文档库 最新最全的文档下载
当前位置:文档库 › 植物线粒体与细胞质雄性不育研究进展

植物线粒体与细胞质雄性不育研究进展

植物线粒体与细胞质雄性不育研究进展
植物线粒体与细胞质雄性不育研究进展

5种细胞质雄性不育小麦败育的生物学特性与育性恢复

5种细胞质雄性不育小麦败育的生物学特性与育性恢复 细胞质雄性不育是普遍存在于高等植物的一种生物学现象,在杂种优势利用中具有重要的价值。为了解不同类型异质雄性不育小麦败育的生物学特征、易恢性差异和不同恢复系的恢复力差异,本研究以5种异质小麦雄性不育系(K706A、Va706A、Ju706A、C6706A、U706A)和同型保持系706B及10个K型恢复系(6521-2,LK783,1321,223原-9,9023晚,X197,宿7078,宿968,中国春,WM5-5)为材料,对所有参试材料的1B/1R核型进行鉴定,并且对不育系和保持系的花药、籽粒形态进行比较;并对5种不育系的易恢性和10个恢复系的恢复能力进行评价(杨凌、乾县和三原),筛选出优良的不育系和恢复系,并对恢复系所含恢复基因进行等位性测验;利用K型小麦温敏雄性不育保持系TP116B、TM3315B为试验供体材料,以5种细胞质雄性不育系为受体材料,进而分析K型温敏基因导入其他细胞质中的温敏特性。试验获得结果如下:1.不育系与保持系花药有明显差异。 不育系花药短、皱缩,有不同程度的弯曲顶端,花药不开裂、不散粉;保持系花药饱满,花药壁开裂,散出大量的花粉。碘染结果表明,K706A,Ju706A,U706A花粉败育型为染败,花粉粒圆形,染色不均匀,出现部分呈棕黑色反应;不育系 Va706A,C6706A花粉败育为典败型,形态不规则,梭形或三角形,无棕黑色反应;保持系706B花粉形状规则,大小一致,圆形,呈深棕黑色,染色充分均匀。2.采用特异性分子标记及醇溶蛋白的A-PAGE检测方法对所有参试材料进行1B/1R类型鉴定,结果表明,Va706A、Ju706A、C6706A、U706A、706B为1BL/1RS易位纯合体,宿968、宿7078、LK783、1321、6521-2、WM5-5、X197、223原-9为非1BL/1RS 易位材料,K706A、9023晚为1BL/1RS易位杂合体。 3.5个不育系与10个恢复系杂交组合F1的结实率存在很大的差异,不育系

