1,2,1,1

1,2

1,i i i m i i i m

a a a a a a +++=

==

时取得。

这个不等式的直观表述是:对n m ?矩阵,m 列每列数之和的几何平均值大于等于其n 行每行数的几何平均值之和。 【例9】

【题目来源】28届IMO 预选题

【题目】设,,a b c 是一三角形的三条边长,1

()2

s a b c =

++,求证: 22

()3

n n n n a b c b c c a a b -++≥+++,n Z +∈ 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】3 【例10】

【题目来源】

【题目】设i x (1,2,,)i n = 为正数,2n ≥,n N ∈,则

010*********

(

)()()()n n n n n n n n n n x x x x x x x x

x x x x x x x x --++++≥++++ 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例11】

【题目来源】第4届CMO

【题目】设i x R +∈,1i n ≤≤,2n ≥,1

1n

i

i x

==∑

,试证:1

n

n

i =≥

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4

四、杨氏(Young )不等式,赫尔德(Holder )不等式与闵可夫斯基不等式

Young 不等式:设,0p q >,且111p q +=,则对,0x y >有1

1

11

p q x y x y p q

≤+

这个不等式的证明可以考察ln x 的凹凸性,用琴生不等式获得,比较简单这里不再列出。 Holder 不等式:设0i a >,0i b >,(1,2,,)i n = ,0p >,0q >,满足

11

1p q

+=,则111

1

1

()()n n

n

p q p

q i i i

i

i i i a b a

b ===≤∑∑∑,等号成立的条件是p q i i a b λ=

证明:由Young 不等式得

1

1

111111111111p

q

p q p q n n n i i

i i n n n n p q p q i i i i i

i i i i i i a b a b p q p q a b a b =======????????

????????????????≤+=+=??????????????????

??????

∑∑∑∑∑∑∑

等号成立的充要条件是

11

p

q

i i n

n

p q i

i

i i a b a

b

===

∑∑,即p q i i a b λ=,1,2,i n =

闵可夫斯基不等式:对,i i a b R +

∈,1k >,则1111

1

1

(())

()()n

n

n

k k k k

k k i

i

i

i

i i i a b a b ===+≤+∑∑∑,等

号当且仅当

12

12n n

a a a

b b b === 时成立 证明:由赫尔德不等式,得

11111

1

1

1

1

1

1

1

1

()()

()

()(())

()(())

k k n n

n

n

n

n

n

k

k k k k

k k

k k

k k

i

i

i

i

i

i i i i

i i i

i i i i i i i i i a b a a b b a b a a b b a b ----=======+=+++≤+++∑∑∑∑∑∑∑所以111

1

1

1

(())()()n

n

n

k k k k

k k i i i

i

i i i a b a b ===+≤+∑∑∑,当且仅当

12

12n n

a a a

b b b === 时等号成立。

【例12】 【题目来源】

【题目】设0i a >,0i b >,1,2,,i n = ,0m >或1m <-,证明:11

111()()n

m m i n

i i n

m m

i i

i i a a b b ++===≥

∑∑∑,

等号成立当且仅当i i a b λ=,1,2,,i n = 【知识点】其他重要不等式 【适用场合】当堂例题

【难度系数】3 【例12】 【题目来源】

【题目】证明:对正实数,,a b c

1+

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4

五、 钟开来不等式与阿贝尔变换(阿贝尔不等式)

钟开来不等式:设12,,n a a a 和12,,n b b b 是正数,且12n b b b >>> ,若对所有的

1,2,,k n = 有1

1

k

k

j j j j b a ==≤∑∑,则2

21

1

n

n

j

j j j b a ==≤∑∑

证明:由阿贝尔变换公式1

11

1

()n

n k k

n n k k k k k a b

S b S b b -+===+-∑∑,其中k S 为{}k a 的前n 项和

我们有

12111

1

1111

11

()()()()j j j n

n n n n n

j

n j k j j n j k j j j j j j k j j k j b

b b b b b b a a b b a b -++=========+-≤+-=∑∑∑∑∑∑∑∑

又由柯西不等式有

1122221

1

1

()()n

n

n

j j

j

j

j j j a b

a b ===≤∑∑∑

结合上述两式即证明了

221

1

n n

j j

j j b a

==≤∑∑

在钟开莱不等式的证明过程中,我们使用了阿贝尔变换,这在不等式证明中是一个处理部分和条件的利器,在这里我们也将举一些例子来说明它的用法。先来看一个由阿贝尔变换容易证明的阿贝尔不等式。

