文档库 最新最全的文档下载
当前位置:文档库 › AK95硬件参数选型

AK95硬件参数选型

AK95硬件参数选型
AK95硬件参数选型

AK 95各个硬件设备参数指标

1、操作环境

工作环境温度:10~35℃;

湿度:30%~85%;

气压:70~106kPa;

电源电压应用:主电源为230V/110V/120V(±12%)交流电,频率50/60Hz;控制电路、保护电路用+5V;逻辑电路用±12V;显示,血泵,肝素泵,流量泵,电磁阀,风扇,动静脉夹,加热继电器等用±24V。

供电电缆长度:不超过3m。

电池供电:9V电池。在断电时可以自动监测切换,停止除血路和显示外的所有其他设备,保证在断电的情况下运行大于15分钟。

2、硬件设备参数

2.1 蠕动泵

由泵头,直流电机,齿轮箱(1:50),泵门探测器组成。

动脉流速:15~500mL/min。(泵前压力为-150mmHg)

精度:±10mL/min或±10%,选最大值。

泵管直径7.9mm,管壁厚2.0mm(所有金宝产品统一管壁厚)。

2.2 肝素泵

由支架,注射器(10mm~30mm),步进电机,齿轮箱(1:120),计数器,位置探测器组成。

流速:0~10mL/h。

精度:±1mL/h或±5%,选最大值。

注射器型号:认定Terumo 20mL注射器为默认注射器。

肝素累积量:0~999.9mL。

2.3 压力检测

静脉压操作范围:-700mmHg~750mmHg;

精度:-500mmHg~500mmHg时,±5mmHg或±3%,选最大值。

静脉压报警:-100mmHg~500mmHg;

动脉压操作范围:-700mmHg~750mmHg;

精度:-500mmHg~500mmHg时,±5mmHg或±3%,选最大值。

动脉压报警:-400mmHg~400mmHg;

2.4 漏血探测器

原理:利用光学原理检测透析液中的血红素。

灵敏度:≥0.3mL blood/min(条件:红细胞积压32%,透析液的流速

500mL/min)时报警。

最大5s延时。

2.5 气泡检测器

原理:超声波在液态介质中传播时衰减远小于空气中。

滴注室:直径22mm;

灵敏度:血流量最大到300mL/min时,每分钟空气≥0.5mL时报警。

2.6 透析液控制

温度:35℃~39℃;报警线:33℃和41℃;精度:±0.5℃;

流速:500mL/min;精度:±10mL/min;

除气:-610mmHg,在-500mmHg~-700mmHg可调;

透析压:-300mmHg~400mmHg;

2.7 超滤控制

容量控制:直接对透析液进行电磁测量;

容量:0~10L可调;

精度:±50mL/h或±1%,选最大值;

超滤系数:最大80mL/h;

超滤率:0~4L/h

TMP(跨膜压):静脉压-透析压;

报警范围:-100~500mmHg(±10mmHg或±5%,选最大值);

2.8 消毒方式

(1)化学消毒:过氧乙酸3.5%,47min;次氯酸钠10%,47min;福尔马林37%,97min;

温度:冲洗时70℃;

流速:500mL/min(峰值流量);

(2)热消毒:有三种方式:

温度:在加热棒处93℃;在机器热交换器前出口≥80℃;

流速:500mL/min(峰值流量);

2.8 保养及维修

以工作时间来算,当工作2500小时,以下配件需要更换,更换前要进行一次柠檬酸清洗和次氯酸钠消毒。

当工作5000小时,以下配件需要更换,更换前也要进行一次柠檬酸清洗和次氯酸钠消毒。

澳凯龙SDL-2000H各个硬件设备参数指标

2.1 电源

电源:电压220V(±10%)/40~60Hz;

电池供电:在断电时可以自动监测切换,停止除血路和显示外的所有其他设备,保证在断电的情况下运行大于15分钟。

2.2 供水

供水压力:80~400kPa;

供水流量:≥1000ml/min;

供水温度:5~30℃;

2.3血泵

血流量:0.2~500ml/min,血泵管径可调;

2.4肝素泵

肝素泵流量:0~10ml/h;

2.5压力监测

静脉压力监测范围:-150mmHg~+450mmHg,精确度:±5mmHg,

动脉压力监测范围:-300mmHg~+450mmHg,精确度:±5mmHg,

2.6透析液监测

透析液流量:300~700ml/min;

超滤量:≤10L;

超滤率:0.1~4L/h;

精确度:±10mL/h;

透析液温度:35℃~38℃;精确度:±0.1℃;

跨膜压监测范围:-150mmHg~+450mmHg,精确度:±20mmHg;

2.6漏血监测

每1升透析液中≥0.5ml漏血量(透析液流量为300~700ml/min);

日本东丽各个硬件设备参数指标

供水条件给液压:70~300kPa;

水温度:10~30℃

透析液流速500ml/min;

透析液温度33~40℃;

超滤控制范围:0~4L/h

精度:±30mL/h;±0.1%

血液流速40~600ml/min(外径12mm,内径2mm)

肝素泵注入量:0~10ml/h

漏血检测原理:光电式;

精确度:血液0.5mL/透析液1L(血液红细胞压积32%,37℃)TMP -100mmHg~+500mmHg

透析液压力-600mmHg~+600mmHg

德国费森尤斯4008B血液透析机技术性能

1 血泵:血流量指示:20~600ml/min;血泵管径可调

2 肝素泵:范围:0~10ml/h;可选用多种尺寸的注射器20ml/30ml/50ml,可

设定关泵时间

3 超滤系统:容量超滤控制系统;超滤率:0~4000ml/h,可调,精度:±1%

4 透析液系统:碳酸盐透析,透析液流速300~800ml/min

5 透析液温度:35℃~39℃,可调。

6 静脉压监视器:范围-60mmHg~+520mmHg;精确度±10mmHg,分辨率

20mmHg

7 动脉压监视器:范围-300mmHg~+280mmHg;精确度±10mmHg,分辨

率20mmHg

8 跨膜压监视器:范围-60mmHg~+520mmHg

9 漏血检测器:光学检测,要求小于0.5ml/min(最大流量800ml/min时)。

样本检测的方法与参数指标

我们以美国GEM3000血气分析仪来作为标准制定我们的测量方案。

我们需要对采集到的细胞培养液进行pH,O2,葡萄糖(Glu)和乳酸(Lac)的含量的测量。

1、血气分析可接受的抗凝剂:肝素钠或肝素锂,最大为浓度为25 usp /mL。

2、样本在采集后必须马上混匀以保证与抗凝剂的充分混合,标本若混匀不当,可能导致错误的血气和压积结果。

3、最小样本量:135uL(仅测pH,O2);150uL(全测)