植物细胞质雄性不育性是由于细胞器和核基因组之间的不兼容性和防止自我授粉的结果 2

植物细胞质雄性不育性是由于细胞器和核基因组之间的不兼容性和防止自我授粉的结果,使混合育种农作物提高收益率。自1970年代(野生流产WA)细胞质雄性不育性已经利用在大多数三系杂交水稻生产,但在这一特性的分子基础仍然未知。我们在这里报告一个新的最近起源于野生水稻的线粒体基因WA352。授予WA细胞质雄性不育性是因为WA蛋白质编码和核线粒体蛋白质交互编码产生COX11基因。在WA352引起的细胞质雄性不育性系,WA352基因优先积累在花药绒毡层,从而抑制COX11基因在过氧化氢代谢的功能和引发绒毡层过早的细胞程序性死亡以及顺向花粉堕胎。WA352基因可以由两个恢复系的生育基因抑制诱导导致不孕,表明不同机制的存在来抵消有害的细胞质因素。因此,和细胞质雄性不育性相关的细胞质—核不兼容性是由于一个新进化的线粒体基因和基本核基因之间的有害交互作用守恒。 在混合农作物育种,跨越不同的自交系产生F的1杂交种通常有比亲本更高的收益率,一个现象是杂种或者杂种优势。然而,生产足够数量的杂交种子因很多物种构成的逻辑的问题,诸如大米的自我授粉繁殖。用水稻细胞质雄性不育性系作为雌株的母本来避免自花传粉对商业生产杂交水稻种子至关重要。1970年代细胞质雄性不育线粒体基因WA352在野生稻中被发现,野生稻中的细胞质被用到与籼稻杂交来生产细胞质雄性不育系的WA352线粒体基因系。三系杂交水稻的培育技术,其中99%使用细胞质雄性不育线粒体基因WA352系和其他的也携带了同样的细胞质雄性不育线粒体基因WA352的细胞质雄性不育系,三系杂交水稻培育技术具有较强的杂种优势,能增加粮食产量达到20%。三系水稻杂交培育种已经被种植在中国水稻种植面积总量的55%到60%,同样被种植在其它大约30个国家里,正因如此对农业有了一个很伟大的影响。很多细胞器功能障碍,比如线粒体病,是由于线粒体基因或相关的核基因基因突变所引起的。相比之下,细胞质雄性不育通常和额外的线粒体基因相关,因此可以由两个恢复系的核基因来抑制,其中许多三角状五肽蛋白质编码重复。为细胞质雄性不育系统提出了解释,包括线粒体能量不足,细胞质雄性不育蛋白细胞毒性和过早的绒毡层细胞程序性死亡。然而,细胞质雄性不育基因如何包括雄性不育尚未阐明,以及是否细胞质雄性不育感应涉及细胞质雄性不育蛋白质相互作用和核编码的线粒体系统因素未知。 为了确定CMS-WA的关键因素,我们通过检测整个CMS-WA线粒体基因组转录的RNA印迹,和一个探测器包含核糖体蛋白基因rpl5透露在CMS-WA系Zhenshan 97(ZS97A)18的不同文本。此外,这受Rf信使核糖核酸基因的影响。序列分析的两个ZS97A线粒体基因组克隆表面杂化到rp15透露一个15,15742 - bp重新排列DNA区域包括五段匹配水稻线粒体和核序列和两段来历不明的(补充图1 a)基因组。这个区域包含一个未知的rpl5 ORF下游包括三个水稻线粒体基因组片段和一段来历不明的(图1)基因组。5′区(512 bp)的ORF是相同的是前相同的水稻线粒体ORF,orf284,而3′区(583 bp)的ORF是高度相似的另一个预测水稻线粒体ORF,orf288;这些特征表明,这是最近进化重组结构。这种嵌合ORF编码一个假定的352 -残渣蛋白质与三个螺旋的跨膜片段(补充图 1 b),因此命名为WA352(野生流产的352)。不像大多数CMS基因那样和已知功能的线粒体基因有相似之处,比如那些参与ATP 产生的2-4,WA352和这些已知基因没有相似之处。植物线粒体(CMS)基因组转化目前是有限的,但CMS基因的功能可以通过测试核转换候补基因(s)与线粒体运输信号(MTS)12、19融合。我们构造了MTS-WA352转换结构,MTS-GFP-WA352和WA352由CaMV35S促进(P35S)和转移它们到中华

雄性不育性及其在杂种优势中的应用

第五节雄性不育性及其在杂种优势中的应用尽管利用杂种优势已成为提高农业生产效益的主要途径之一,但除了像玉米等少数雌雄异株或雌雄同株异花作物外,在未解决人工去雄的困难以前,难以在生产上大面积推广。而解决这一困难的有效途径是利用植物的雄性不育性。目前水稻、玉米、高粱、洋葱、油菜等作物已经利用雄性不育性进行杂交种子的生产,并产生了巨大的经济效益和社会效益。 一、雄性不育的类别 (一)细胞质不育不育由细胞质基因控制,而与核基因无关。其特征是所有可育品系给不育系授粉,均能保持不育株的不育性,也就是说找不到恢复系。这对营养体杂优利用的植物育种有重要的意义。如:Ogura萝卜细胞质不育系。 (二) 核不育不育性是由核基因单独控制的(简称GMS)。 1、一对隐性核基因控制的雄性不育性蔬菜不育材料大都属于此类。msms 不育,MsMs或Msms可育,共有三种基因型。msms与MsMs交配后代全部可育;msms与Msms交配后代可育、不育株1:1分离;Msms自交后代可育、不育株按3:1分离。只有用Msms作父本与msms不育株测交,可以获得50%的雄性不育株和50%的雄性可育株。 由于在一个群体里,有50%的可育株用于保持不育性。通常称其为“两用系”(ABline)或甲型两用系。将其用于杂种一代制种,则需要拔除50%的可育株。因此,隐性核不育后代不能得到固定(100%)的不育类型。 2、一对显性基因控制的雄性不育性有杂合的不育株Msms、纯合的可育株两种基因型,纯合不育株(MsMs)理论上存在但实际上无法获得。用Msms不育株与msms可育株杂交后代是半不育群体,此种两用系也叫乙型两用系。 3、由多个核基因控制的雄性不育中的一些组合可育成全不育系。有核基因互作假说和复等位基因假说(曹书142或景书159)。 (三)核质互作雄性不育(简称CMS) 不育性由核基因(msms)和细胞质基因(S)共同控制的,又简称为胞质不育型。 一个具有核质互作不育型的雄性不育植物,就育性而言,有一种不育基因型和五种可育基因型。不育基因型S(msms);可育基因型:N(MsMs)、N(Msms)、N(msms)、S(MsMs)、S(Msms)。因此有不育系S(msms)、保持系N(msms)、恢复系