阿贝尔不等式:设120n b b b ≥≥≥> ,1

t

k

k m a

M =≤

≤∑,1,2,,t n = ,则有:

111

n

k k k b m a b b M =≤≤∑

证明:设1

n

n k

k S a

==

1

1

11111

1

()()n

n n k k

n n k k k n k k k k k a b

S b S b b mb m b b mb --++====+-≥+-=∑∑∑

1

1

1111

1

1

()()n

n n k k

n n k k k n k k k k k a b

S b S b b Mb M b b Mb --++====+-≤+-=∑∑∑ 证毕

【例13】 【题目来源】

【题目】设123,,,a a a 是正实数序列,对所有的1n ≥

满足条件

1

n

j

j a

=≥∑,证明:对任

意的1n ≥有

2

1

111(1)42n

j

j a n =>+++∑ 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】3

下面的几个例题是有关阿贝尔变换的使用的 【例14】 【题目来源】

【题目】设12,,,n a a a R +∈ ,,p q R +∈。记1

12()p p

p p n

S a a a =+++ ,则对于1,2,,n

的任一排列12,,,n i i i ,有:1

0k

q q

n

k i p

p k k

a a S

a

=-≥-∑

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例15】 【题目来源】

【题目】试证:对任意实数x ,有1

[]

[]n

k kx nx k =≤∑,其中[]x 表示不超过x 的最大整数 【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例16】 【题目来源】

【题目】已知0k a ≥,1,2,,k n = ,定义11k k i i A a k ==∑,证明:22

11

4n n

i k k k A a ==≤∑∑

【证明】

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4 【例17】 【题目来源】

【题目】设12,,,n a a a ∈N 且各不相同,求证:212211

122n a a a n n +++≤+++

【知识点】其他重要不等式 【适用场合】当堂例题 【难度系数】4

习题演练

1】

【题目来源】1986年中国国家集训队选拔试题 【题目】设12,,,n x x x 都是实数(3)n ≥,令1

n

i

i p x

==

∑,1i j i j n

q x x ≤<≤=

。求证:

(1)2

(1)20n p q n --≥;(2)||i x p -≤【知识点】其他重要不等式 【适用场合】课后两周习题 【难度系数】3 【练2】 【题目来源】

【题目】设,,a b c 为正实数,求证:3332

221

()8889

b c a a b c a bc b ca c ab ++≥+++++ 【知识点】其他重要不等式 【适用场合】课后两周练习 【难度系数】3 【练3】 【题目来源】

【题目】设i a R

+

∈,01i x ≤≤(1,2,)i n = ,且

1

1n

i

i a

==∑,求证:

12

1121

11n n

i a a a i i n

a x x x x =≤++∑ ,等号当且仅当12n x x x === 时成立。 【知识点】其他重要不等式 【适用场合】课后两周习题 【难度系数】3 【练4】 【题目来源】

