文档库 最新最全的文档下载
当前位置:文档库 › 概率统计第四章答案

概率统计第四章答案

概率统计第四章答案
概率统计第四章答案

概率论与数理统计作业

班级 姓名 学号 任课教师

第四章 随机变量的数字特征

教学要求:

一、理解随机变量数学期望和方差的概念,掌握数学期望和方差的性质与计算方法;

二、了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望及方差;

三、了解矩、协方差、相关系数的概念及性质,并会计算.

重点:数学期望与方差的概念和性质. 难点:相关系数.

练习一 一维随机变量的数字特征

1. 填空题

(1)将三个球随机地放到5个盒子中去,则有球的盒子数的数学期望为 61/25 .

(2)若随机变量X 的分布律{})2,1,0(!

===k k B A k X P k

且a X E =)(,则a e A -=,a B =.

(3)设随机变量),(~p n B X ,且45.0)(,5.0)(==X D X E ,则5=n ,1.0=p . (4)已知连续型随机变量X 的概率密度为)(,1

)(1

22

+∞<<-∞=

-+-x e x f x x

π

则=)(X E 1 ,=)(X D 1/ 2 .

(5)设随机变量X 表示10次重复独立射击命中目标的次数,且每次射击命中目标的概率为0.4,则=)(2X E ()()[]4.62

=+X E X D .

(6)设随机变量X 服从参数为λ)0(>λ的泊松分布,且已知1)]2)(1[(=--X X E ,则

=λ 1 .

2.在射击比赛中,每人射击4次,每次一发子弹,规定4弹全都不中得0分,只中一弹得15分,中2弹得30分,中3弹得55分,中4弹得100分.某人每次射击的命中率为0.6.求他期望得多少分?

解:设X 表示射击4次得的分数,则X 的所有可能取值为.1005530150;;;;

且 ()()()0256.06.016.004

04

=-?==C X P , ()()()1536.06.016.0153

1

1

4=-==C X P , ()()()3456.06.016.0302

2

2

4

=-==C X P , ()()()3456.06.016.0551

3

34=-==C X P ,

()()()1296.06.016.01000

4

4

4

=-==C X P , 所以

()64.441296.01003456.0553456.0301536.0150256.00=?+?+?+?+?=X E

3.设随机变量X 的概率密度为()??

???

≥<-=.

1,0,1,112x x x

x f π求)(),(X D X E .

解: ()()0111

1

1

21

12=????

???

?--

=-==--∞

+∞-??ππx dx x x dx x xf X E 由于

()()[]dx x x x dx x x dx x f x X E ??

?-+--=

-==

-+∞∞

-1

21

21

1

2

22212

12

1ππ

π

2

14

2

0=

?

+=π

π

()()

()[]2

12

2=

-=X E X E X D 4.已知随机变量X 的概率分布律为:

()

53)(),(),(22+X E X D X E X E 及求.

解: ()()2.03.023.004.021-=?+?+?-==

∑+∞

=i i

i

p x X E ;

()()8.23.023.004.02222

1

22

=?+?+?-==∑+∞

=i i i

p x

X

E ;

()()()[]76.22

2=-=X E X E X D ;

()

()

4.1358.23535322=+?=+=+X E X E .

5.设随机变量X 的概率密度为()???≤>=-;

0,0,

0,x x e x f x 求(1)2Y X =的期望;(2)

x e Y 2-=的期望.

解:(1) ()()()()[]

212200

=+-===

++∞

-+∞

∞-?

?x e dx xe dx x f x g Y E x

x (2) ()()()31310

30

2=???

???-===

+∞

-+∞

--+∞

-??x x

x

e dx e e

dx x f x g Y E

6.对球的直径做近似测量,设其值均匀分布在区间),(b a 内,求球的体积的均值. 解:设球的直径为X ,球的体积为V ,则24

1

X V π=

,且 ()?????<<-=其它;,

0,1b x a a b x f

于是

()()b a dx a b x V E b

a

+=-?=?ππ41

1412

练习二 二维随机变量的数字特征

1.填空题

(1)设随机变量Y X ,相互独立,方差分别为6和3,则=-)2(Y X D 27 .

