文档库 最新最全的文档下载
当前位置:文档库 › 力学性能复习

力学性能复习

力学性能复习
力学性能复习

力学性能复习重点补充(14级)

* 硬度是指金属在表面上不大体积内抵抗变形或者破裂的能力。

*应力腐蚀显微裂纹常有分叉现象,呈枯树枝状。

*氢致裂纹的扩展方式是步进式,而应力腐蚀裂纹扩展方式是渐进式的。

*材料抵抗应力松弛的能力称为松弛稳定性。

*金属蠕变变形机制有两种,一是位错蠕变机制,一是扩散蠕变机制。

*单晶体金属的弹性模量在不同金属学方向上是不一样的,表现为弹性各向异性。

*断裂韧度表征金属材料抵抗裂纹失稳扩展的能力。

*应力腐蚀断口表面可见到“泥状花样”的腐蚀产物及腐蚀坑。

*屈服强度随应变速率提高而提高的现象称为应变速率硬化。

*常见的金属硬度试验包括:布氏硬度、洛氏硬度、维氏硬度和显微硬度,他们都属于压入法硬度试验。

*根据外加应力与裂纹扩展面的取向关系,裂纹扩展有三种基本形式:张开型、滑开型和撕开型。

*冲击载荷与静载荷的主要区别在于加载速率不同。

*疲劳断口中疲劳区的最大宏观特征为:贝纹线,疲劳断口典型的微观特征是:疲劳条带。

*描述材料的蠕变性能常采用蠕变极限、持久强度、松弛稳定性等力学性能指标。

*名词:

*低温脆性

*疲劳

*蠕变

*应变硬化

*磨粒磨损

*冷脆

*磨损

*塑性钝化

*应力腐蚀

*氢脆

*图形分析

1.下图为某材料的应力-应变曲线,请分析该图,在图中标记出g点对应的弹性变

形、塑性变形的应变量各是多少,并标记出材料的屈服强度σ0.2

2. 请根据下图所示的晶界和晶粒的强度随温度变化的示意图,指出其两者强度相等的温度是什么,并分别分析温度高于和低于T E时材料断裂的主要类型是什么。

两者相交的温度为等强温度

当温度低于T E时,材料晶粒内部的强度低于晶界的强度,材料表现为穿晶断裂;

1. 分析如图所示的包申格效应曲线,请标出图中A、B分别表示的加载方式,并在图中标出应力σ1条件下的包申格应变。已知卸载前的加载方式为拉伸。

2. 请根据σs 和σc 随温度变化的示意图,指出两者相交对应的温度是什么,并分别分析温度高于和小于T k 时,随着外力的增大,材料表现出的不同特性。

两者相交的温度为韧脆转变温度当温度大于T k 时,材料的断裂强度大于屈服强度,材料先屈服后断裂,表现为韧性断裂;当温度小于T k 时,材料的断裂强度小于屈服强度,外加应力先达到断裂强度,材料表现为脆性断裂。 *计算举例1: 可能用到的公式:

21

)(a E s m γ

σ= 21

)2(a E s c πγσ= 对于无限大板中心穿透裂纹,裂纹形状系数:π=Y 单边横向穿透裂纹的裂纹形状系数:π12.1=Y ;

有效裂纹塑性区修正值:2

2

0.056I I y s s K K r σσ??

??=≈? ????

(平面应变)

22

10.162I I y s s K K r π

σσ????

=

≈ ? ?????

(平面应力)

1. 有一大型厚板构件,承受工作应力为400 MPa 板的中心有一长为4mm 的裂纹,

裂纹面垂直于工作应力,钢材的σs =500 MPa ,试确定: (1)裂纹尖端的应力场强度因子K Ⅰ;

(2)裂纹尖端的塑性区尺寸R 0 答:因为

7.08.0500

400>==s σσ,所以要进行塑性修正 y I a Y K γσ+= 根据题意,材料处于平面应变状态

所以,2

056.0???

? ??+?=s

I

I K a K σ

πσ

2

177.01??? ?

?-=

s I a

K σσπσ2

500400177.01002.014159.3400?

?

?

??-?=

=33.67 MPa ·m

1/2

因为y o R γ2=

所以2

221

???

? ??=

s I o K R σπ

mm 51.050067.3314159.3221=??

?