【题目】设,,0a b c >,求证:444

a b c a b c abc

++++≤

【知识点】其他重要不等式 【适用场合】课后两周习题 【难度系数】3 【练5】 【题目来源】

【题目】设12,,n a a a 是正实数列,且对所有,1,2,i j = 满足i j i j a a a +≤+,求证:对于正整数n ,有3

2123n n a a a a a n

+

+++≥ 【知识点】其他重要不等式 【适用场合】课后两周习题 【难度系数】4 【练6】

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

不等式学生版

研究性学习资料 不等式解法、 - 3 - 题型1:解含绝对值的不等式 1.解不等式:①|2x+51 |≥21 ;②|4x-3|<21 2.设全集U={x||x -2|>1},A ={x||x +1|≤1},则C U A 等于 ( ) A 、{x|x <-2或x >0} B 、{x|x <1或x >3} C 、{x|x <-2或0<x <1或x >3} D 、{x|11的解集为____。 题型2:解一元二次不等式 1.解下列不等式:(1)02x x 2<--;(2)03x 2x 2>-+-;(3)21212≤-+≤-x x 2.若不等式012>-+bx ax 的解集是}43|{< (2)23(4)(5)(2)0x x x ++-< (3)()()22460x x --≤; 题型4:解分式不等式 (1)解分式不等式时,要注意先移项,使右边化为零,要注意含等号的分式不等式,分母不为零。 (2) 0ax b cx d +>+转化为()()0ax b cx d ++>,也可转化为00ax b cx d +>??+>?或00ax b cx d +?或00ax b cx d +≤??++++的解集是{}2x 1x 3|x >-<<-或,则a=___ 3.不等式 11ax x <-的解集为),2()1,(∞+?-∞则a 的取值范围是( ) A.1 2a > B. 1 2a < C. 1 2a = D. 1a <- 题型5:解含参数的一元二次不等式的问题 含参数的一元二次不等式,若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易因式分解,则可对判别式分类讨论,分类要不重不漏。若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式;其次,对相应的方程的根进行讨论,比较大小,以便写出解集。 1、解关于x 的不等式0)1(2<++-a x a x

不等式的解法(学生、答案)

不等式的解法习题 1.不等式5310x x -++≥的解集是 . 2. 751<-+-x x 的解集是 3. 不等式 0)4)(3)(1)(1(2>-++-x x x x x 的解集是 . 4. 不等式x ->21的解集为A ,不等式 216616x x x -->--的解集为B ,则A 与B 的关系是 A. A B ? B. A B ? C. A B = D. A B =ΦI 5. 不等式x x 21-≥的解集为 A. {}x x |≥1 B. {}x x x |≤>12或 C. {}x x |12≤≤ D. {}x x |12≤< 6. 不等式111+<-x x 的解集是 A. {}3|->x x B. }2234|{<x x 或}12<<-x 7. 不等式33+> +x x x x 的解集是

A. ]0,3(- B. R C. ),0()3,(∞+?--∞ D. )0,3(- 对于任意实数x ,不等式||||x x a ++->12恒成立,则 实数a 的取值范围是____________. 9. 不等式11<-x ax 的解集为), 2()1,(∞+?-∞则a 的取值范围是 A. 21>a B. 21 ++bx ax 的解集是??????<<-3121|x x ,则b a -的值是 A. 10- B. 14- C. 10 D. 14 11. 关于x 的不等式012<-++a ax ax 的解集为R ,则a 的 取值范围为 A. )0,(-∞ B. ),34()0,(+∞?-∞ C. ]0,(-∞ D. ),34(]0,(+∞?-∞ 12.设函数()3f x x a x =-+,其中0a >。

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

初中解不等式组范文

1.(2008年义乌市)不等式组 83x 41 x ≤2, 0的解集在数轴上表示为 答案 A 3(x 2) ≥ x 4, 20. (2008 年宁波市 )解不等式组 x 1 1. 答案: C ,本题主要考查了求不等式组的解以及不等式组的解集的数轴表示,解第一个不等 式可得 x ≥— 2,解第二个不等式得 以下是江苏董耀波的分类 ( 2008 恩施自治州)如果a<b< 答案: C 2x 5 x, 2008 黄冈市)解不等式组 5x 4 3x 2. 答案:解:由( 1)得 x < 5, 由( 2)得 x ≥ 3. ∴不等式组的解集为: 3≤x < 5. ( 2008 襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋 友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分 10 套,那么余 5 套;如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不 足 4 套.问:该小学有多少个班级?奥运福娃共有多少套? 1 A . 0 1 2 B . 1 2 D . 答案:解:解不等式( 1),得 x ≥ 1.解不等式( 2),得 x 3 . 原不等式组的解是 1≤ x 3 . 08 凉山州)不等式组 x ≤ 2 的解集在数轴上表示正确的是( x21 2 0 3 A . 2 0 3 B . 2 0 3 C . 20 D . x < 3,所以原不等式组的解集为— 2≤x < 3,因而选 0, 下列不等式中错误..的是 A. ab > 0 B. a+b< 0 a C. < 1 D. b a-b< 0