(2)设随机变量Y X ,相互独立,0)()(==Y E X E ,1)()(==Y D X D ,则=+])[(2

Y X E

2 .

(3)设随机变量Y X ,相互独立,且)1,0(~),2,1(~N Y N X , 则随机变量3

2+-=Y X Z 的概率密度)(z f Z =

()2

3253

21

?--

?x e

π.

(4)设随机变量X 与Y 相互独立,且]2,0[~U X ,Y 服从参数为3的指数分布,则

=

)(XY E 3

1. (5)设二维随机变量Y X ,的相关系数为5.0=XY ρ,X 与Y 的方差分别为4)(=X D ,

9)(=Y D ,则=-)32(Y X D 97 .

2.设随机变量),(Y X 的概率密度为()???≤≤≤=其它;,

0,

10,12,2x y y y x f 求),(),(Y E X E

)(),(),(XY E Y D X D 和)(22Y X E +.

解: ()?

??

=

=?=1

41

02

54412dx x dy y x dx X E x

; ()???=

=?=10

1

42

5

3312x dx x dy y y dx Y E ()()

()[]

7522516454121

52

100222

2=

-=???

??-?=-=???dx x dy y x dx X E X E X D x

()()()[]

251259512531251

2

1

00222

2

=-=???

??-?=-=???dx x dy y y dx Y E Y

E Y D x

()???=

=?=1

50

2

1

2

1312dx x dy y xy dx XY E x

; ()()()

15

452322222=-=

+=+Y E X E Y X E 。

3.设随机变量Y X ,相互独立,概率密度分别为

()??

?≤≤=其它;,0,

10,2x x x f X ???≤>=-;

5,

0,

5,)(5y y e y f y Y 求)(XY E .

解:由于随机变量Y X ,相互独立, 则

()()()()()dy ye dx x dy y yf dx x xf Y E X E XY E y

Y X ????+∞

-+∞∞

-+∞

-?=?=

=10

5

52

2

()[]

463

2

13

2

5

5=?=

+-=

+∞

-y e y .

4. 随机变量n X X X ,,,21 相互独立,并服从同一分布,数学期望为μ,方差为2

σ,

求这些随机变量的算术平均值∑==n

i i X n X 1

1的数学期望及方差.

解:由于随机变量n X X X ,,,21 相互独立,且

()μ=i X E , ()2σ=X D ,,3,2,1=i …,

于是由性质得

()

()μμ=?==??? ??=∑∑==n n X E n X n E X E n

i i n i i 1111

1,

()

()n n n X D n

X n D X D n

i i n i i 22

21

2

111

1σσ=?==??? ??=∑∑==.

5.设连续型随机变量Y X ,相互独立,且均服从),2

1

,0(N 求)(Y X E -.

解:设Y X Z -=,由于Y X ,相互独立,且均服从),2

1,0(N 则Z 也服从正态分布,且

()()()(),0=-=-=Y E X E Y X E Z E ()()(),12

1

21=+=

+=Y D X D Z D 即Z ~()1,0N ,于是

()()πππ

π

2

2222210

2

2

2

2

22=???????

?-==

==-+∞

-∞

+--∞

+∞

-??

z

z z e

dz ze

dz e

z

Z E Y X E . 综合练习题

1.甲乙两台机床生产同一种零件,在一天生产中的次品数分别记为Y X ,,已知Y X ,的

解:由于

()11.032.023.014.00=?+?+?+?=X E , ()9.0032.025.013.00=?+?+?+?=Y E

则甲机床生产中的次品数的均值大于乙机床生产中的次品数,所以乙机床较好。

2.已知随机变量X 的概率密度为)(,2

1)(+∞<<-∞=

-x e x f x

,求)(X E 及 )(X D .

解: ()()dx xe dx e x dx e x dx x xf X E x x x ????+∞

-∞--+∞∞

-+∞∞-+=?==0

021

2121

()[]()[]

02

1

2112112100=+-=+-+-=

+∞-∞-x e x e x x ,

()()

()[]02122

2-?=

-=-+∞

-?dx e x X E X E X D x ()[]

22

221

20

20

2=++-=?=∞

+-+∞

-?x x e dx e x x x .

