文档库 最新最全的文档下载
当前位置:文档库 › DW01的锂电池保护电路

DW01的锂电池保护电路

DW01的锂电池保护电路
DW01的锂电池保护电路

DW01用于的锂电池保护电路

一、描述

DW01+是一个锂电池保护电路,为避免锂电池因过充电、过放电、电流过大导致电池寿命缩短或电池被损坏而设计的。它具有高精确度的电压检测与时间延迟电路。

二、主要特点

1:工作电流低;

2:过充检测4.3V,过充释放4.05V;

3:过放检测2.5V,过放释放3.0V;

4:过流检测0.15V,短路电流检测1.0V;

5:充电器检测;

6:过电流保护复位电阻;

7:工作电压范围广;

8:小封装。

三:内部框图

三、管脚排列图

四、功能描述

1正常条件

如果VODL>VDD>VOCU,并且VCH

型应用电路图)。此时充电和放电均可以正常进行。

2过充电状态

当从正常状态进入充电状态时,可以通过VDD检测到电池电压。当电池电压进入到这充电状态时,VDD电压大于VOCU,迟延时间超过TOC,M2关闭。

3释放过充电状态

进入过记电状态后,要解除过记电状态,进入正常状态,有两种方法。

●如果电池自我放电,并且VDD

●在移去充电器,连接负载后,如果VOCRVOI1,M2开

启,返回到正常模式。

4过放电检测

当由正常状态进入放电状态时,可以通过VDD检测到电池电压。当电池电压进入过放电状态时,VDD电压小于VODL,迟延时间超过TOD,则M1关闭。此时CSI管脚通过内部电阻RCSID拉到VDD。如果VCSI>VOI2,则电路进入断电模式(电流小于0.3uA)。

5释放断电模式

当电池在断电模式时,若连接入一个充电器,并且此时VCHVODR,M1开启并返回到正常模式。

6充电检测

如果在断电模式有一个充电器连接电池,电压将变为VCSIVODL。

M1开启并返回到正常模式。

7异常充电状态

如果在正常模式下,充电器连接在电池上,若VCSI

8过电流/短路电流检测

在正常模式下,当放电电流太大时,由CSI管脚检测到电压大于VOIX(VIO1或VIO2),并且迟延大于TOIX(TIO1或TIO2),则代表过电流(短路)状态。M1关闭,CSI通过内部电阻RCSIS拉到VSS。

9释放过电流/短路电流状态

当保护电路保持在过电流/短路电流状态时,移去负载或介于VBA T+和VBAT-之间的阻抗大于500KΩ,并且VCSI

注:当电池第一次接上保护电路时,这个电路可能不会进入正常模式,此时无法放电。如果产生这种现象,使CSI管脚电压等于VSS电压(将CSI与VSS短路或连接充电器),就可以进入正常模式。

五:典型应用电路图

简易锂电池保护IC 测试电路的设计

简易锂电池保护IC测试电路的设计 作者:中国地质大学蔡欢欢 由于锂电池的体积密度、能量密 度高,并有高达4.2V的单节电池 电压,因此在手机、PDA和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B 的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS 提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

锂电池保护IC

由于锂电池的体积密度、能量密度高,并有高达4.2V的单节电池电压,因此在手机、PDA 和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

电池保护板工作原理

锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,常用的保护IC有8261,DW01+,CS213,GEM5018等,其中精工的8261系列精度更好,当然价钱也更贵。后面几种都是台湾出的,国内次级市场基本都用DW01+和CS213了,下面以DW01+ 配MOS管8205A (8pin)进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新

接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×

锂电池保护电路

锂电池保护电路 锂电池过充电,过放电,过流及短路保护电路 下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个 MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能. 锂电池保护工作原理: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

锂电池保护电路原理分析

锂离子电池保护电路原理分析 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。 与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

电池保护板工作原来

锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压 (2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以D W01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使

电池保护电路工作原理

电池保护电路工作原理 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态

锂离子电池以及保护电路

锂离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精度、保护IC功耗低、高耐压以及零伏可充电等特性.本文详细介绍了这三种保护电路的原理、新功能和特性要 求. 近年来,PDA、数字相机、手机、便携式音频设备和蓝牙设备等越来越多的产品采用锂电池作为主要电源.锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化.针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池. 由于锂离子电池能量密度高,因此难以确保电池的安全性.在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而发生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,从而降低可充电次数.

保护电路图 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制M

手机锂电池保护板相关知识1【最新】

保护板初步知识 1、保护板的由来 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现 . 2、主要保护能能 过充电保护功能过放电保护功能 过电流保护电流包括过流1 过流2 短路保护 3、保护板的组成和元件: 保护板通常包括控制IC、开关MOS、储存电容、识别电阻及辅助器件NTC/PTC等组成。其中控制IC在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关断开,保护电芯的安全。 PTC是正温度系数热敏电阻,NTC是负温度系数热敏电阻.PTC与NTC在应用上有不同的地方是:PTC在电路中可以做过电流保护,NTC主要是开关浪涌电流的抑制.他们也有共同的作用就是温度感测和侦测试 4、原理图及元件介绍 IC 它由精确的比较器来获得保护可靠的保护参数,主要参数: -过充电压 -过充恢复电压 -过放电压 -过放恢复电压 -过流检测电压 -短路保护电压 -耗电 MOSFET 串在主充放电回路中,担当高速开关,执行保护动作。我司所用的都是串在B- P-间。MOSFET包含三个电极:漏极(D)源极(S)栅极(G);当G极为高电平时,D 极与S极导通,当G极为低电平时,D极与S极断开。主要参数: -内阻 -耐电流 -耐电压 -内部是否连通 -封装 FUSE PTC :二次保护器件。 原理图:

正极:B+ FUSE P+ 负极:B- MOS(2、3)脚 MOS(1)脚接 MOS(8)脚 MOS(5、6)脚夫 P- 5、功能介绍: 通常状态:当电芯电压在2。5V---4。2V之间,IC的充电控制脚(第1脚)和放电管控制脚(第3脚)同时处于高电平,充电MOS、放电MOS同时打开,B-与P-连通,保护板有输出电压,能正常允放电. -过放状态:当电池接上手机等负载后,电芯电压渐渐降低,同时IC同部通过R1电阻实时监测电芯电压,当电芯电压降到IC的过放保护电压时,IC放电控制脚(第1脚)输出电压为0V,即低电平,放电MOS关闭,无输出电压。 - 过充状态:当电池通过充电器充电时,随着充电时间的增加,电芯电压越来越高,当电芯电压升高到过充保护电压时,IC将认为电芯处于过充电电压状态,IC的充电控制脚(第3脚)输出为低电平,即0V;此时充电MOS管关闭,B-与P-处于断开状态,充电回路切断,充电停止。保护板处于过充状态并一直保持。等到P+ P-之间接上负载后,因此时虽然充电管处于关闭状态,但其内部的二极管的正方向与放电回路的方向相同,故放电回路可以放电,当电芯电压被放低至过充电恢复电压以下时,充电管又导通,电芯的B-与保护板的P-又重新接上,电芯又能正常的充放电。 -过流及短路保护:当电池的负载电流超过IC的过流保护值时,IC的放电控制脚(第1脚)输出低电平,MOS管关闭。 3、 常见的问题点: -内阻大:决定电池内阻的器件有 PCB的线阻,MOS管的导通内阻, FUSE的内阻,电芯内阻及镍片的电阻。 解决方法:首先判断电芯内阻(一般要求小于60mΩ)是否超过标准,其次是测试保护板内阻(一般要求小于60mΩ)、FUSE内阻(一般要求小于15mΩ),最后检查镍片及接触电阻(一般要求小于15mΩ) -无电压无内阻(不能充放电等):无电压无内阻通常是充电MOSFET关闭或放电MOSFET关闭或充放电MOS同时关闭,导致MOS管关闭的原因有 IC 不能正常工作或MOS管自身损坏或MOS连锡,虚焊。解决方法:先检查IC第5脚电压电否正常(电压与电芯电压相同),第6脚与B-是否连好,电芯电压是否正常,R1电阻是阻值是否正确,R1是否虚焊。其次检查IC的充电控制脚(3脚)和放电控制脚(5脚)电压是否正确(在通常的状态,IC的1、3脚都是高电平,等于电芯电压)。再次检查MOS是否短路,虚焊。 无ID(热敏):ID电阻一端连接保护板的P-端子,一端连接保接保护板的ID端子,若有此类问题时,可首先确认线路是否导通,其次可确认电阻本身是否不良或是否连锡。 短路保护、过流保护不良:可先检查R2是否虚焊,IC的过流检测端子(IC的第2脚)是否虚焊,若无以上两种不良,那么应是IC本身损坏。

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

8205s锂电池保护板工作原理

8205S锂电池保护板工作原理 产品描述:锂电保护场效应管(MOSFET) 8205A (GM8205A)规格书(PDF) 8205A 厂商:台湾进口Gem-mirco 8205A 封装:TSSOP-8 8205A 内阻:19mΩ8205A 电 压:20V 电流:6A 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A 内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。

4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 5.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30mU 03a9共约为 60mU 03a9,加在G极上的电 压实际上是直接控制每个开关 管的导通电阻的大小当G极电 压大于1V时,开关管的导通内 阻很小(几十毫欧),相当于开关 闭合,当G极电压小于0.7V以 下时,开关管的导通内阻很大 (几MΩ),相当于开关断开。电 压UA就是8205A的导通内阻 与放电电流产生的电压,负载电 流增大则UA必然增大,因 UA0.006L×IUA又称为8205A 的管压降,UA可以简接表明放 电电流的大小。上升到0.2V时 便认为负载电流到达了极限值, 于是停止第1脚的输出电压,使第1脚电压变为0V、8205A内的放电控制管关闭,切断电芯的放电回路,将关断放电控制管。换言之DW01 允许输出的最大电流是3.3A,实现了过电流保护。 6. 短路保护控制过程: 短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到10A以上,保护板立即进行过电流保护。

S 和DW A主流锂电池保护板原理图说明

S8261和DW01-8205A主流锂电池保护板原理图说明 锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1)?封装 2)?过充电压 3)?过充释放电压 4)?过放电压 5)?过放释放电压 6)?耐压 (2) MOSFET主要参数 1) N沟、P沟 2)?内阻 3)?封装(TSSOP8 <简称薄片>?、SOP8<简称厚片>、SOT23-6等) 4)?耐电流 5)?耐电压 6)?内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以DW01?配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在至之间时,DW01?的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01?的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01?的电压,故均处于导通状态,即两个

电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01?内部将 通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01?将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P?与P-间接上充电电压后,DW01?经B-检测到充电电压后便立即停止过放电状态,重新在第1 脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到时,DW01?将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P?与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于时,DW01?停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、

锂电池过充电-过放-短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电解液的传送

(经典)锂电池过充电_过放_短路保护电路详解

(经典)锂电池过充电_过放_短路保护电路详解 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状

4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响?

相关文档