答案:解:设该小学有 x 个班,则奥运福娃共有 (10x 5)套. 10x 5 13(x 1) 4, 10x 5 13(x 1). 14 解之,得 x 6 . 3 x 只能取整数, x 5 ,此时 10x 5 55. 答:该小学有 5 个班级,共有奥运福娃 55 套. 提 示:抓住“如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不足 4 套”建立不等式组 (2008苏州) 6月 1日起,某超市开始有.偿.提供可重复使用的三种环保购物袋, 每只售价分 别为 1 元、2元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、5公斤和 8公斤.6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们 选购的 3 只环保购物袋至少..应付给超市 元. 答案: 8 解析:本题分类讨论,可选 2个 3元的,1个 2元的,费用最少为 8元 ( 2008 无锡)不等式 1 x 1 的解集是( ) 2 1 A. x B. x 2 C. x 2 1 D. x 2 2 答案: C 解析: 本题考查不等式解法, 两边同时乘以 -2,得 x 2 ,要注意不等式两边同时乘以一个 负数,不等号要改变方向 . 方法技巧:解不等式的一般步骤是 去分母 ,去括号,移项,合并同类项,系数化为 1 . 解不 等式时要注意: ( 1)去分母时不要漏乘没有分母的项; (2)去括号时不要漏乘; (3)移项要变号; (4)系数化为 1 时如果两边同除以的是负数,要改变不等号的方向。 解析: 本题考查不等式组的解法, 解不等式的一般步骤是先对两个不等式进行编号, 再分别 解不等式,最后根据规则确定不等式组的解集 . 方法技巧:解不等式组的一般步骤是先分别解不等式,再确定两个解集的公共部分。 确定不等式组解集有两种方法: ( 1)数轴表示,在用数轴表示不等式组的解集时要注 意:有等号时用实心圆圈,无等号时用空心圆圈; ( 2)用口诀: 大大取大;小小取小;大 由题意,得 2008 苏州)解不等式组: x 3 0, 2(x 1) 3≥ 3x. 并判断 x 3 是否满足该不等式组. 2 答案:原不等式组的解集是: 3 x ≤1, x 3 满足该不等式组.

基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 .基本不等式 ①公式: -_b ab (a 0,b 0),常用 a b 2. ab 2 2 ■ 2 2 ②升级版: a b a b ab a,b R 2 2 选择顺序:考试中,优先选择原公式,其次是升级版 二?考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定三相等 一正: 指的是注意a,b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时 a b 典型例题: 1 例1?求 y x £;(x 0)的值域 分 x 范围为负,提负号(或使用对钩函数图像处 1 解:y (x ) Q x 0 2x 2x 1 x 2x 得到y ( , &]

1 分析:sinx 的范围是(0,1),不能用基本不等式,当 y 取到最小值时,sinx 的值是.2,但「2不 在范围内 解:令 t sinx , t (0,1) 是对钩函数,禾U 用图像可知: 2 在(0,1)上是单减函数,所以t 3,(注:3是将t 1代入得到) y (3,) 注意:使用基本不等式时,注意 y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式 ,要借助对钩函数图像来求 值域。 例2 ?求y 2x (x 3)的值域 解:y 2x (“添项”,可通过减3再加3,利用基本不等式后可出现定值 ) 2(x 3) 22 即 y 2.2 6, 例3?求 y sin x 2 sin x (0 x )的值域

y t f (p 为常数)型函数,要注意t 的取值范围; 【失误与防范】 1.使用基本不等式求最值,其失误的真正原因 是对其前提“一正、二定、三相等”的忽视. 要利 用基本不等式求最值,这三个条件缺一不可. 2 ?在运用重要不等式时, 要特别注意“拆” “拼” “凑” “正” “定” “等”的条件. 3.连续使用公式时取 等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 【题型2】条件是a b 或ab 为定值,求最值(值域)(简) x 2 2x 1 例 4.求 y (x 2)的值域 分析:先换元,令t x 2 ,t 0,其中x 解:y (t 2)2 2(t 2) 1 t 2 6t 1 t Qt 0 [8, 总之:形如y 2 CX ax b dx f (a 0,c 0)的函数,一般可通过换元法等价变形化为 等技巧,使其满足重要不等式中 例5. 0, y 0且x y 18,则xy 的最大值是 解析: 由于 x 0,y 0,则x y 2 xy ,所以2 xy 18,则xy 的最大值为81 例6. 已知 x,y 为正实数,且满足 4x 3y 12,则xy 的最大值为

对数平均不等式学生

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =>的图象,如图所示,AP BC TU KV ||||||, MN CD x ||||轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二) ()0ln ln b a b a b a ->>-的应用 例 2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.