3.某人每次射击命中目标的概率都是0.8,现连续向一目标射击,直到第一次命中目标为止,求射击次数的期望.

解:设射击次数为X ,则X 的分布律为

()()

p p k X P k 1

1--==,,3,2,1=k …;其中8.0=p .

于是

()()

=

-=-∞

=∑p p k X E k k 1

1

125.18

.011==p . (提示:利用求幂级数

∑∞

=-0

1

n n nx

的和函数的方法求数项级数的和)

4.设随机变量Y X ,的概率密度为()()?????≤≤≤≤+=其它,,

0,

20,20,81

,y x y x y x f

求)(),(),(),(Y D X D Y E X E ,),(Y X Cov 和XY ρ.

解: ()()67818120202

020

2

2

02

0=???? ??+=+?=??????y d y x d x dy dx x dy y x x dx X E ; ()()67818120

20202

02

2

020=???

? ??+=+?=??????dy y dx ydy xdx dy y x y dx Y E ; ()()()[]

()3611673567812

22

2

202

2

=??? ??-=???

??-+?=-=??dy y x x dx X E X

E X D ;

()()

()[]

()3611673567812

2

2

02

22

2=??? ??-=???

??-+?=-=??dy y x y dx Y E Y E Y D ;

()()()()Y E X E XY E Y X Cov -=,

()36

1364934676781

2

2

-=-=?-+?

=??dy y x xy dx ;

()()()

111

36

11361

,-=-

==

Y D X D Y X Cov XY ρ.

5.设4.0,36)(,25)(===XY Y D X D ρ,求)(Y X D +和)(Y X D -. 解:由于

()()()()Y X Cov Y D X D Y X D ,2++=+ ()()()()Y X Cov Y D X D Y X D ,2-+=-

()()()Y D X D Y X Cov XY ?=ρ,

由条件知 ()5=X D ,

()6=Y D , 4.0=XY ρ

所以

()8.114.0265=?++=+Y X D , ()2.104.0265=?-+=-Y X D .

6. 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日无故障,可获利润10万元,发生1次故障,仍可获5万元,发生2次故障获利0万元,发生3次或3次以上故障就要亏损2万元,求一周内期望利润是多少? 解:设这部机器一周内有X 天发生故障,这一周的利润为Y 万元。由题意知X ~

()2.0,5B ,且

?????

??≥-====;

3,2,2,0,1,5,0,10X X X X Y 若若若若

所以

()()()()()()322015010≥?-+=?+=?+=?=X P X P X P X P Y E

()()()()()()3

2

254

1

1

55

05

2.012.002.012.052.012.010-?+-?+-?=C C C

()()()()()()()[

]0

5

551

4

452

3

3

5

2.012.02.012.02.012.02-+-+--+C C C

209.5=.

7. 市场上对某商品需求量为)4000,2000

(~U X ,每售出1吨可得3万元,若售不出去而囤积在仓库中则每吨保养费1万元,问需要组织多少货源,才能使收益最大?

解:设商品的货源量为a , 销售商品的收益为Y 万元,依题意有

()?????≤≤=其它;,

0,40002000,2000

1x x f

()()??

?<-≥=???

<--≥==;

,4,,3.,3,,3a X a X a X a a X X a X a X a X g Y 于是

()()()()dx a dx a x dx x g x f Y E a a

????+?-==+∞

-400020002000

1

3200014

()

6210470001000

1

?-+-=

a a , 由于

()[]()7000021000

1

+-=

'a Y E a 令

()[]0='a Y E ,得3500=a ,且()[]02//

3500<-==a

Y E ,所以当

3500=a 时,()Y E 最大。

8.设X ,Y 相互独立,证明:)()]([)()]([)()()(22X D Y E Y D X E Y D X D XY D ++=. 证:因为 ()()[]

()[]()

()[]2

222

2

XY E Y X E XY E XY E XY D -=-=

由于X ,Y 相互独立,则

()()()Y E X E XY E =, ()()()

2222Y E X E Y X E =

又 ()()

()[]2

2X E X E X D -=, ()()

()[]2

2Y E Y E Y D -=,

于是 ()()()

()[]()[]2

2

22Y E X E Y E X E XY D -=

()()[]{}()()[]{}

()[]()[]2

2

2

2

Y E X E Y E Y D X E X D -+?+=

)()]([)()]([)()(22X D Y E Y D X E Y D X D ++=.