???=

2.有一板件在循环应力下工作,σmax =200MPa ,σmin =0MPa ,材料的σ0.2=600MPa 、K I c =104MPa ·m 1/2,Paris 公式中c =6.9×10-12,n =3.0,使用中发现有1mm 单边横向穿透裂纹,估算其疲劳剩余寿命。

答:

σmax /σ0.2=200/600=0.3<0.7,不需考虑塑性区修正。 此时:a Y K I σ= 裂纹形状系数:π12.1=Y ,

代入上式得:a K I πσ12.1=

计算a c : c Ic a K πσmax 12.1=,所以a c =68.6mm

0max -=?σσ

ΔK = a Y σ?a Y max σ= 代入估算疲劳寿命:

()n da c K dN =?,所以:??=c a a n n n c a

cY da

N 02/)(σ 代入得N c ≈128774≈1.28×105周次 *计算举例2: 可能用到的公式:

21

)(a E s m γ

σ= 21

)2(a E s c πγσ= 对于无限大板穿透裂纹,裂纹形状系数:π=Y 表面半椭圆裂纹:Φ=/1.1πY ;

有效裂纹塑性区修正值:2

2

056.0241

???

? ??≈???? ??=

s

I s

I y K K r σσπ

(平面应变) 2

2

16.021???

?

??≈???? ??=

s I

s I

y K K r σσπ (平面应力)

1. 有一火箭壳体承受很高工作压力,其周向工作拉应力σ=1400MPa 。采用超高强度钢制造,焊接后发现有纵向表面半椭圆裂纹(a =1mm ,a/c =0.6)。现有材料性能如下:σ0.2=1700MPa ,K I c =78MPa ·m 1/2,采用此材料是否安全。 答:

σ/σ0.2=1400/1700=0.82,应考虑塑性区修正。 此时:y I r a Y K +=σ 表面半椭圆裂纹:Φ=/1.1πY ,平面应变有效裂纹塑性区修正值:

2

2

056.0241???

?

??≈???? ??=

s

I s I y K K r σσπ

代入上式得:2

2

)

/(212.01.1s I a K σσπ-Φ=

查表:a/c=0.6,所以Φ2=1.62,所以Φ=1.28。

代入公式可求得:σc =1532MPa

1400MPa< 1532MPa 所以:σ<σc ,此材料安全。

(也可对比K I c 和a c )

2.有一板件在脉动载荷下工作,σmax =200MPa ,σmin =0,材料的σ0.2=800MPa 、K I c =104MPa ·m 1/2,Paris 公式中c =6.9×10-12,n =3.0,使用中发现有0.1mm 单边横向穿透裂纹,估算其疲劳剩余寿命。(10分)

答:计算ΔK :

σmax /σ0.2=200/800=0.25<0.7,不需考虑塑性区修正。 此时:a Y K I σ= 所以:ΔK = a Y σ? 裂纹形状系数:π12.1=Y ,

代入上式得:a K I πσ12.1= 计算a c : c Ic a K πσmax 12.1=,所以a c =68.6mm 估算疲劳寿命:

n

a Y c dN

da )(σ?=,所以:??=c a a n n n c a cY da N 02/)(σ

代入得:N c ≈445559≈4.4×105周次

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

材料力学性能复习总结

绪论 弹性:指材料在外力作用下保持与恢复固有形状与尺寸得能力。 塑性:材料在外力作用下发生不可逆得永久变形得能力。 刚度:材料在受力时抵抗弹性变形得能力。 强度:材料对变形与断裂得抗力。 韧性:指材料在断裂前吸收塑性变形与断裂功得能力。 硬度:材料得软硬程度。 耐磨性:材料抵抗磨损得能力。 寿命:指材料在外力得长期或重复作用下抵抗损伤与失效得能。 材料得力学性能得取决因素:内因——化学成分、组织结构、残余应力、表面与内部得缺陷等;外因——载荷得性质、应力状态、工作温度、环境介质等条件得变化。 第一章材料在单向静拉伸载荷下得力学性能 1、1 拉伸力—伸长曲线与应力—应变曲线 应力—应变曲线 退火低碳钢在拉伸力作用下得力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形与不均匀集中塑性变形与断裂几个阶段。 弹性变形阶段:曲线得起始部分,图中得oa段。 多数情况下呈直线形式,符合虎克定律。 屈服阶段:超出弹性变形范围之后,有得材料在 塑性变形初期产生明显得塑性流动。此时,在外力 不增加或增加很小或略有降低得情况下,变形继续产 生,拉伸图上出现平台或呈锯齿状,如图中得ab段。 均匀塑性变形阶段:屈服后,欲继续变形,必须 不断增加载荷,此阶段得变形就是均匀得,直到曲 退火低碳钢应力—应变曲线 线达到最高点,均匀变形结束,如图中得bc段。 不均匀塑性变形阶段:从试样承受得最大应力点开始直到断裂点为止,如图中得cd段。在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。 弹性模量E:应力—应变曲线与横轴夹角得大小表示材料对弹性变形得抗力,用弹性模量E表