4、从取样到分析的时间:如果要求Glu和Lac,要求在5分钟内检测;如果只要求血气、电解质和压积参数,要求在15分钟内检测。

下面给出具体的测量方法与参数。

血气分析方法是一种相对测量方法。在测量样品之前,需要用标准液以及标准气体确定pH、CO2、O2三套电极的工作曲线。通常把确定电极系统工作曲线的过程叫做定标或者校准。每种电极都要有2种定标物质来进行标定,以便确定建立工作曲线最少需要的2个工作点。

pH系统使用pH值为7.383和6.840左右的2种标准缓冲液进行标定。和系统用2种混合气体进行标定。第一种混合气中的CO2浓度为5%,O2浓度为20%;第二种CO2浓度为10%,但不含O2。无论何种型号的血气分析仪,均需要在总定标即对每种电极进行2点定标建立工作曲线之后,才能进行测量工作。在工作过程中,仪器还能自动对电极进行一点定标,随时检查电极偏移工作曲线的情况,一旦发现问题,仪器便停止测量工作,要求重新定标,保证数据的正确性。

测量pH:在发明玻璃电极之前,pH测量是采用氢电极来实现的,但氢电极易受影响,因此不适合作血液分析,现代血液pH的测量是采用玻璃电极来实现的,这些玻璃电极做得很小,且需要的血样也很少,这与玻璃电极本身的技术特点及玻璃电极不易受血液蛋白质污染的特点分不开。

pH测定系统pH测定系统包括pH测定电极即玻璃电极、参化电极及两种电极间的液体介质。pH电极是利用电位法原理测量溶液的H+浓度,其电极是一个对H+敏感的玻璃电极,同时必须用另一电位值已知的参比电极配套,通常与甘汞电极保持电接触。血样中的H+与玻璃电极膜中的金属离子进行交换,产生电位差,并与血样的H+浓度成正比,二者之间存在着对数关系。在电极内部有pH恒定的

溶液,与玻璃膜接触。玻璃电极内部还有Ag/Agcl 参比电极,浸在pH 恒定液中,电极线连接伏特计,测量血样[H +]所产生的电位差,即中测pH 值,并以数字显示再打印结果。参比电极里的KCl 溶液通过它逸出与标本接触而形成接触面。因为KCl 浓度很大,所以血液标本中离子组成的差异不会改变参比电极上的恒定电位。pH 电极要求pH 测定范围在6.8-8.0间,并能读出小数点以下三位,精密度达0.002pH 单位,准确性达到±0.09pH 单位。pH 电极稳定性好,计数不漂移。

由于血液pH 正常值范围很窄,电极在血液pH 测量时立即产生电位响应,电位响应时间与膜厚有关,如果膜过厚,则响应时间延长,因此膜厚必须小于0.2mm 。受血样量的限制,膜面积必须制得很小。膜电阻也直接影响电极的稳定性,因此膜电阻要尽可能低,最好低于100欧姆(37℃),同时也应尽力降低玻璃本身的电阻。

测量O2:氧电极是一个气敏电极,它的测量是基于电解氧的原理而实现的,氧电极产生的电流很小,配合一个高输入阻抗、低噪声的微电流放大器来放大信号。

氧在惰性金属(Pt 或Au)阴极表面产生如下反应:

--

?→?++-H HO e O H O 2222 ---?→?++OH e HO HO 322

由电化学过程可知,电极表面附近的扩散实际上涉及两个扩散层(膜与电解液),O2在膜层中的扩散是一维的,在电解液中则作圆柱扩散,忽略膜层和电解液层的半无限线性球扩散模式,得到终解是:

?

?????--++=])(exp[******/002

2RT E E BnF k r Pe d r re Pe d r r P d nFPO I e e m m m

βπ 其中dm 、de 和r 分别为膜厚、电解质层厚和阴极半径。

rm=de+dm+r ,re=de+r ,k0为常数,Pm 、Pe 分别为膜、电解液的O2透过率,

β为O2的溶解度,当E 增大时,上式分母中最后一项很快趋于零,此时达到极限电流值。通过测量电流值就可以得到血液中的氧气含量。

测量葡萄糖:血液中葡萄糖检测有很多方法,酶电极法、生化法等。一般采用酶电极法检测标本中的葡萄糖浓度。具体原理为:采用特殊半透膜作为电极感应膜,电解质内液为葡萄糖氧化酶。由于该电极感应膜是半透膜,只允许葡萄糖或比葡萄糖分子小的物质透过半透膜参与反应。而其他脂类、蛋白等大分子不能穿过半透膜。因此,此原理所受的标本干扰相对较小,特异性强。

葡萄糖在葡萄糖氧化酶的作用下会产生葡萄糖酸以及过氧化氢,如下所示:

通过在铂电极加600毫伏电压可以将过氧化氢电解得到电子,形成微弱电流,经放大后通过测量电流大小即可得到葡萄糖的浓度。

整个测试过程只有一步化学反应,无中间产物。葡萄糖氧化酶被固定在电极内。反应结束后,经过系统液的冲洗可反复使用,降低成本。

测量乳酸:和测量葡萄糖的方法差不多,用酶电极法来测量。具体原理为:采用特殊半透膜作为电极感应膜,电解质内液为乳酸氧化酶(LOD)。带有酶膜的探头位于充满缓冲液的样品室内,样品注入后,乳酸被膜上的乳酸氧化酶迅速氧化,生成过氧化氢和丙酮酸,反应如下:

过氧化氢随后在铂阳极上被氧化产生电子,形成微弱电流,经放大后通过测量电流大小即可得到乳酸的浓度。

人体正常值为:pH:7.35~7.45;

O2:83~108mmHg;

Glu:3.33~5.27mmol/L;

Lac:0.5~2.23mmol/L;

细胞培养液中的pH范围为:7.2~7.4。

GEM3000检测范围与精度要求:

检测分析测量范围准确度

pH 6.80~7.80 0.01

PO2 0~760mmHg 1mmHg

葡萄糖 1.1~25.0mmol/L 0.1mmol/L

乳酸0.3~20mmol/L 0.1mmol/L

雅培i-STAT300检测范围与精度要求:

检测分析测量范围精确度

pH 6.500~8.000 0.001

PO2 5~800mmHg 1mmHg

葡萄糖 1.1~25.0mmol/L 1mmol/L

乳酸0.3~20mmol/L 0.1mmol/L

雷度ABL90检测范围与精度要求:

检测分析示值范围测量范围

pH 6.500~8.000 6.818~7.797

PO2 0~800mmHg

0.0~107kPa 30.1~488mmHg 4.0~65.0kPa

葡萄糖0.0~60mmol/L

0~1081mg/dL 0.5~41mmol/L 9~738mg/dL

乳酸0.0~31mmol/L

0~279mg/dL 0.4~24mmol/L 4~216mg/dL

雷度ABL800检测范围与精度要求:

检测分析示值范围测量范围pH 6.500~8.000 6.85~7.55

PO2 0~800mmHg

0.0~107kPa 20~580mmHg 2.67~77.3kPa

葡萄糖0.0~60mmol/L

0~1081mg/dL 0.5~15mmol/L 9~270mg/dL

乳酸0.0~30mmol/L

0~270mg/dL 0.5~15mmol/L 4.5~135mg/dL

南京普朗PL2000plus检测范围与精度要求:

检测分析测量范围参考范围准确度pH 3.00~12.00 7.35~7.45 ±1%(0.07)PO2 0~800mmHg 60~100mmHg ±1.5%

葡萄糖0.0~30mmol/L 3.9~6.2mmol/L ±2.5%

乳酸0.0~20mmol/L 0.5~2.0mmol/L ±2.5%

风机选型常用计算 (1)(DOC)

风机选型常用计算 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风管截面积的计算: 截面积=机器总风量÷3600÷风速 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。

按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。

流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。 功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 传动方式及机械效率: A型直联传动D型联轴器联接转动F型联轴器联接转动B型皮带传动

潜水搅拌机结构和选型方法

潜水搅拌机结构和选型方法 作者:南京兰江水处理设备有限公司 【QJB型潜水搅拌机】结构特点: 混合搅拌系列产品选用多极电机,采用直联式结构,能耗低,效率高;叶轮通过精铸或冲压成型,精度高,推力大,外型美观流畅,结构紧凑。 低速推流系列产品采用摆线针轮减速机,配备功率小,转速低,叶轮直径大,服务面积广。叶轮由聚胺脂材料和铝合金铸成,强度高,耐腐蚀性强,除了具有搅拌的功能外还能外还兼有推流和创建水流的作用。 潜水搅拌机的电机绕组为F级绝缘,防护等级为IP68。在污水厂的曝气系统中配合使用,可使系统能耗大大降低,且充氧量明显提高,能有效的防止沉淀。根据工艺要求,直联式潜水搅拌可配用导流罩。 【QJB型潜水搅拌机】选型注意事项: 为保证潜水搅拌机取得最佳运行效果,请使用方提供如下资料; ◎运用目的; ◎池型及尺寸,包括水深; ◎搅拌介质的特性,包括粘度、密度、温度、及固体物含量等。

6.性能原理 电机能在全浸没条件下连续运行、间隙运行和长期停止状态(正常工艺停机)后恢复运行,搅拌器在整个运行过程中保持平稳状态,无故障运行时间不少于10000小时,每日能连续24小时运行或间隙运行。 6.1导轨系统 导轨系统可自由调整搅拌器的提升和下降,并无需排空水池情况下拆卸和安装搅拌器,搅拌器全部的重量受力在一个支架上,并且这个支架可承受搅拌器产生的推力。 6.2电机壳体 搅拌器的电机壳体由优质不锈钢制造,壳体厚度足以承受何载,其表面加工平整光滑。 6.3叶轮 叶轮用不锈钢制造,且经动平衡实验。叶轮与轴之间装有锁定装置,以防转动时松动,叶片设计为三片式,具有自清洁及免振功能。 6.4轴 搅拌器的电机和叶轮采用直联式传动方式,轴由不锈钢制造,轴能承受所有轴向和径向载荷,轴承的设计寿命不少于100000小时,叶轮轴完全与搅拌介质隔离。 6.5轴封 采用两个相互独立高质量机械密封,机械密封面材料均采用耐腐蚀碳化钨,机械密封的使用寿命不低于25000小时。 6.6电机 潜水搅拌机的电机为三相鼠笼异步电机,防护等级为IP68,绝缘等级为F,潜水电机可连续运行,每小时可启动至少10次,潜水电机与搅拌器应是同一厂家制造。 6.7电缆和电缆密封 电机配有控制和动力水下电缆,为了打动最大限度地保护电机,即使在偶然的不正常运行情况下,电缆损坏且电机仍在水下,电缆进口也不允许有湿气进入电机和接线盒,电缆进口宜采用三道密封,内侧采用单芯电缆剥皮并镀锡后嵌入树脂中,中间整个电缆嵌入树脂中,最外部用长橡胶环密封,电缆密封组件应做成一集成。 6.8搅拌器保护 电机绕组上装有温度传感器以监测电机绕组过热,在搅拌器中应设置泄露和湿气保护传感器,应能监测并在搅拌器出现严重损坏前发出报警信号。

风机风量的计算、风机的选择

风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取至;机械传动效率对于三角带传动取,对于联轴器传动取。 风量如何计算要加入风机功率管道等因素,抽风空间的大小等 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说或米每秒的风速多长时间可以抽100立方或500立方的风以上的两个问题要求有个计算公式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2**3600。 6、风速计算:ν=Q/(r^2**3600) 7、管道直径计算:D=√(Q*4)/(3600**ν) 二、 1、风速为s时,计算每小500立方米风需要多长时间。假设管道直径为。 Q=ν*r^2**3600 =*2)^2**3600 =(立方) 500/=(小时)

搅拌器的选型教学文案

搅拌器的选型

第三节搅拌器的选型 (一)搅拌器选型 桨径与罐内径之比叫桨径罐径比d / D,涡轮式叶轮的d / D一般为 0.25~0.5,涡轮式为快速型,快速型搅拌器一般在H 1.3D时设置多层搅拌器,且相邻搅拌器间距不小于叶轮直径d。适应的最高黏度 为50Pa?s左右。 搅拌器在圆形罐中心直立安装时,涡轮式下层叶轮离罐底面的高度 C 一般为桨径的1~1.5倍。如果为了防止底部有沉降,也可将叶轮放置低些,如离底高度C D/10.最上层叶轮高度离液面至少要有 1.5d 的深度。符号说明 b――键槽的宽度 B――搅拌器桨叶的宽度 d——轮毂内经 d o ――搅拌器桨叶连接螺栓孔径 d1 ――搅拌器紧定螺钉孔径 d2 ――轮毂外径 D J——搅拌器直径 D1 ――搅拌器圆盘的直径