9.若随机变量),(Y X 的联合分布律为:

试证X 与Y 既独立不也不相关. 证:

X

由于j i ij p p p ???≠,如328881001=?=?≠=

??p p p ,所以X 与Y 不相互独立。 又 ()()0831820831=?+?+?-=X E , ()()083

1820831=?+?+?-=Y E

XY 的所有可能取值为1,0,1-,且

()()(){}4

1

81811,11,11=+=

-===-==-=Y X Y X P XY P ()()()()()(){}

0,11,00,01,00,10======-===-===Y X Y X Y X Y X Y X P XY P 2

1818108181=++++=

, ()()(){}4

1

81811,11,11=+=

==-=-===Y X Y X P XY P , 即XY 的分布律为:

()()04

1

1210411=?+?+?

-=XY E , 于是

()()()

()()()()()

()()

0000,=?-=

-=

=

Y D X D Y D X D Y E X E XY E Y D X D Y X Cov XY ρ,

所以X 与Y 不相关。

概率论与数理统计第四版第二章习题答案

概率论与数理统计 第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 于是其分布律为 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ??

概率论与数理统计练习题第四章答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1 . 设 随 机 变 量 X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为 910()9 00 x e x f x x -?≥?=??

*5.设随机变量(,1,2,,)ij X i j n =L 独立且同分布,()2ij E X =,则行列式 11121212221 2n n n n nn X X X X X X Y X X X = L L M M M L 的数学期望() E Y = 0 (考研题 1999) 三、计算题: 1.袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X 表示取出的3个球中最大编号,求().E X 2.设随机变量2 ~(,)X N μσ,求(||).E X μ - 3.设随机变量X 的密度函数为0()0 x e x f x x -?≥=?

中北大学概率统计习题册第四章完整答案(详解)资料

中北大学概率统计习题册第四章完整答案 (详解)

1. 填空 1)设~(,)X B n p ,则EX =np ,DX = npq 。 2)设~()X P λ,则EX =λ, DX =λ。 3)设~()X E λ,则EX = 1λ ,DX = 2 1 λ。 4)设[]~,X U a b ,则EX = 2 a b +,DX = () 2 12 b a -。 5)设2~(,)X N μσ,则EX =μ, DX =2σ。 6)设(,)~(1,1;2,9;0.5)X Y N ,则 EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。 7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000, 625N 。 2. 已知在一定工序下,生产某种产品的次品率0.001。今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。 解:设X 表示5000件产品中的次品数,则 ()~5000,0.001X B 。 50000.0015λ=?=,则 ()()()2100P X P X P X ≥=-=-= 5000499910.99950000.0010.999=--?? 0155 5510!1! e e --≈--10.006740.033690.95957=--= 注:实际上 5000499910.99950.9990.95964--?= 3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。 解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且 {}7 07e 0.999! k N k P X N k -=≤=≥∑ 查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。 解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U , 52EX = ;2512 DX =。 5.设(){ }3.02010,,10~2=<

概率论第二章练习答案

《概率论》第二章练习答案 一、填空题: ”2x c S 1 1.设随机变量X的密度函数为f(x)= 则用丫表示对X的3次独立重复的 0 其匕 '- 观察中事件(X< -)出现的次数,则P (丫= 2)= ___________________ 。 2 2.设连续型随机变量的概率密度函数为: ax+b 0