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力。 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈 服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂 过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主 应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度Z bm与等截面尺寸光滑试样的抗拉强度Zb的比值. NSR=Z bn / Z S NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解 理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象第一章 3?金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指 标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

西安工业大学材料力学性能复习重点资料

弹性模量:产生100%弹性变形所需要的应力 弹性比功(弹性比能/应变比能):表示金属材料吸收弹性变形功的能力 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力 塑性:金属材料断裂前发生不可逆永久(塑性) 变形的能力. 包申格效应:金属材料经过预先加载产生少量的弹性形变,卸载后,再同向加载(拉伸)时,屈服强度或弹性极限增加;反向加载(压缩)时,屈服强度或弹性极限降低的 现象。 *消除包申格效应的方法:预先进行较大的塑形变形;在第二次反向受力前先使金属材料于 回复或再结晶温度下退火 金属韧性:金属材料断裂前吸收塑形变形功和断裂功的能力;或材料抵抗裂纹扩展的能力 缩颈:韧性金属在拉伸试验时变形集中于局部区域的特殊现象 韧性断裂:断裂前发生明显塑性变形的断裂 脆性断裂:突然发生的断裂,且断裂前基本不产生塑性变形。 穿晶断裂:裂纹扩展的路径穿过晶内 沿晶断裂:裂纹沿晶界扩展,大多为脆性断裂。断口形貌:冰糖状 剪切断裂:金属材料在切应力作用下沿滑面分离造成的滑移面分离的断裂 解理断裂:金属材料在一定条件下,外加正应力达到一定数值后,以极快速率沿一定晶体平面产生的穿晶断裂。 .解理面:由于与大理石的断裂相似,所以称这种晶体学平面为解理面 解理刻面:以晶粒大小为单位的解理面 解理台阶:解理裂纹与螺型位错相遇,形成具有一定高度的台阶 河流花样:解理台阶沿裂纹前端滑动,同号台阶汇合并长大,足够大时汇集成河流花样。微孔聚集断裂:由于杂质与基体界面脱离形成微孔形核并长大形成微孔,在外力作用下产生缩颈而断裂,导致各个微孔连接形成微裂纹,微裂纹在三向拉应力区和集中 塑形变形区,在该区形成新微孔。新微孔连通使裂纹向前推进,不断如此下 去产生断裂。 应力状态软性系数:τmax和σmax的比值,用α表示 各种加载状态下的应力状态软性系数: 三向不等拉伸:α=0.1 单向静拉伸α=0.5 扭转:α=0.8 单向压缩:α=2 三向不等压缩:α=4 缺口效应:由于缺口的存在,缺口截面上的应力状态将发生变化缺口,缺口根部应力集中缺口敏感度(NSR):缺口试样的抗拉强度σbn与截面尺寸光滑试样的抗拉强度σb的比值 冲击韧性:是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示 冲击吸收功:试样变形和断裂所消耗的功 低温脆性:在试验温度低于某一温度t k时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,。t k称为韧脆转变温度,也称冷脆转变温度 低应力脆断:在应力水平低于材料屈服极限的情况下所发生的突然断裂现象。 张开型(Ⅰ型)裂纹:拉应力垂直作用于裂纹扩展面,沿作用力方向张开,沿裂纹面扩展的裂纹 应力场:物件受力时,其内部所受到的有方向有大小且连续的应力所构成的场 塑性区:金属材料裂纹扩展前,尖端附近出现的塑性变形区 有效屈服应力:在某个方向上发生屈服时对应的应力

材料力学性能实验(2个)讲解

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: s s A P = σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到 P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

材料力学性能总结材料

材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。 屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。 屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。 屈服变形机制:位错运动与增殖的结果。 屈服强度:开始产生塑性变形的最小应力。 屈服判据: 屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。 米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。 消除办法: 加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素; 通过预变形,使柯氏气团被破坏。 影响因素: 1.因: a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。 b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。 c)溶质元素:固溶强化。 d)第二相 2.外因:温度(-);应变速率(+);应力状态。 第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。