油菜雄性不育研究进展

油菜雄性不育研究进展 生命科学学院生物技术(非师范)专业2009级 指导教师 摘要:杂种优势是当前利用油菜育种提高产量最有成效的手段。油菜雄性不育材料的发掘、研究与利用,极大地丰富了油菜杂种优势利用研究的内容和途径,奠定和丰富了相应的材料基础。本文主要从油菜雄性不育研究进展和应用状况以及细胞质雄性不育、细胞核雄性不育、环境敏感型雄性不育这几个方面研究。通过本文研究的综合分析可以系统的总结出油菜雄性不育的研究进展,并更好的应用于油菜种植技术,期望能进一步提高我国油菜的产量。 关键词:细胞质雄性不育;细胞核雄性不育;环境敏感型雄性不育 Abstract:Heterosis is the current use of rapeseed increased production of the most effective means. Rapeseed excavation, research and use of male sterile materials, greatly enriched the content of rape heterosis utilization research and approach, and enrich the corresponding material basis. This article mainly from the rapeseed research progress and application status and male sterility cytoplasm male sterility and nuclear male sterility (CMS), environmental sensitive male sterility that several aspects of research. Can through the comprehensive analysis in this paper, we study the system summed up the rape of the research progress of male sterility, and better application in rape planting technology, the hope can further improve the rape production in China. Key words:Cytoplasmic male sterility (CMS);The nucleus male sterile;Environmental sensitive male sterility 随着研究的深入,不难发现油菜雄性不育是一种极其复杂的生态遗产现象。育性的遗传表达易受环境条件的影响,很可能具有微效多基因差异的遗传背景,