4. 设为随机变量,E =3, E 2=11,则 E (4 10) = 4E TO =22 5. 已知X的密度为(x)二ax?"b Y 01 0 . x :: 1 1 1 (x ) =P(X?),则 3 3 6. 7. 1 1 (X〈一)= P ( X〉一)一 1 (ax b)dxjQx b) 联立解得: dx 若f(x)为连续型随机变量X的分布密度,则J[f(x)dx= ________ 1 ——'J 设连续型随机变量汕分布函数F(x)=x2/:, 丨1, x :: 0 0 岂 x ::: 1,则 P ( E =0.8 ) = _0_; P(0.2 :::: 6) = 0.99 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度:(x)二 x _100 x2,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不0(其他) 需要更换的概率为_____ 厂100 8/27 _________ x> 100

第二章_概率论解析答案习题解答

第二章 随机变量及其分布 I 教学基本要求 1、了解随机变量的概念以及它与事件的联系; 2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质; 3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用; 4、会求简单随机变量函数的分布. II 习题解答 A 组 1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为 1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω= 以X 表示两个产品中的合格品数. (1) 写出X 与样本点之间的对应关系; (2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→; (2) 1 2(1)(1)2(1)p X C p p p p ==-=-. 2、下列函数是否是某个随机变量的分布函数? (1) 021()2021 x F x x x <-??? =-≤

求常数A 及(13)p X <≤? 解:由()1F +∞=和lim (1)x x A e A -→+∞ -=得 1A =; (13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-. 4、设随机变量X 的分布函数为 2 00()0111 x F x Ax x x ≤??=<≤??>? 求常数A 及(0.50.8)p X <≤? 解:由(10)(1)F F +=得 1A =; (0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=. 5、设随机变量X 的分布列为 ()a p X k N == (1,2,,)k N =L 求常数a ? 解:由 1 1i i p +∞ ==∑得 1 1N k a N ==∑ 1a ?=. 6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、 5,且 0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、321090 5100 (3)C C p X C ==、 4110905100(4)C C p X C ==、50 1090 5100 (5)C C p X C == 于是X 的分布列为

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

第四章习题解答 1.设随机变量X ~B (30, 6 1),则E (X )=( D ). A.6 1 ; B. 65; C.6 25; D.5. 1 ()3056 E X np ==?= 2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( A ). A. 3; B. 6; C. 10; D. 12. ()1()3E X E Y == 因为随机变量X 和Y 相互独立所以()()()3E XY E X E Y == 3.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X 2的数学期望E (X 2)=____18.4______. (10,0.4)()4() 2.4X B E X D X ==: 22()(())()18.4E X E X D X =+= 4.某射手有3发子弹,射一次命中的概率为3 2,如果命中了就停止射击,否则一直射到子弹用尽.设表示X 耗用的子弹数.求E (X ). 解: X 1 2 3 P 2/3 2/9 1/9 22113()233999 E X = +?+?= 5.设X 的概率密度函数为 , 01()2,120,x x f x x x ≤≤?? =-<≤??? 其它 求2() ,().E X E X 解:12 20 1 ()()(2)1E X xf x dx x dx x x dx +∞-∞ ==+-=? ??, 12 22320 1 7 ()()(2)6 E X x f x dx x dx x x dx +∞ -∞ ==+-= ? ??.

概率论与数理统计第二章答案

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

(完整版)概率论第四章答案

习题4-1 1. 设随机变量X 求()E X ;E (2-3 X ); 2()E X ;2(35)E X +. 解 由定义和数学期望的性质知 2.03.023.004.0)2()(-=?+?+?-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-?-=; 8.23.023.004.0)2()(2222=?+?+?-=X E ; 4.1358.235)(3)53(22=+?=+=+X E X E . 2. 设随机变量X 的概率密度为 ,0,()0, 0.x e x f x x -?>?=???≤ 求X e Z X Y 22-==和的数学期望. 解 ()(2)2()22x E Y E X E X x x ∞ -====?e d , 220 1 ()()3 X x x E Z E e e e dx ∞ ---==?= ?. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第 55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60] 上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为 1 ,060,()600, .x f x =?????≤≤其它 记Y 为游客等候电梯的时间,则 5,05,25,525,()55,2555,65, 5560. X X X X Y g X X X X X -<-<==-<-