强化效果: 在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好; 在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好; 第二相数量越多,强化效果越好。 细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。 同时提高塑性及韧性的机理: 晶粒越细,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。 细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。 固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。 原因:溶质原子与位错的弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。 强化效果:间隙固溶体的强化效果大于置换固溶体;溶质和溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。 应变硬化(形变强化):金属材料塑性变形过程中所需要的外力不断增大,表明金属材料有一种阻止继续塑性变形的能力。 原因:塑性变形过程中,位错不断增殖,运动受阻所致。 断裂韧度:临界或失稳状态下的应力场强度因子的大小。 塑性变形:作用在物体上的外力取消后,物体的变形不完全恢复而产生的永久变形。 1.单晶体:滑移+孪生;

氧化铝陶瓷材料力学性能的检测

实验二 氧化铝陶瓷材料力学性能的检测 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对 中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My =σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P max max 21σ?????圆形截面 16矩形截面 332D Pa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

材料力学性能复习资料全

一、说明下列力学性能指标的意义 1) P σ 比例极限 2) e σ 弹性极限 3) b σ抗拉强度 4) s τ扭转屈服强度 5) bb σ抗弯强度 6) HBW 压头为硬质合金球时的布氏硬度 7) HK 显微努氏硬度 8) HRC 压头为顶角120金刚石圆锥体、总试验力为1500N 的洛氏硬度 9) KV A 冲击韧性 10) K IC 平面应变断裂韧性 11) R σ应力比为R 下的疲劳极限 12) K th 疲劳裂纹扩展的门槛值 13) ISCC K 应力腐蚀破裂的临界应力强度因子 14) /T t εσ给定温度T 下,规定试验时间t 产生一定的蠕变伸长率δ的蠕变极限 15) T t σ给定温度T 下,规定试验时间t 发生断裂的持久极限 二、单向选择题 1)在缺口试样的冲击实验中,缺口越尖锐,试样的冲击韧性( b )。 a) 越大; b) 越小;c ) 不变;d) 无规律 2)包申格效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限( b )的现象。 a) 升高 ;b) 降低 ;c) 不变;d) 无规律可循 3)为使材料获得较高的韧性,对材料的强度和塑性需要( c )的组合。 a) 高强度、低塑性 ;b) 高塑性、低强度 ;c) 中等强度、中等塑性;d) 低强度、低塑性 4)下述断口哪一种是延性断口(d )。 a) 穿晶断口;b) 沿晶断口;c) 河流花样 ;d) 韧窝断口 5) 5)HRC 是( d )的一种表示方法。 a) 维氏硬度;b) 努氏硬度;c) 肖氏硬度;d) 洛氏硬度 6)I 型(开型)裂纹的外加应力与裂纹面(b );而II 型(滑开型)裂纹的外加应力与裂

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

材料力学性能》复习资料

《材料力学性能》复习资料 第一章 1塑性--材料在外力作用下发生不可逆的永久变形的能力 2穿晶断裂和沿晶断裂---穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。 3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 4E---应变为一个单位时,E即等于弹性应力,即E是产生100%弹性变形所需的应力 5ζs----屈服强度,一般将ζ0.2定为屈服强度 6n—应变硬化指数 Hollomon关系式: S=ken (真应力S与真应变e之间的关系) n—应变硬化指数;k—硬化系数 应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0材料无硬化能力。大多数金属材料的n值在0.1~0.5之间。 7δ10---长比例试样断后延伸率 L0=5d0 或 L0=10d0 L0标注长度 d0名义截面直径) 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 9脆性断裂(1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Ψ<5%为脆性断裂;大于5%时为韧性断裂。 11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。 12低碳钢在室温条件下单向拉伸应力—应变曲线的特点p1-2 13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。 解理面一般是指低指数晶面或表面能量低的晶面。 14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。 15弹性比功αe(弹性比能、应变比能) 物理意义:吸收弹性变形功的能力。 几何意义:应力-应变曲线上弹性阶段下的面积。αe = (1/2) ζe*ε e