雄性不育

雄性不育系 几乎所有的二倍体植物,不论是野生或栽培的,都可以找到导致雄性不育的核基因。据不完全统计,现已发现近200种植物存在着核质互作型的雄性不育性,其不育程度和遗传稳定性颇不相同。育种上需要的是对环境条件不敏感,能够稳定遗传的雄性不育系。 雄性不育系主要在杂种优势利用(植物)上作母本,可以省去去雄工作,便于杂交制种,为生产上大规模利用杂种一代优势创造条件。核、质互作型不育系的种子繁殖,须靠一个花粉正常而又能保持不育系不育特性的雄性不育保持系授粉。杂交制种则须有一个花粉可育,并能使杂种恢复育性的育性恢复系。这样,不育系、保持系和恢复系(分别简称A、B和R 系)三系配套,就成为利用不育系以大量配制杂交种子的重要前提。 雄性不育系主要可分两类: 一、细胞核雄性不育系 即由控制花粉正常育性的核基因发生突变而形成的不育系。 1、不育机制:一般由1对隐性基因控制,但也有由2~3 对隐性基因互作而产生的雄性不育性(如莴苣)。假如控制花粉正常育性是一对显性基因RfRf,则由于隐性突变,杂合体Rfrf自交后将会分离出纯合基因型rfrf,表现为雄性不育。大麦、玉米、高粱、大豆、番茄、棉花等很多作物都有这样的突变体。但偶尔还发现有杂合的显性核不育现象。其正常可育的基因型为msms,而经显性突变后产生的杂合基因型Msms会由于Ms的显性作用表现为雄性不育,当它被正常育性植株msms授粉结实时,其子代按1:1比例分离出显性不育株和隐性可育株,并依此方法代代相传。1972年中国在山西省发现的由显性单基因控制的太谷核不育小麦就属于此类。 2、利用:因隐性核不育系难以找到有效的保持系,故不能大量产生不育系种子供制种用;但可用杂合可育株给不育株授粉,在正常育性受 1对显性基因控制的情况下,其子代将按1:1比例分离出纯合不育株和杂合可育株。用杂合可育株对不育株授粉,下一代育性分离仍是1:1的比例。采用这种作法可以较大量地繁殖不育株与可育株的混合群体。这种群体内既有不育株又有保持不育性能力的植株,有人因此称之为两用系。杂交制种时,必须在开花前剔去母本群体内的可育株,以保证制种的纯度。一般栽培品种都可作隐性核不育系的恢复系,因此易于配出强优势组合。但要在混合群体开花前的短促时间内剔除全部可育株,对于繁殖系数低、用种量大的作物常因十分费工而不易做到。 1965年,美国R.T.拉梅奇为解决大麦核不育系种子繁殖的困难,提出利用“平衡三级三体”的遗传机制:即在正常染色体上具有隐性雄性不育和隐性稃色正常的基因,在额外染色体上有相应的显性可育基因,并在其附近设法引入一个能使稃壳有色的显性标志基因,两者紧密连锁。额外染色体一般不能由花粉传递,只能以30%的比例由雌配子传给下代。这样的三级三体自交后将产生二体和三体两类植株,二体植株具纯合的雄性不育基因和正常稃色;三体植株带有一个显性可育基因和有色稃壳。通过光电比色装置对种子稃色进行筛选,可将带雄性可育基因的有色种子剔除,以繁殖纯不育系。这一设想后得到实现,育成了1个大麦杂交种,并在生产上推广。但后来在推广繁殖过程中,发现额外染色体通过雄配子的传递率比预期的高,上述机制受到干扰,而且杂种优势不够强,因而停止应用。对于繁殖系数高、用种量少的作物如番茄等,则可直接应用两用系作母本,于开花前逐株检查育性并剔除可育株,授以父本恢复系花粉,产生杂交种子。总之,核不育系由于难以找到保持系,目前在生产上仍不能有效利用。而单基因控制的太谷显性核不育小麦在没有作出标志基因之前,只能作为常规育种中开展轮回选择和回交育种的亲本之用。