(三) ()02ln ln a b b a b a b a +->>>-的应用 例3. 设数列{}n a 的通项111123n a n =++++L ,证明:()ln 21n a n <+. (四) ()2011ln ln b a b a b a a b ->>>-+的应用 例4. (2010年湖北)已知函数()()0b f x ax c a x =++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略) (3)证明:()() ()1111ln 11.2321n n n n n ++++>++?+L (五) )0ln ln b a b a b a ->>>-的应用 例5. (2014福建预赛)已知1()ln(1)311f x a x x x =++ +-+. (1)(略) (2)求证:()222223411ln 21411421431414 n n n +++++>+?-?-?-?-L 对一切正整数n 均成立. 强化训练 1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0. (1)(2)(略)(3)证明:()()12ln 212*.21 n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x x λ+=+-+.

基本不等式及其应用

2 第二节基本不等式及其应用 考纲解读 a + b I — 了解基本不等式 ab (a ,b ?R )的证明过程. 2 会用基本不等式解决简单的最大(小)值问题 利用基本不等式证明不等式 . 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多 章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断 ,求取值范围问题? 本专题知识的考查综合性较强 ,解答题一般为较难题目,每年分值为5 8分. 知识点精讲 1.几个重要的不等式 (1)a 2 启 0(a € R ),需 兰 0(a 兰 0), a 3 0(a w R ). ④重要不等式串:-ab < 1 1 2 -+- 厶 a b 调和平均值 乞几何平均值 乞算数平均值 乞平方平均值(注意等号成立的条件). 2?均值定理 已知 x ,y ?二 R X + V c s 2 (1)如果X y = S (定值),则xy 乞( )2 (当且仅当“ x = y ”时取“ 2 4 大值”. (2)如果xy = p (定值),则x ■ y _ 2、, xy 二2 p (当且仅当“ x = y ”时取“ =”)?即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证 . a 2 + b 2 1. 2 . (2)基本不等式:如果 a b a,b R ,则 2 ..ab (当且仅当“ a =b ”时取 ”). 1 特例:a 0,a 2; a (3)其他变形: a b 「 (a, b 同号). b a 2 2 (a +b ) 2 ①a b (沟通两和a b 与两平方和 2 2 (沟通两积ab 与两平方和a 2 b 2的不等关系式) ②ab 4 2 2 a - b 的不等关系式) 2 a + b ③ab 乞( )2 (沟通两积ab 与两和a b 的不等关系式) 2 2 (a ,b R )即 a 2 b ”).即“和为定值,积有最

【精品讲义】人教版 七年级下册寒假同步课程(培优版)11不等式及不等式组的应用.学生版

不等式及不等式组的应用 整数解问题 ?“最多”、“最少”问题 【例1】在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s,引爆员点着导火索后,至少以每秒_____米的速度才能跑到600m或600m以外的安全区域? 【例2】一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上)则小明至少答对了道题. 【例3】现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( ) A.4辆B.5辆C.6辆D.7辆 【例4】初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( ) A.2个B.3个C.4个D.5个 【例5】工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方? 【例6】小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?

【例7】若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像? 【例8】某工人9月份计划生产零件180个,前10天每天平均生产6个,后经改进生产技术,提前2天并且超额完成任务,这个工人改进技术后平均每天至少生产零件多少个? 【例9】八戒去水果店买水果,八戒有45元,买了5斤香蕉,若香蕉每斤3元,西瓜每个8元,请问八戒至多能买几个西瓜? 【例10】在保护地球爱护家园活动中,校团委把一批树苗分给初三⑴班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵). ⑴设初三⑴班有x名同学,则这批树苗有多少棵?(用含x的代数式表示). ⑵初三⑴班至少有多少名同学?最多有多少名