G――搅拌器参考质量 h1 ――轮毂高度 h2 ――圆盘到轮毂底部的高度 L――搅拌器叶片的长度 R――弧叶圆盘涡轮搅拌器叶片的弧半径 M ――搅拌器许用扭矩(N?m) t――轮毂内经与键槽深度之和 ――搅拌器桨叶的厚度 i ――搅拌器圆盘的厚度 工艺给定搅拌器为六弯叶圆盘涡轮搅拌器,其后掠角为45。,圆盘涡轮搅拌器的通用尺寸为桨径d j:桨长I:桨宽b 20:5:4,圆盘直径一 般取桨径的2,弯叶的圆弧半径可取桨径的3。 3 8

查HG-T 3796.1~12-2005选取搅拌器参数如下表 由前面的计算可知液层深度H 2.45m,而1.3D i 2210mm,故 H 1.3 D,则设置两层搅拌器。 为防止底部有沉淀,将底层叶轮放置低些,离底层高度为425mm,上层叶轮高度离液面2D J的深度,即1025mm。则两个搅拌器间距为1000mm,该值大于也轮直径,故符合要求。 (二)搅拌附件 ①挡板 挡板一般是指长条形的竖向固定在罐底上板,主要是在湍流状态 时,为了消除罐中央的“圆柱状回转区”而增设的。 罐内径为1700mm,选择4块竖式挡板,且沿罐壁周围均匀分布地直立安装。

潜水搅拌机选型计算

潜水搅拌机选型方法 B1 搅拌型 B1·1 根据图B1或表B1确定待搅拌介质的污泥校正系数。 B1·2根据图B2或表B2确定搅拌池的池型校正系数。 B1·3按每立方米清水所需耗功4.8 w,乘以污泥校正系数,再乘以池型校正系数,得出每立方米待混合搅拌介质所需耗功的实际值,再乘以待搅拌介质的体积,得出整池待混合搅拌介质所需的功率。 B2推流型 B2·1 根据图B1或表B1确定待搅拌介质的污泥校正系数。 B2·2根据图B2或表B2确定搅拌池的池型校正系数。 B2·3根据搅拌介质初始流速y,通过图B3确定单位流量的耗功。 B2·4用搅拌介质初始流速y乘以叶轮旋转时所形成的截面积计算出搅拌机的流量。 B2·5用搅拌机的流量乘以单位流量的耗功,再乘以污泥校正系数和池型校正系数,即可得出整池介质所需的功率。 表B1 污泥校正系数表 固体物含量一次污泥二次污泥水解污泥重度 % g/cm 1.00 1.00 1.00 1.00 1.01 2.00 1.15 1.00 1.00 1.02 3.00 1.50 1.15 1.00 1.03 4.00 2.00 1.50 1.20 1.04 5.00 2.60 1.90 1.50 1.05 6.00 3.60 2.40 1.90 1.06 7.00 5.50 3.40 2.40 1.07 8.00 9.00 4.80 3.30 1.08 9.00 6.80 4.70 1.09 l0.00 10.00 6.40 1.10 11.00 8.40 1.11 表B2池型校正系数表 深度/直径池型系数深度/直径池型系数 0.10 1.40 0.85 1.05 0.15 1.3l 0.90 1.08 0.20 1.25 0.95 1.11 0.25 1.19 1.00 L15 0.30 1.14 1.05 1.19 0.35 1.10 1.10 1.25 0.40 1.08 1.15 1.32

搅拌器参数选型表

搅拌器提资表表格:QL308 客户名称(业主):Client / Owner: 联系人:Contactor: 地址:Contact address: 电话:Telephone: 项目名称:Project Description: 传真:Facsimile: 设备名称:Equipment Name: 位号:Item No.: 搅拌釜数据必填 T A N K D A T A 圆形槽 Circular Tank (mm) 长形槽 Rectangle Tank (mm) 方形槽 Square Tank (mm) ( ) ( ) ( ) ( ) ( ) ( ) 槽体尺寸: Tank Dimension: 挡板数量: Qty. of Baffle 宽度: Width of baffle mm 长度: Length of baffle mm 离壁距离: Off-wall clearance mm 安装形式: Mounting 顶入 Top Entering 偏置 Off-set Entering 侧入 Side Entering 斜入 Inclined Entering 底入 Bottom Entering 装料量: Feed mass 最大 Max. m3 最小 Min. m3 空运转: No-load run 有 Y 否 N 安装环境: Installation 室内 ndoor 室外 Outdoor 操作条件及要求必填O P E R A T I N G D A T A 组分 Component 颗粒度 Granularity 重量 Weight ( % ) 体积 Volume ( % ) 密度 Density ( kg/m3 ) 粘度 Viscosity ( cp ) 温度 Temperature ( ℃ ) 压力 Pressure ( mPa ) 操作: Operating 设计: Design 混合物 Mixture 应用过程: Function of Agitator 混匀 Homogenizing 悬浮 Suspension 溶解 Solution 气体分散 Gas Dispersion 反应 Reaction 萃取 extraction 吸收 Absorption 传热 Heat Transfer 防止沉淀 Deposition Prevented 曝气 Aeration 发酵 Ferment 乳化 Emulsification 结晶 Crystallization 絮凝 Flocculation 稀释 Dilution 其它 Other 搅拌强度: Intensity of Mixing 温和(1~2级 Mild (class 1~2) 适中(3~5级) Moderate (class 3~5) 强烈(6~8级) Intensive (class 6~8) 剧烈(9~10级) Strenuous (class 9~10) 操作方式: Operating 连续 Continuous 间歇 Batch 混合时间: Mixing Time 分(min) 流体排量: Flowing Capacity m3/s ( ) ( )

搅拌器技术规格书模板

××搅拌器 技 术 规 格 书 编制: 审核: 批准:

一、总则 1.1 本技术规格书适用于搅拌器的招标采购,对搅拌器的功能、设计、结构、性能、安装和试验等方面提出技术要求。详细的技术要求见设备工艺数据表。 1.2 本技术规格书包含了对搅拌器最低限度的要求。并未对一切技术细节作出规定,也未充分引述有关标准和规范条文,卖方应提供满足本技术规格书和标准要求的高质量产品及其服务。对国家有关安全、环保等强制性标准,必须满足其要求。在遵守现行有关搅拌器的标准、规范、规定的原则下,本技术规格书对搅拌器在设计与制造、检验和试验、涂漆与包装运输、性能保证等方面提出了补充、强调或限制性的说明。 1.3 卖方必须对全部设备的性能负责,并保证在搅拌器技术规格书中规定的工况下全部设备均能安全、稳定、高效、连续地运转。在规定的操作条件下,设备设计使用寿命最少为20年,且不间断连续操作最少为1年。 二、卖方的责任 2.1 卖方有责任解答与设计、制造、检验以及设备运行有关的任何询问和问题。 2.2 卖方的责任包括保证期和保修期内应尽的责任。 2.3 卖方应及时提交设计院及招标方要求的设计基础资料、图纸和数据等。 2.4 卖方免费提供全过程的安装指导及试车考核。 三、现场条件 3.1现场自然条件 3.1.1大气温度 年平均温度: 9.8℃ 极端最高温度: 43℃ 极端最低温度: -31.2℃ 日照时数: 3326小时 3.1.2湿度 年平均相对湿度30-40%

最冷月平均相对湿度50-60% 最热月平均相对湿度<30% 3.2公用工程条件 3.2.1 电 电气防爆区域:非防爆 3.2.2仪表空气 压力0.65MPa(G) 温度:常温 四、相关标准 4.1搅拌器应遵守下述(但不限于)标准、规范和规定(最新版);如卖方采用 自身工厂标准,应将相关标准提交招标方认可。

搅拌器及配件参数表

HS系列磁力搅拌器 HS-4磁力搅拌器HS-7/HS-10磁力搅拌器 技术参数: 型号HS-4磁力搅拌器HS-7磁力搅拌器HS-10磁力搅拌器搅拌点位数目 1 1 1 每个搅拌点位最大 5 l 10 l 15 l 搅拌量(H2O) 最大搅拌量 5 l 10 l 15 l (H2O) 电机输入功率15 W 15 W 15 W 电机输出功率 1.5 W 1.5 W 1.5 W 转速显示刻度刻度刻度 速度范围100 - 1500 rpm 100 - 1500 rpm 100 - 1500 rpm 搅拌子最大长度30 mm 80 mm 80 mm 加热输出功率250 W 1000 W 1500 W 加热速度 2.5 K/min 5 K/min 5 K/min 加热温度范围50 - 500 °C 50 - 500 °C 50 - 500 °C 加热温度控制无级LED LED 加热温度控制精确 1 ±K 10 ±K 10 ±K 度 转速控制刻度0 - 6 刻度0 - 6 刻度0 - 6 固定安全温度回路550 °C 550 °C 550 °C

外接温度传感器接 PT1000 ETS-D5 ETS-D5 口 带传感器控温精确 0.5 ±K 3 ±K 3 ±K 度 介质温度稳定性0.5 ±K 3 ±K 3 ±K 工作盘材质陶瓷陶瓷陶瓷 工作盘外形尺寸100 x 100 mm 180 x 180 mm 260 x 260 mm 外形尺寸150 x 105 x 260 mm 220 x 105 x 330 mm 300 x 105 x 415 mm 重量 3 kg 5 kg 6 kg 允许环境温度 5 - 40 °C 5 - 40 °C 5 - 40 °C 允许相对湿度80% 80% 80% DIN EN 60529 保 IP 21 IP 21 IP 21 护方式 电压230 / 120 / 100 V 230 / 120 / 100 V 230 / 120 / 100 V 频率50/60 Hz 50/60 Hz 50/60 Hz 仪器输入功率270 W 1020 W 1520 W RET基本型、控制型磁力搅拌器 RET基本型磁力搅拌器RET控制型磁力搅拌器 技术参数: 型号RET基本型RET控制型 搅拌点位数目 1 1 20 l 20 l 每个搅拌点位最大搅拌量 (H2O) 最大搅拌量 (H2O) 20 l 20 l 电机输入功率16 W 12 W

矿井主扇风机选型计算

X X煤矿主通风系统选型 设计说明书 一、XX矿主要通风系统状况说明 根据我矿通风部门提供的原始参数:目前矿井总进风量为2726m3/min,总排风量为2826m3/min,负压为1480Pa,等积孔1.46㎡。16采区现有两条下山,16运输下山担负采区运输、进风,16轨道下山担负运料、行人和回风。我矿现使用的BDKIII-№16号风机2×75Kw,风量范围为25-50m3/S,风压范围为700-2700Pa,已不能满足生产需要。 随着矿井往深部开采及扩层扩界的开展,通风科提供数据 要求:矿井最大风量Q 大:6743m3/min,最大负压H 大 :2509Pa。现 在通风系统已不能满足生产要求,因此需对主通风系统进行技术改造。 二、XX煤矿主通风系统改造方案 根据通风科提供的最大风量6743m3/min,最大负压2509Pa,经选型计算,主通风机需选用FBCDZ-№25号风机2×220Kw。由于新选用风机能力增加,西井风机房低压配电盘、风机启动柜等也需同时改造。本方案中,根据主通风机选用的配套电机功率,选用高压驱动装置。即主通风系统配置主通风机2台,高压配电柜6块,高压变频控制装置2套,变压器1台。

附图:主通风机装置性能曲线图 附件:主通风机选型计算 附件: 主扇风机选型计算 根据通风科提供数据,矿井需用风量为Q:67433/min m ,通风容易时期负压min h :1480Pa ,通风困难时期负压max h :2509Pa,矿井自然风压 z h :±30Pa 。 1、 计算风机必须产生的风量和静压 (1)、通风机必须产生的风量为 f l Q K Q ==67433/min m =112.43/m s (2)根据通风科提供数据,在通风容易时期的静压为1480Pa ,在通风困难时期的静压为2509Pa 。 2、 选择通风机型号及台数 根据计算得到的通风机必须产生的风量,以及通风容易时期和