概率论第三版第2章答案详解

两人各投中两次的概率为: P(A ^ A 2B 1B 2^0.0784O 所以: 作业题解: 2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和 ,求X 的概率分布,并验 证其满足(222) 式. 解: Q Q Q Q 根据 v P(X = k) =1,得 k =0 故 a 二 e 「1 2.3 甲、乙两人投篮时,命中率分别为0.7和0.4 ,今甲、乙各投篮两次,求下列事件的 概率: (1)两人投中的次数相同;(2) 甲比乙投中的次数多. 解:分别用A ,B j (i =1,2)表示甲乙第一、二次投中,则 P(A) = P(A 2)=0.7,P(A) = P(A 2)=0.3,P(B 1)= P(B 2)=0.4,P(B 1)= P(D) =0.6, 两人两次都未投中的概率为: P(A A 2 B^! B 2) = 0.3 0.3 0.6 0.6二0.0324, 两人各投中一次的概率为: 并且,P(X P(X P(X P(X = 12) = 1 36 =10) 煤 =8) 嗥; =k)=( =2) =P(X =4) =P(X =6) =P(X 2.2 2 P(X =3) =P(X =11)= ; 36 4 P(X =5) =P(X =9)= p (X =7)」。 36 k =2,3,4,5,6,7,8,9,10,11,12) P{X =k}二ae°,k =1,2…,试确定常数 解: k ae ae = 1 ,即 1=1。 k -0 1 - e

P(AA2BB2)P(AA2B2B1)P(A2AB1B2)P(AA2B2B1)= 4 0.7 0.3 0.4 0.6 = 0.2016两人各投中两次的概率为:P(A^ A2B1B2^0.0784O所以:

概率论习题第四章答案

第四章 大数定律与中心极限定理 4.1 设D(x)为退化分布: D(x)=?? ?≤>, 0,00 ,1x x 讨论下列分布函数列的极限是否仍是分布函数? (1){D(x+n)}; (2){D(x+ n 1)}; (3){D(x-n 1 )},其中n=1,2,…。 解:(1)(2)不是;(3)是。 4.2 设分布函数列Fn(x)如下定义: Fn(x)=?? ?????>≤<-+-≤n x n x n n n x n x ,1 ,2 ,0 问F(x)=∞ →n lim Fn(x)是分布函数吗? 解:不是。 4.3 设分布函数列{ Fn(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{Fn(x)}在(∞∞-,)上一致收敛于F(x)。 证:对任意的ε>0,取M 充分大,使有 1-F(x)<ε,;M x ≥? F(x)<ε, ;M x ≤? 对上述取定的M ,因为F(x)在[-M ,M]上一致连续,故可取它的k 分点:x 1=MN 时有 <-)()(i i n x F x F ε,0≤i ≤k+1 (2) 成立,对任意的x ∈(∞∞-,),必存在某个i (0≤i ≤k ),使得],(1+∈i i x x x ,由(2)知当n>N 时有 +<≤++)()()(11i i n n x F x F x F ε, (3) ->≥)()()(i i n n x F x F x F ε, (4) 有(1),(3),(4)可得 +-<-+)()()()(1x F x F x F x F i n ε)()(1i i x F x F -≤++ε<2ε, )()(x F x F n ->--)()(x F x F i εε2)()(1->--≥+δi i x F x F , 即有<-)()(x F x F n 2ε成立,结论得证。

概率论第二章练习答案概要

《概率论》第二章 练习答案 一、填空题: 1.设随机变量X 的密度函数为f(x)=?? ?0 2x 其它1???o 则用Y 表示对X 的3次独立重复 的观察中事件(X≤ 2 1 )出现的次数,则P (Y =2)= 。 ?==≤4120 21)21(xdx X P 64 9 )43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为: ax+b 03 1 ) , 则a = , b = ??? +=+?==+∞ ∞ -101 33 1 3 1311 dx b ax dx b ax x P x P dx x )()()〉()〈()(?联立解得: 4 723=-=b a ,