一个与小麦雄性不育育性转换相关的MADS-box转录因子基因

作物学报ACTA AGRONOMICA SINICA 2008, 34(4): 598-604 http://https://www.wendangku.net/doc/a49261667.html,/zwxb/ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@https://www.wendangku.net/doc/a49261667.html, 基金项目:教育部重点科研项目(105166); 陕西省留学回国人员科研经费; 教育部春晖计划启动项目(Z2005-2-7104) 作者简介:璘周琳(1982-), 女, 硕士研究生, 主要从事作物分子遗传育种研究。E-mail: linlinzhou1219@https://www.wendangku.net/doc/a49261667.html, *通讯作者(Corresponding author): 胡银岗。E-mail: huyingang@https://www.wendangku.net/doc/a49261667.html,; huyingang@https://www.wendangku.net/doc/a49261667.html, Received(收稿日期): 2007-09-29; Accepted(接受日期): 2007-10-30. DOI: 10.3724/SP.J.1006.2008.00598 一个与小麦雄性不育育性转换相关的MADS-box 转录因子基因 璘周琳1 宋国琦1 李红燕1 胡银岗1,2,3,* 何蓓如1 (1西北农林科技大学农学院, 陕西杨凌 712100; 2国家小麦改良中心杨凌分中心, 陕西杨凌712100; 3陕西省农业分子生物学重点实验 室, 陕西杨凌 712100) 摘 要:为了揭示YS 型小麦温敏雄性不育育性转换的基础, 构建了该类型不育系A3017的不育和可育幼穗正、反杂交的两个SSH-cDNA 文库。经文库比较, 在不育文库中筛选出一个与MADS-box 基因同源的EST 序列(GenBank 登录号: 36925702)。以该EST 序列的同源性比对和拼接结果为依据, 设计引物对该基因在可育和不育幼穗中的表达进行了RT-PCR 分析, 结果表明, 该基因在不育幼穗中表达量较高, 可育幼穗中表达量很低。对不育幼穗中扩增出的cDNA 片段进行克隆测序, 获得了666 bp 的cDNA 序列。序列分析表明, 该片段编码160个氨基酸, 具有MADS-box 转录因子的典型结构域K-box, 被定名为TaMS-MADSbox , 与一个小麦MADS box 转录因子基因WAG 的氨基酸序列的相似性为94%。进一步以3种不同类型的小麦雄性不育系和保持系的幼穗cDNA 为材料, 利用半定量RT-PCR 对该基因的表达模式分析发现也存在类似差异, 该基因在不育系幼穗中表达量较高, 而保持系幼穗中表达量较低。以上分析表明, 该MADS-box 转录因子基因的表达与小麦雄性不育系的育性转化相关, 表达量高时表现雄性不育, 表达量低时表现雄性可育。 关键词:普通小麦; 温敏雄性不育; 育性转换; MADS-box 转录因子; 表达分析 A MADS-Box Transcription Factor Related to Fertility Conversion in Male Sterile Wheat Lines ZHOU Lin-Lin 1, SONG Guo-Qi 1, LI Hong-Yan 1, HU Yin-Gang 1,2,3,*, and HE Bei-Ru 1 (1 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi; 2 Yangling Branch of China National Wheat Improvement Centre, Yangling 712100, Shaanxi; 3 Key Laboratory of Molecular Biology for Agriculture of Shaanxi Province, Yangling 712100, Shaanxi, China) Abstract : Male sterility is one of the major characteristics to be used in heterosis utilization of crops, in which thermo-sensitive or photo-sensitive male sterility is very important for two-line hybridization due to the conversion of their male fertility under special weather conditions. YS type thermo-sensitive male sterile wheat (Triticum astivum L .) lines are applicable for heterosis use in the major wheat production areas of northern China.To investigate the molecular basis of male fertility conversion of YS type thermo-sensitive male sterile wheat lines, we constructed the sterile and fertile suppression subtractive hybridization (SSH) cDNA libraries respectively, using the cDNA of the male sterile or fertile young spikes from the same individual of one YS type thermo-sensitive male sterile wheat line A3017 under controlled male sterile or fertile conditions. Comparing the EST sequences between the two cDNA libraries, an EST (GenBank accession number: 36925702) highly similar to MADS box transcription fac-tor gene was selected from the sterile SSH-cDNA library and used as the probe to search the dbEST. A pair of primers was de-signed based on the aligned sequence of highly homological EST sequences, and used to detect the expression difference of this gene between male sterile and fertile spikes via Reverse Transcriptase PCR (RT-PCR). The results showed that the expression of this gene in male sterile spikes was much higher than that in fertile spikes. Then the RT-PCR fragment amplified from the male sterile spikes was cloned and sequenced, a cDNA sequence with 666 bp and encoding 160 amino acids was obtained. The cDNA fragment contained the typical K-box domain of MADS-box, and designated as TaMS-MADSbox . The deduced amino acids were 94% similar to WAG (BAC22939), an MADS box transcription factor of wheat. The expression profiles of this MADS-box tran-scription factor gene in the male-sterile lines and their maintainers of three types of male sterile wheat lines were further analyzed