风机选型计算

出风口时风速为50m/s,从单位标注上看应该是每秒50米。‘时风速’是指每小时风速为50米吗?还是每秒50米?确认后我来帮你算一下。 补充回答: 1、我们先从三个已知条件中取二个条件来验证第三个条件。 1.1、当出风口为2平方米,流速达到50m/s时,计算流量。 根据流量公式 Q=νS3600 =50×2×3600 =360000(m3/h); 1.2、当出风口为2m2,风量10立方米每分钟时,计算出风口风速。ν=Q/(S3600) =10×60/(2×3600) =0.083(m/s) 1.3、当流速为50m/s,流量为10×60立方每小时,计算出风口面积。D=√[Q4/(ν3.14×3600)] =√[600×4/(50×3.14×3600)] =0.065(m) S=(D/2)^2×3,14 =(0.065/2)^2×3.14 =0,0033(平方米) 2、从1,1计算结果上来看,要满足出风口为2平方米,流速达到50m/s 这个条件,风量需达到360000(m3/h);从1.2计算结果看,当出风口为2平方米,风量10立方米每分钟,风速只有0.083(m/s);从1.3计算结果来看,流速为50m/s,流量为10×60立方每小时,出风口面积只需0.0033平方米。 3、结论:你所列出的条件不能相互成立。 QQ:1102952818 ‘新科’ 追问 风机的全压等于静压加上动压,而动压P=ρv2/2; 可以理解为风机的出口风速与风机的动压有关,或者说有相应的比例

关系,就像上式那样的。 那么提高风机的动压,是否可以提升风机的出口风速,出口风速的提高 能否按照公式v=根号下2P/ρ(就是上面的公式来推导的)来计算风速的大小,风速的提高有没有什么限制 回答 没错,正如你所述。动压的定义是:把气体流动中所需动能转化成压力的一种形式。通俗的讲:动压是带动气体向前运动的压力。 风速的获得,是风量通过管道截积上的时间,同时压力又是保证流量的手段。风速的提高主要受制于管道的沿程摩擦阻力。 追问 那么我想要的风机就是出口风速为50m/s,动压就得有1500,那么静压这个就不太好算了,说是跟通风管道有关,我可以画出通风管路的图,你能帮我算一下静压吗?出风口的面积就是0.2平方米,这样的话流量就得10立方米每秒,36000立方米每小时了,不知道有没有比较合适的风机,还有这样的风机应该选择什么样的类型,还有风机的驱动电机能不能换成内燃机驱动的,能够比较满足工况的情况下需要多大的功率,静压先按2000算,管路比较复杂 回答 根据你提供的参数,你可以选择 型号:4-72-10C 转速:1450(r/min) 功率:55(KW) 风量:40441(m3/h) 压力:3202(Pa)

反应釜搅拌器选型方法规范

反应釜搅拌器选型方法规范 反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。 由于液体的粘度对搅拌状态有很大的影响,所以根据反应釜内搅拌介质粘度大小来选型是一种基本的方法。几种典型的搅拌器都随粘度的高低而有不同的使用范围。随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。 根据搅拌过程的目的与搅拌器造成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。由于苏联的浆型选择有其本国的习惯,所以与我国常用浆型并不尽相同。 推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。选用时根据搅拌目的及流动状态来决定浆型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的影响。 其使用条件比较具体,不仅有浆型与搅拌目的,还有推荐的介质粘度范围、搅拌转速范围和槽的容量范围。 提出的选型表也是根据反应釜搅拌的目的及搅拌时的流动状态来选型,它的优点还在于根据不同搅拌过程的特点划分了浆型的使用范围,使得选型更加具体。比较上述表可以看到,选型的根据和结果还是比较一致的。下面对其中几个主要的过程再作些说明。 低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。由于推进式的循环能力强且消耗动力少,所以是最合用的。而涡轮式因其动力消耗大,虽有高的剪切能力,但对于这种混合的过程并无太大必要,所以若用在大容量液体混合时,其循环能力就不足了。

厨房风机选型和设计计算

厨房风机选型设计及计算方法 一、通风机基础知识 通风机是用于输送气体的机械,从能量的观点来,它是把原动机的机械能转变为气体能量的一种机械。通常把产生的压力小于或等于14700Pa以下者为通风机。按型式可分为:离心通风机、轴流通风机、混流通风机。 二、通风机的主要性能参数: 流量、压力、转速、功率及效率是表示通风机性能的主要参数,称为通风机的性能参数。 A.流量:单位时间内流经通风机的气体容积,称为流量(又称风量)。常 用单位为m3/s(米3/秒)、m3/min(米3/分钟)、m3/h(米3/小时)。 B.压力:通风机的压力是指升压(相对于大气的压力),即气体在通风机 内压力的升高值,或者说是通风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数是指通风机的全压(它等于通风机出口与 进口全压之差)。单拉为Pa(帕斯卡)。 C.转速:通风机转子旋转速度的快慢将直接影响通风机的流量、压力、 效率。单位为每分钟转数即rpm。

D.轴功率:驱动通风机所需要的功率N称为轴功率,或者说是单位时间 内传递给通风机轴有能量,单位为kw(千瓦)。 E.效率:通风机在把原动机的机械能传给气体的过程中,要克服各种损 失,其中只有一部分是有用功。常用效率来反映损失的大小,效率高,即损失小。从不同的角度出发有不同效率。 三、风机与系统的匹配基本原理、常见问题及原因分析 1、系统 空气系统简单地说,包括风机及与其进口或出口或两者都连接的管路。较为复杂的空气系统包括风机、管网、空气控制调节风门、冷却管、加热管、过滤器、扩散器、消声器和导向叶片等。风机是本系内给气体以能量,用以克服其它部件的流动阻力的一个组成部分。 2、系统与风机匹配的基本原理 每个空气系统对气流都有一个流动阻力和附加阻力,如果已精确地确定系统阻力,并提供了理想的进出口工况;当空气系统设定一个流量 QA时,那么选择风机时的压力就必须达到满足系统阻力的要求,当 风机安装在系统时,风机所产生的全压的一部分即静压用于克服管网 系统的阻力,全压的其余部分消耗在气流从管网出口时所具有的动能