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

琴生不等式【学生版】

自招竞赛 数学讲义 琴生不等式和幂平均不等式 知识定位 不等式问题在高考中较为简单,但是在自招和竞赛中,是非常重要且富于变化的一类问题。在复旦大学近三年自主招生试题中,不等式题目占12%,其中绝大多数涉及到不等式的证明;交大华约中,不等式部分通常占10%-15%,其中还会涉及到一些考纲之外的特殊不等式。 本节介绍了琴生不等式以及它的一些简单推论诸如加权琴生和幂平均不等式,希望借助这些补充知识给同学们解决不等式问题提供一个思考的方向。 知识梳理 琴生不等式 1. 凸函数的定义: 设连续函数()f x 的定义域为[],a b ,对于区间[],a b 内任意两点12,x x ,都有 1212()() ( )22 x x f x f x f ++≤,则称()f x 为[],a b 上的下凸(凸)函数; 反之,若有1212()() ()22 x x f x f x f ++≥,则称()f x 为[],a b 上的上凸(凹)函数。 常见的下凸(凸)函数有x y a =,[0,)2 π上的tan y x =,R + 上的2y x =,3y x =等 常见的上凸(凹)函数有[0,)2π上的sin y x =,cos y x =,R + 上的ln y x =等 2. 琴生(Jensen)不等式 若()f x 为[],a b 上的下凸(凸)函数,则1212()()() ()n n x x x f x f x f x f n n ++???+++???+≤ 上式等号在12...n x x x ===时取到 反之显然:若()f x 为[],a b 上的上凸(凹)函数,则上式不等号反向 琴生(Jensen)不等式证明(数学归纳): 1)2n =时,由下凸(凸)函数性质知结论成立; 2)假设n k =时命题成立,即1212()()()( )k k x x x f x f x f x f k k ++???+++???+≤ 那么当1n k =+时,设121 11 k k x x x A k ++++???+=+,

基本不等式经典例题学生用

基本不等式 知识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11 1 22-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2 a b a b a b b a b a b a +≥+≥+≤即或 ( 当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(2 2 2b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+1 2x 2 (2)y =x +1 x 技巧一:凑项 例 已知5 4x <,求函数1 4245y x x =-+-的最大值。 技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。 变式:设23 0<-+的值域。 技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a f x x x =+的单调性。 例:求函数224y x =+的值域。

不等式最最简单应用题习题

一. 解下列不等式,并在数轴上表示出它们的解集. 1.8223-<+x x 2. )1(5)32(2+<+x x 3.x x 4923+≥- 4 . 223125+<-+x x 5. 3 1222+≥+x x 6. )2(3)]2(2[3-->--x x x x 二.不等式应用题 根据实际问题列不等式并求解,主要有以下环节: ⑴ 审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意 的值;⑹作答。 2.某车间有20名工人,要求一天加工120个零件,问:平均每人一天至少加工多少个零件? 3. 某车间有20名工人,要求一天加工113个零件,问:平均每人一天至少加工多少个零件? 5. 一个工程队要求在8天内至少要挖土600m 3,求:平均每天至少要挖土多少m 3? 6. 一个工程队原定在8天内至少要挖土600m 3,在前两天一共完成了150 m 3,由于整个工程 调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3? 7. 某种商品进价150元,标价200元,但销量较小。为了促销,商场决定打折销售,若为 了保证利润率不底于20%,那么至多打几折?如果设商场将该商品打x 折,则可列出不等式为: 。 8. 甲现有存款600元,乙现有存款2000元,从本月起甲每月存500元,乙每月存200元。 问几个月后甲的存款开始超过乙的存款额?

9. 某市科学知识竞赛的预赛共20道选择题,答对一道得10分,答错或不答扣5分,总分 不少于80分者就通过了预赛而进入决赛,若小王通过了预赛,那么他至少答对几道题? 10.某公园门票的价格是每位20元,20人以上(含20人)的团体票8折优惠.现有18位游客 春游,如果他们买20人的团体票,那么比买普通票便宜多少钱?至少要有多少人去该公园,买团体票反而合算呢? 11,有一个两位数,其个位数字比十位数字大2,如果这个数大于20小于40,求这个两位数.

相关文档
相关文档 最新文档