小麦光温敏雄性不育转换规律研究进展_权威

小麦光温敏雄性不育转换规律研究进展 权威1,2,孙辉1,赵昌平1*,刘黎明1,于卓2 (1.北京杂交小麦工程技术研究中心,北京100097;2.内蒙古农业大学农学院,内蒙古呼和浩特010019) 摘要 小麦光温敏雄性不育的转换规律,是二系法杂交小麦应用的前提和基础。不同的小麦光温敏不育系表现出不同的育性转换特点,包括光温敏感时期和光温转换阈值。对光温敏雄性不育小麦的育性转换规律进行了分析,以期为鉴定、筛选二系杂交小麦安全制种生态区和不育系高效繁种区提供依据。 关键词 小麦;光温敏雄性不育;育性转换 中图分类号 S512.1 文献标识码 A 文章编号 0517-6611(2007)21-06349-02 Research Adva nce in the Fertility Alteration of the Photo-therm o-sensitiv e Ma le Sterile Wheat QU AN Wei et al (Hybrid Wh eat En gin eerin g an d T ech nique Research Cen ter,Beijing Mun icip al Academ y of Agriculture an d Forestry Sciences,Bei-jin g100097) A bstract In t he th esis th e research advance in t he fertilit y alteration of the photo-thermo-sensitive male sterile wheat(T riticu m aes ti vu m L.)was s um ma-rized.Fertility alteration is the base of th e t wo-lin e hybrid wh eat application.Different s terile wheat showed differen t characteristics of fertilit y alterati on, includin g the stage of ph oto-sen siti vity an d thermo-sen sitivity an d the critical point of tem perature and d ay length.Defin it ude of fertilit y alteration in the ph oto-thermo-s en sitive male steril e wheat provid ed foun dation for breeding diffusely in differen t area of ph oto-therm o-sensitive male sterile wheat line. Key w ords Wheat;Photo-thermo-sen sitive m ale sterile;Sen sitive stage 杂种优势利用是大幅度提高作物产量的主要途径。目前,小麦杂种优势利用研究主要集中于:核质互作雄性不育(三系法)、化学杀雄技术(化杀法)和光温敏雄性不育(二系法)[1]。光温敏二系杂交小麦体系同前两种方法相比,其显著的优点为:免除了不育系的异交繁种,具有恢复源广,易筛选强优组合,制种成本低等[2],因此近年来发展极为迅速。所谓的光温敏二系法,就是在特定的光照和温度生态条件下,不育系表现雄性不育用于其中;在另一光照和温度条件下雄性可育,可自身繁殖[3],从而达到一系两用的目的。明确光温敏雄性不育系的育性转换机制、光温敏感时期和光温转换阈值,是二系法杂交小麦应用的前提和基础,也是指导二系杂交小麦的安全制种和繁种的关键。 1 小麦光温敏雄性不育系的选育 雄性不育是植物界一种普遍存在的现象。1951年,日本学者木原均将普通小麦细胞核导入尾形山羊草细胞质中产生A型雄性不育系———世界上第一个小麦雄性不育系,从而揭开了小麦杂种优势利用研究的序幕[4]。1962年,美国Wil-son和Ross利用提莫菲维小麦与普通小麦“比松”杂交,育成了世界上第一个具有实用价值的T型不育系,并实现三系配套[1]。1979年,日本学者Murai K报道具有D2型山羊草细胞质普通小麦“农林26”的育性表现与较长光照有关的现象,同年,邓景杨等[5]发现太谷核不育小麦,后来人们又开始利用蓝粒等标记性状进行研究。何觉民等[6](1992)从远缘杂交中发现了核型光温敏雄性不育材料ES-3,4,5等。谭昌华等[7] (1992)从杂交选育中发现并选育出了重庆温光型核不育小麦C49S和C86S。傅大雄等[8](1993)于穿梭育种中获得了K M型短日照低温不育的光温敏小麦材料。赵昌平等[2]于1994年在北京育成一批冬性小麦光温敏不育系ZP35、ZP49,以及光温敏不育系BS20和BS366。荣德福等(1999)在普通 基金项目 北京农业育种基础研究创新平台项目(YZP T01-03)。 作者简介 权威(1980-),女,内蒙古呼伦贝尔人,硕士,从事小麦杂种优势利用研究。*通讯作者,研究员,E-mail:cp - zhao@vip. https://www.wendangku.net/doc/a49261667.html,。 收稿日期 2007-04-07小麦中也发现了光温敏雄性不育现象,于2001年育成了两极光敏型雄性不育小麦337S[9]。雄性不育小麦材料的发现和进一步研究,使得小麦光温敏两系法途径的开拓从理论走向实践,应用研究不断深入。 2 小麦光温敏雄性不育的育性转换 2.1 光温敏感时期 对于光温敏雄性不育小麦来说,并不是所有生长时期的光温变化都能引起育性的转化,只有在特定的敏感时期,在特定的光长、温度条件下才能够导致其育性的转化。对于不同的材料,有其不同的敏感期。Mur ai K 对农林26异质系的研究得出,光周期敏感期为小花分化期[11]。周美兰等[12]研究得出,ES-10育性转换的光敏感期为雌雄蕊分化至药隔形成期,而ES-8存在两个光敏感期,最敏感期为雌雄蕊分化期至药隔形成期,次敏感期约在药隔形成期至四分体形成期[13]。张建奎等[14]的研究认为光照诱导C49S育性转换主要在孕穗期至抽穗期,其次为药隔至孕穗期。吴秋云等[15]通过分期播种试验对生态雄性不育小麦ES-50育性转换特性研究表明:抽穗前21~13d的温度与其育性有密切的关系。赵凤梧等[16]认为冬小麦温敏型雄性不育系L T-1-3A的敏感期为雌雄蕊分化期到花粉粒成熟期。何蓓如等[17]对温敏不育小麦的研究表明:A3314的敏感期是在孕穗期,而Y S型的敏感期是减数分裂期。李云伏等[18]对光温敏核雄性不育小麦BS20的研究认为,其育性转换敏感期为药隔到单核期。邹应斌等研究得ES-3和ES-4敏感期是雌雄蕊原基分化到四分体形成期[19]。总的来讲,多数光温敏雄性不育小麦的育性转换敏感期范围在减数分裂期,但具体时期因材料不同而存在较大的差异。 2.2 温度与育性转换 为了找到光温敏小麦的温度敏感期及其育性转换温度临界值,育种工作者开展了大量的研究。张建奎等[20]通过人工气候箱和田间分期播种试验得出:小麦温光型隐性核不育两用系C49S育性温度敏感期较长,因此,在敏感期内的各个生育时期对应的临界温度也有所差异,总的来说是低温不育,高温可育,敏感期内总体的平均温度低于10.5℃时表现高度不育,高于12.5℃时表现高度可 安徽农业科学,J ou rnal of Anh ui Agri.Sci.2007,35(21):6349-6350,6362 责任编辑 罗芸 责任校对 李洪DOI:10.13989/https://www.wendangku.net/doc/a49261667.html, ki.0517-6611.2007.21.051