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学性能复习提纲

σs—材料的屈服强度,用应力表示材料的屈服点或下屈服点,表征材料对微量塑性变形的抗力。 σb抗拉强度,只代表金属材料所能承受的最大拉伸应力,表征金属材料对最大均匀塑性变形的抗力。 n应变硬化指数,反映金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。 A断后伸长率,是试样拉断后标距的残余伸长(Lu-L0)与原始标距L0之比的百分率。表征金属材料断裂前发生塑性变形的能力。Agt它是金属材料拉伸时产生的最大均匀塑性变形量。 Z断面收缩率,它是指试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积之比的百分率。 K:冲击吸收能量,材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。 KV: V型缺口的冲击吸收功。KU: U型缺口的冲击吸收功。 NDT: Rmc:抗压强度,试样压至破坏过程中的最大应力。 σbb:抗弯强度,在三点弯曲试验中,试样弯曲至断裂前达到的最大弯曲力。 τm:抗扭强度,金属试样在扭断前承受的最大扭矩Tm与试样抗弯截面系数W的商 NSR:缺口敏感度,表征材料的缺口敏感性。HBW:压头为硬质合金球的材料的布氏硬度。 HRA:压头为金刚石圆锥的材料的洛氏硬度。 IC K 和C K:IC K 为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗 C K 为平面应力断裂韧度,表示平面应力条件下材料抵 抗裂纹失稳扩展的能力。同属于Ⅰ型裂纹的材料断裂韧性指标,但C K 与试样厚度有关。IC K 与试样厚度无关,是真正的材料常数。 G1C:当增加到某一临界值时,能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。 J1C:断裂韧度,表示材料抵抗裂纹开始扩展的能力δC:断裂韧度,表示材料阻σscc:金属材料抗应力腐蚀性能指标表示材料不发生应力腐蚀的临界应力 K1scc:应力腐蚀临界应力场强度因子,即试样在特定化学介质中不发生应条件下的断裂韧度。 K1HEC:氢脆临界应力场强度因子表示试样在化学介质中不发生应力腐蚀断裂的da/dt:应力腐蚀裂纹扩展速率,即单位时间内裂纹的扩展量。 今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。 (3)灰铸铁,退火态低碳钢----HB (4)鉴别钢中的隐晶马氏体和残余奥氏体---显微HV 或HK(5)仪表小黄铜齿轮----HV(6)龙门刨床导轨-----HS(肖 6、试述K判据的意义及用途。 脆断的原因。K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。 今有45、40Cr、35CrMo钢和灰铸铁几种材料,你会选择哪种材料用作机床床身?为什么? 的稳定运转。灰铸铁中含有不易传送弹性机械振动的石墨,具有很高的循环韧性。 5、缺口试样拉伸时的应力分布有何特点? :在缺口根部处于单向拉应力状态,在板中心部位处于两向拉伸平面应力状态。厚板:在缺口根部处于两向拉应力状态,缺口内侧处三项拉伸平面应变状态。 二)缺口试祥在塑性状态下的应力分布:塑性变形条件下应力将重新分布,并随载荷的增大塑性区逐渐扩大直至整个截面,在其内侧一定距离ry 处σx、σy、σz 最大。缺口使塑性材料强度增加,塑性下降。 缺口效应:由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化,产生应力集中,从而影响材料的力学性能,这就是所谓的缺口效应. 布氏硬度:用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。 洛氏硬度:在规定的外加载荷下,将钢球或金刚石压头垂直压入试件表面,产生压痕,测试压痕深度 维氏硬度:根据压痕单位面积所承受的试验力计算硬度值。 应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。 氢蚀:由于氢与金属中的第二相作用生成高压气体,使基体金属晶界结合力减弱导致金属脆化的现象。 白点:当钢中含有过量的氢时,随温度的降低,氢在钢中的溶解度逐渐减小,如果过饱和的未扩散逸出,便聚集在某些缺陷处形成氢分子。此时氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。这种微裂纹的断面呈圆形和椭圆形,颜色呈银白色,故称为白点。 氢化物致脆:对于ⅣB或ⅤB族金属,由于它们与氢有较大的亲和力,极易生成氢化物,使金属脆化。这种脆化称为氢化物致脆。 氢致延滞断裂:高强度钢或α+β钛合金中,由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂。 氏硬度)或HL(里氏硬度) )高速钢刀具-----HRC(9)硬质合金----- HRA 5、试述应力场强度因子的意义及典型裂纹KI 的表达式。 答:KI 表示应力场的强弱程度,是σ和a 的复合力学参量,它的大小直接影响着应力场的大小,KI 越大则应力场各应力分量也越大。

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

相关文档
相关文档 最新文档