搅拌器参数选型表

搅 拌 釜 数 据 必 填 T A N K D A T A 卜 工 _ r 1 - __1-^*^ 长 度 Length of baffle 最大 m3最小 m3 Max. Min. 空运转: No-load run □“否 安装环境: Installation 表格:QL308 客户名称(业主): Client / Owner: 联系人: Contactor: 地一 一址: Contact address: 电 话: Telephone: 项目名称: Project Description: 传 真: Facsimile: 设备名称: Equipment Name: 位 号: Item No.: 操 作 条 件 及 要 求 必 填 O P E R A T I N G D A T A 组 分 Component 颗粒度 Granularity 重量 Weight (% ) 体积 Volume (% ) 密度 Density (kg/m 3 ) 粘度 Viscosity (cp ) 温度 Temperature (C ) 压力 Pressure (mPa ) 操 作: Operating 设计: Design 混合物 Mixture 应用过程: Function of Agitator 口混匀 口悬浮 口溶解 口气体分散 匚1反应 Homogenizing Suspension Solution Gas Dispersion Reaction □萃取 口吸收 口传热 口防止沉淀 口曝气 extraction Absorption Heat Transfer Deposition Prevented Aeration 口发酵 口乳化 口结晶 □絮凝 口稀释 Ferment Emulsification Crystallization Flocculation Dilution □其它 Other 搅拌强度: Intensity of Mixing 口 温和(1?2级 □适中(3~5级) 口 强烈(6~8级) 口 剧烈(9~10级) Mild (class 1~2) Moderate (class 3~5) Intensive (class 6~8) Strenuous (class 9~10) 操作方式: Operating □连续 口间歇 Continuous Batch 混合时间: Mixing Time 分(min) 流体排量: Flowing Capacity m 3/s 搅拌器提资表 ) mm mm mm 槽体尺寸: Tank Dimension: 离壁距离 Off-wall clearance 方 形 槽 Square Tank (mm) .偏置 ■ Off -set Entering 圆 形 槽 Circular Tank (mm) 长 形 槽 Rectangle Tank (mm) 挡板数量: Qty. of Baffle 安装形式: Mounting .|侧入 口斜入 | 底入 — Side Entering Inclined Entering — Bottom Entering 宽度: Width of baffle I 顶入 Top Entering 装料量: Feed mass 室内 室外 I 室内 丨丨室外 ndoor Outdoor

风机风量的计算、风机的选择

风机风量如何计算 风机风量得定义为:风速V与风道截面积F得乘积、大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量、 风机数量得确定根据所选房间得换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时);Q——所选风机型号得单台风量(m3/h)。风机型号得选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配得风机型号,风机与湿帘尽量保持一定得距离(尽可能分别装在厂房得山墙两侧),实现良好得通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出得空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要得就是确定风量; 2、风量得确定要瞧您做什么用途,不同得用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力与局部阻力,将它们相加,乘以裕量系数,得出需要得压力; 4、查阅风机性能数据表,或者请风机厂家查找对应得风机型号即可 风机风量与风压计算功率,工业方面用,设计中,通过风量与风压计算风机得大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0、719至0、8;机械传动效率对于三角带传动取0、95,对于联轴器传动取0、98。 风量如何计算?要加入风机功率管道等因素,抽风空间得大小等? 比如说:100平方得房间我需要每小时抽风500立方,要怎么求出它得风机得功率,管道等。还有风速与立方怎么算出来得,比如说0、1或0、5米每秒得风速多长时间可以抽100立方或500立方得风?以上得两个问题要求有个计算公式,公式中得符号要注明。 一、 1、管道计算 首先确定管道得长度,假设管道直径。计算每米管道得沿程摩擦阻力:R=(λ/D)*(ν^2*γ/2)。 2、计算风机得压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3、14*3600。 6、风速计算:ν=Q/(r^2*3、14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3、14*ν) 二、 1、风速为0、5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0、3m。 Q=ν*r^2*3、14*3600 =0、5*(0、3/2)^2*3、14*3600 =127、2(立方) 500/127、2=3、9(小时)

风机选型的计算公式 风机流量及流量系数

风机选型的计算公式风机流量及流量系数 [字号:大中小] 2013-06-19 阅读次数:9415 1、标准状态:指风机的进口处空气的压力P=101325Pa,温度t=20℃,相对湿度φ=50%的气体状态。 2、指定状态:指风机特指的进气状况。其中包括当地大气压力或当地的海拔高度,进口气体的压力、进口气体的温度以及进口气体的成份和体积百分比浓度。 3、风机流量及流量系数 流量:是指单位时间内流过风机进口处的气体容积。 用Q表示,通常单位:m3/h或m3/min。 流量系数:φ=Q/(900πD22×U2) 式中:φ:流量系数 Q:流量,m3/h D2:叶轮直径,m U2:叶轮外缘线速度,m/s(u2=πD2n/60) 4、风机全压及全压系数: 风机全压:风机出口截面上的总压与进口截面上的总压之差。用PtF表示,常用单位:Pa 全压系数:ψt=KpPtF/ρU22 式中, ψt:全压系数Kp:压缩性修正系数PtF:风机全压,Pa ρ:风机进口气体密度,Kg/m^3 u2:叶轮外缘线速度,m/s 5、风机动压:风机出口截面上气体的动能所表征的压力,用Pd表示。常用单位:Pa 6、风机静压:风机的全压减去风机的动压,用Pj表示。常用单位:Pa 7、风机全压、静压、动压间的关系: 风机的全压(PtF)=风机的静压(Pj)+风机的动压(Pd) 8、风机进口处气体的密度:气体的密度是指单位容积气体的质量,用ρ表示,常用单位:Kg/m3 9、风机进口处气体的密度计算式:ρ=P/RT 式中:P:进口处绝对压力,Pa R:气体常数,J/Kg·K。与气体的种类及气体的组成成份有关。 T:进口气体的开氏温度,K。与摄氏温度之间的关系:T=273+t 10、标准状态与指定状态主要参数间换算: 流量:ρQ=ρ0Q0 全压:PtF/ρ= PtF0/ρ0 内功率:Ni/ρ= Ni0/ρ0 注:式中带底标"0"的为标准状态下的参数,不带底标的为指定状态下的参数。 11、风机比转速计算式: Ns=5.54 n Q01/2/(KpPtF0)3/4 式中: Ns:风机的比转速,重要的设计参数,相似风机的比转速均相同。 n:风机主轴转

搅拌器及其选型

小直径高转速搅拌机的选型及使用 目前在SW中国的几个工厂使用最多的搅拌设备是小直径高转速搅拌机。其中尤其以涡轮式搅拌器(齿式叶片)为主,推进式搅拌器(桨状叶片)为辅,其他形式的叶片就更少了。现仅以前二种搅拌机为例,互相学习探讨一下相关的问题。 一、搅拌 搅拌是使釜(或槽)内物料形成某种特定方式的运动(通常为循环流动)。 搅拌注重的是釜内物料的运动方式和剧烈程度,以及这种运动状况对于给定过程的适应性。