刘祖洞遗传学第三版答案 第13章 细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对子代某些性状的表现产生影响的现象。这种效应只能影响子代的性状,不能遗传。 因此F1代表型受母亲的基因型控制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精卵结合时,精子的细胞质往往不进入受精卵中,因此,细胞质遗传性状只能通过母体或 卵细胞传递给子代,子代总是表现为母本性状,属于细胞质遗传体系,2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,有什么不同的地方? 答: 1)相同:细胞核遗传和细胞质遗传各自都有相对的独立性。这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因与核基因一样,可以自我复制,可以控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性。 2)不同: A. 细胞质和细胞核的遗传物质都是DNA分子,但是其分布的位置不同。细胞核遗 传的遗传物质在细胞核中的染色体上;细胞质中的遗传物质在细胞质中的线粒体 和叶绿体中。 B. 细胞质和细胞核的遗传都是通过配子,但是细胞核遗传雌雄配子的核遗传物质相 等,而细胞质遗传物质主要存在于卵细胞中; C. 细胞核和细胞质的性状表达都是通过体细胞进行的。核遗传物质的载体(染色体) 有均分机制,遵循三大遗传定律;细胞质遗传物质(具有DNA的细胞器如线粒 体、叶绿体等)没有均分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一代均表现显性亲本的性状;细胞质遗传时, 正反交不同,子一代性状均与母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样的:先把雄性不育自交系A【(S)rfrf】与雄性可育自交系B【(N)rfrf】杂交,得单交种AB,把雄性不育自交系C【(S)rfrf】与雄性可育自交系D【(N)RfRf】杂交,得单交种CD。然后再把两个单交种杂交,得双交种ABCD,问双交种的基因型和表型有哪几种,它们的比例怎样? 解: A【(S)rfrf】? B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓↓ AB【(S)rfrf】?CD【(S)Rfrf】 ↓ 基因型:1/2【(S)rfrf】1/2【(S)Rfrf】 表型:雄性不育雄性可育 4.“遗传上分离的”小菌落酵母菌在表型上跟我们讲过的“细胞质”小菌落酵母菌相似。 当一个遗传上分离的小菌落酵母菌与一个正常酵母菌杂交,二倍体细胞是正常的,以后形成子囊孢子时,每个子囊中两个孢子是正常的,两个孢子产生小菌落酵母菌。用