6.若f(x)为连续型随机变量X 的分布密度,则 ? +∞ ∞ -=dx x f )(__1____。 7. 设连续型随机变量ξ的分布函数?? ???≥<≤<=2,110, 4/0, 0)(2 x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ?= ()?????≥) (0100100 2其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。 2100 x x≥100 ∴ ?(x)= 0 其它 P (ξ≥150)=1-F(150)=1-??=-+=+=150 10015010023 2 132********x dx x [P(ξ≥150)]3=(32)3=27 8 9. 设随机变量X 服从B (n, p )分布,已知EX =1.6,DX =1.28,则参数n =___________, P =_________________。 EX = np = 1.6 DX = npq = 1.28 ,解之得:n = 8 ,p = 0.2 10. 设随机变量x 服从参数为(2,p )的二项分布,Y 服从参数为(4,p )的二项分布,若P (X ≥1)=9 5 ,则P (Y ≥1)=_65/81______。 解: 11. 随机变量X ~N (2, σ2) ,且P (2<X <4)=0.3,则P (X <0)=__0.2___ % 2.8081 65 811614014==-=-=q p C o ) 0(1)1(=-=≥Y P Y p 31,3294)0(94 )1(95)1(2 = =?=∴===??= ≥p q q X p X p X p

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

最新谢寿才版概率统计第四章习题及其解答

习题四 1 1.设随机变量X 的分布律为 2 X -1 0 1 2 k p 0.1 0.2 0.3 p 求p ,)(X E ,)12(-X E . 3 答案:4.0=p ,1)(=X E ,1)12(=-X E ; 4 2.设随机变量X 的分布律为 5 X -1 0 1 p 1p 2p 3p 且已知1.0)(=X E ,9.0)(2=X E ,求1p ,2p ,3p . 6 【解】因1231P P P ++=……①, 7 又12331()(1)010.1E X P P P P P =-++=-=……②, 8 2222 12313()(1)010.9E X P P P P P =-++=+=……③ 9 由①②③联立解得1230.4,0.1,0.5.P P P === 10 3.设随机变量X 的概率密度为 11

=)(x f ?? ? ??≤≤-<≤.,0,21,2,10,其它x x x x 12 求)(X E ,)(X D . 13 【解】1 2 20 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ ==+-? ?? 14 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 15 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 16 故 221 ()()[()].6D X E X E X =-= 17 4.设随机变量X 的概率密度为 18 ???? ?<≥=-. 0, 0,0,e )(2 2x x cx x f x k 19 求(1)c ;(2))(X E ;(3))(X D . 20 【解】(1) 由22 2 0()d e d 12k x c f x x cx x k +∞ +∞ --∞ == =? ?得2 2c k =. 21 (2) 22 20 ()()d()2e d k x E X xf x x x k x x +∞ +∞ --∞ ==? ? 22 22 220 π2e d .k x k x x +∞ -== ? 23 (3) 22 2 2 222 1()()d()2e .k x E X x f x x x k x k +∞ +∞ --∞ ==? ? 24 故 2 22221π4π ()()[()].24D X E X E X k k k ?-=-=-= ?? 25

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所以 1 51115()234988884 E X =?+? +?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21{2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 135151 {3}30302 C P Y == == 当4Y =时,包含的4个字母的单词只有1个,故 1442{4}303015 C P Y == == 当9Y =时,包含的9个字母的单词只有1个,故 993{9}303010 P Y ==== 112314673 ()234915215103015 E Y =? +?+?+?==。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。

概率论和数理统计第二章课后习题答案解析

概率论与数理统计课后习题答案 第二章 1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最 大号码,写出随机变量X 的分布律. 【解】 35 35 24 35 3,4,51 (3)0.1C 3(4)0.3C C (5)0.6 C X P X P X P X ====== ==== 2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分 布律; (2) X 的分 布函数并作图; (3) — 133{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 31331512213 3151133 150,1,2. C 22 (0). C 35 C C 12(1). C 35 C 1 (2).C 35 X P X P X P X ========== 故X 的分布律为

(2) 当x <0时, F (x )=P (X ≤x )=0 当0≤x <1时 ,F (x )=P (X ≤x )=P (X =0)= 2235 当1≤x <2时 ,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函 数 0, 022 ,0135 ()34,12351,2x x F x x x