二.小直径高转速搅拌机1.种类: (1)。推进式搅拌器 (2)。涡轮式搅拌器

(1)推进式搅拌器(旋桨式搅拌器) 其叶轮直径较小,通常仅为釜直径的0.2~0.5倍,但转速较高,可达 100~500r/min。 叶片端部的圆周速度较大,可达5~15m/s。 工作原理: 工作时,推进式搅拌器如同一台无外壳的轴流泵,高速旋转的叶轮使液体作轴向和切向运动。 液体的轴向分速度使液体沿轴向向下流动,流至釜底时再沿釜壁折回,并重新返回旋桨入口,从而形成如图3-3所示的总体循环流动,起到混合液体的作用。 液体的切向分速度使液体在容器内作圆周运动,这种圆周运动使釜中心处的液面下凹,釜壁处的液面上升,从而使釜的有效容积减小。下凹严重时桨叶的中心甚至会吸入空气,便搅拌效果急剧下降。 当釜内物料为液-液或液-固多相体系时,圆周运动还会使物料出现分层现象,

起着与混合相反的作用,故应采取措施抑制釜内物料的圆周运动。 推进式搅拌器的特点是液体循环量较大,但产生的湍动程度不高,常用于低黏度( <2Pa·s)液体的反应、混合、传热以及固液比较小的溶解和悬浮等过程。 (2)涡轮式搅拌器(齿状叶片为例) 该搅拌器有多种型式。大部分盘状叶片都属此类(如齿状叶片)其叶轮直径亦较小,通常也仅为釜径的0.2~0.5倍,转速可达10 ~ 500 r/min,叶端圆周速度可达4~ 10m/s。

厨房风机选型及设计计算

厨房风机选型设计及计算方法 通风机基础知识 通风机是用于输送气体的机械,从能量的观点来,它是把原动机的机械能转变为气体能量的一种机械。通常把产生的压力小于或等于14700Pa以下者为通风机。按型式可分为:离心通风机、轴流通风机、混流通风机。 通风机的主要性能参数: 流量、压力、转速、功率及效率是表示通风机性能的主要参数,称为通风机的性能参数。 A.流量:单位时间内流经通风机的气体容积,称为流量(又称风量)。 常用单位为m3/s (米3/ 秒)、m3/min (米3/分钟)、m3/h (米3/ 小时)。 B.压力:通风机的压力是指升压(相对于大气的压力),即气体在通风 机内压力的升高值,或者说是通风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数是指通风机的全压(它等于通风机出口与进口全压之差)。单拉为Pa(帕斯卡)。 C.转速:通风机转子旋转速度的快慢将直接影响通风机的流量、压力、 效率。单位为每分钟转数即rpm。

D.轴功率:驱动通风机所需要的功率N 称为轴功率,或者说是单位时间 内传递给通风机轴有能量,单位为kw(千瓦)。 E.效率:通风机在把原动机的机械能传给气体的过程中,要克服各种损 失,其中只有一部分是有用功。常用效率来反映损失的大小,效率高,即损失小。从不同的角度出发有不同效率。 三、风机与系统的匹配基本原理、常见问题及原因分析 1、系统 空气系统简单地说,包括风机及与其进口或出口或两者都连接的管路。较为复杂的空气系统包括风机、管网、空气控制调节风门、冷却管、加热管、过滤器、扩散器、消声器和导向叶片等。风机是本系内给气体以能量,用以克服其它部件的流动阻力的一个组成部分。 2、系统与风机匹配的基本原理每个空气系统对气流都有一个流动阻力和附加阻力,如果已精确地确定系统阻力, 并提供了理想的进出口工况;当空气系统设定一个流量QA时,那么选择风机时的压力就必须达到满足系统阻力的要求,当风机安装在系统时,风机所产生的全压的一部分即静压用于克服管网系统的阻力,全压的其余部分消耗在气流从管网出口时所具有的动能上;风机会产生设计流量QA。(如图1 所示)。如果没有精确地

搅拌选型

搅拌装置设计 1、电动机选择:1)型号和额定功率要满足搅拌装置设备开车时启动功率增大的要求;2) 对于气体或蒸汽爆炸危险环境没根据爆炸危险环境的分区等级或爆炸范围危险区域内气体或蒸汽的级别、组别和电动机的使用条件,选择防爆电动机的机构形式和相应的级别、组别;3)处在化学腐蚀环境时,根据腐蚀环境的分类选择相适应的电动机;4)还应考虑可能引起机械和电器损坏的环境(灰尘、温度、雨水、潮湿等);对于高防爆、小尺寸以及适应不同扭矩性能可选用液压及启动马达; 2、减速机的选择:1)选用标准减速机以及专业厂家的产品;2)应考虑减速机在震动和 载荷变化情况下的平稳性,并连续工作,一般选择传动效率较高的齿轮减速机;3)出轴旋转方向要求正反双向传动的,不宜选用涡轮蜗杆减速机;4)易燃易爆环境,一般不采用皮带传动减速,就否则必须有防静电措施;5)搅拌轴向力原则上不应由减速机轴承承受,否则需要经验算核定;6)减速机额定功率应大于或等于正常运行中减速机输出轴的传动功率,同时需满足搅拌设备开车时启动轴功率增大的要求;7)输入轴转速应与电动机转速相匹配,输出轴转速应与工作要求的搅拌转速相一致;8)输入和输出轴相对位置的选择应适合斧顶或斧底传动布置的要求;9)减速机润滑冷却方式的选择(膨胀油箱、自冷、风冷、水冷、油泵外循环);10)服务系数的选择,如无特别要求,中小功率搅拌≥1.5,大功率搅拌≥1.8; 3、机架的选择:1)应选用标准型的机架;2)无支点机架一般仅适用于小传递小功率和小的 轴向载荷,电动机或减速机具有两个支点,并经核算确认轴承能够承受由搅拌轴传递而来的径向和轴向载荷时刻选用无支点机架;3)具有以下条件之一,可以选用单支点机架:a 电动机或减速机有一个支点,经核算可以承受搅拌轴的载荷;b 设置底轴承,作为一个支点;c 轴封本体设有可以作为支点的轴承;d 在搅拌容器内、轴中部设有导向导向轴承,可作为一个支点;4)当不具备选用无支点或单支点机架条件时,应选用双支点机架;5)根据传递的搅拌轴载荷大小、方向以及对传动装置上各支点的总体对中要求等诸因素合理选择机架或搅拌轴上的轴承形式;6)采用柔性轴时应考虑到机架与搅拌容器之间是否需要隔振的问题; 4、联轴器的选择:1)应选用标准型联轴器;2)采用无支点机架,并且除电动机或减速 机支点外无其他支点时,必须用刚性联轴器;3)在中间轴承、地轴承和轴封不作为支点的情况下,单支点机架应选用刚性联轴器;4)采用双支点机架应选用弹性联轴器; 5)搅拌轴分段时,其自身连接必须采用刚性联轴器;【刚性联轴器,弹性联轴器,液

相关文档