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案 第 四 章 1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为 其中(1,1)(1)(1|1)0P X Y P X P Y X ======= 余者类推。 2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。解一枚硬币连掷三次相当于三重贝努里试验,故 1~(3, ).2X B 331 ()(),0,1,2,32 k P X k C k ===,于是(,)X Y 的分布列和边缘分布为 01013818i p ? 其中(0,1)(0)(1|0)0P X Y P X P Y X =======, 13 313(1,1)(1)(1|1)()128 P X Y P X P Y X C =======?=,

余者类推。 3.设(,)X Y 的概率密度为 又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。求{(,)}P X Y D ∈ 解(1)1 3 21 {(,)}(6)8P x y D x y dxdxy ∈ = --? =32 1 (6)8 x x y dxdy --- = )落在圆222 ()x y r r R +≤<内的概率. 解(1)222 23 20 1(R x y R C R dxdy C R C r drd ππθ+≤==-??? ? 33 3233R R C R C πππ??=-=??? ?, ∴3 3 C R π=. (2)设2 2 2 {(,)|}D x y x y r =+≤,所求概率为 322 3 23232133r r r Rr R R R πππ???? =-=-?????? ?? . 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数. 解1设(,)X Y 的分布函数为(,)F x y ,则 解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则 6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。 解(,)X Y 的概率密度为 关于X 和Y 的密度为

改后第四章概率论习题-奇数答案

第四章概率论习题__奇数.doc 1 某批产品共有M 件,其中正品N 件(0N M ≤≤)。从整批产品中随机的进行有放回抽样,每次抽取一件,记录产品是正品还是次品后放回,抽取了n 次(1n ≥)。试求这n 次中抽到正品的平均次数。 解 每次抽到正品的概率为: N M ,放回抽取,抽取n 次,抽到正品的平均次数为:N n M 3设随机变量X 的概率密度为()() 21,1f x x R x π=∈+ ,这时称X 服从标准柯西分布。试证X 的数学期望不存在。 解 由于: 202 1()2ln(1)|(1)x x f x dx dx x x ππ +∞ +∞ +∞ -∞ ==+=+∞+? ? 所以X 的数学期望不存在。 5 直线上一质点在时刻0从原点出发每经过一个单位时间向左或者向右移动一个单位,若每次移动是相互独立的,并且向右移动的概率为p (01p <<)。n η表示到时刻n 为止质点向右移动的次数,n S 表示在时刻n 时质点的位置,1n ≥。求n η与n S 的期望。 解 每次向右移动的概率为p ,到时刻n 为止质点向右移动的平均次数,即n η的期望为: ()n E np η= 时刻n 质点的位置n S 的期望为:()(1)(21)n E S np n p n p =--=- 7 某信号时间长短T (以秒计)满足:{}()112 t t P T t e e -->= +,0t ≥。用两种方法求出()E T 。 解 方法 1:由于(0)1P T ≥=,所以T 为非负随机变量。于是有: 13()(1())()(1)24 t t E T F t dt P T t dt e e dt +∞+∞ +∞ --=-=>=+=?? ? 方法二:由于(0)1P T ≥=,所以,可以求出T 的概率函数: 0,0 ()1(12),02 t t t f t e e t --

李贤平_《概率论与数理统计_第四章》答案

概率论 数字特征与特征函数 2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。 3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。 7、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。 9、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞ =≥= 1 }{k k P E ξξ。 11、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(| |∞<<∞-=--x e x p x λ μλ 0>λ。试求 ξE ,ξD 。 13、若21,ξξ相互独立,均服从),(2 σa N ,试证π σξξ+ =a E ),max (21。 17、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放 入乙袋中,求从乙袋中再摸一球而为白球的概率。 20、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第 二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求 n S 。 21、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体 质重量,试说明这样做的道理。 24、若ξ的密度函数是偶函数,且2 E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。 25、若,ξη的密度函数为22 221,1 (,)0,1 x y p x y x y π?+≤?=??+>?,试证:ξ与η不相关,但它们不独立。 27、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。 26、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。 28、若123,,ξξξ是三个随机变量,试讨论(1)123,,ξξξ两两不相关;

相关文档
相关文档 最新文档