玉米C型雄性不育系的研究应用

研究简报2010年增刊 玉米C型雄性不育系的研究应用 邵思全李琰聪 (云南省保山市农业科学研究所,678000) 摘要:玉米C型雄性不育的应用是提高种子纯度质量,降低种子生产成本的一种有效方法,本研究通过多年大量的田间试验,先后鉴定(调查)了T、C、S群(型)不育胞质的育性表现,结果选定C型不育胞质的Cb37为基础材料,对很多自交系进行不育系的转育和恢复系的筛选工作,先后育成3个组合,完全实现了C型不育化三系配套技术生产杂交种子,不需要掺合常规杂交种,直接应用于大面积生产,经多年多点推广种植表明,不仅种子纯度质量高,而且恢复散粉株率在96%以上。转育成功的不育系CB107、CV8112、CM丹1511不育株率稳定在99.6%~99.8%。 关键词:玉米;C型雄性不育系;研究;应用 玉米是禾谷类作物中大规模应用雄性不育的作物之一,特别是大面积杂交制种,要做到母本去雄及时和彻底实在是一件不容易的事,在杂交玉米种子生产上,由于去雄失误造成损失的实例屡见不鲜,杂交种种子质量不稳定是当前玉米种子生产上亟待解决的问题,利用雄性不育系制种是提高种子质量的一种有效方法。采用雄性不育系作为母本配制杂交种,不但能减少制种劳动强度,降低种子生产成本,而且能够有效地防止自交,提高杂交种子的纯度质量,促进玉米大面积增产。 国外实践证明,T群、C群和S群玉米雄性不育胞质曾经大量用于生产,2006年,美国C群和S群不育胞质的杂交种应用,已超过玉米种植总面积的40%;前苏联地区已普及不育胞质玉米杂交种;我国C群和S群玉米雄性不育胞质的杂交种,2009年应用面积仅占全国玉米播种面积的3%左右。这些不育系的应用存在的问题:首先,有的不育系类型中,如T型不育系严重感染小斑病,典型例子是1970年美国由于大面积种植T型胞质的杂交种导致玉米小斑病暴发流行,损失约30亿美元;其次,不育性的遗传较复杂,育性和恢复性不易稳定,如1986年四川省种植1.33万h m2C 型玉米杂交种C73(C77A×自330)单交曾出现恢复性散粉能力较差而造成了较大的损失。对于上述问题,当时由于存在认识上、技术上、管理上的种种原因,使我国玉米雄性不育杂种优势的研究和推广应用受到严重挫折,国家“八·五”攻关期间研究课题被取消,拉大了我国与国际的差距。 尽管如此,由于玉米雄性不育特性的利用在杂交种制种上的明显优越性,国内外玉米育种家仍坚持探索,旨在让这种特性更好地为人类服务。1986年以来云南省保山市农业科学研究所在西南山区开展玉米不育特性的研究应用,先后鉴定了T、C、S型不育胞质在本区生态条件下的育性表现,并对很多自交系进行不育系的转育和恢复系的筛选工作,目前已有3个组合实现三系配套使用。因此,利用玉米细胞质雄性不育特性以提高杂交种质量,仍不失为当前一项十分切实而有效的措施。在玉米细胞质雄性不育类型中,C型细胞质不育特性属较为稳定的类型之一,因此,结合杂交玉米育种工作,先后对自交系B107、V8112、M206和M 丹1511等进行C型雄性不育的转育和利用转育成功的不育系选育三系配套杂交种的研究应用。 1材料与方法 1.1材料用外引C型不育系材料(Cb37)为母本与本所正在育种上重点使用的11个自交系杂交,观察它们测交一代的育性表现,对其中不具备恢复性能的B107、V8112、M206和M丹1511等优良系继续采用回交方法进行核转换,以转育同型不育系。在回交转育过程中,对纯度不足的自交系单株成对测验法筛选留种。所用的C型不育系,使用前曾经过2年3代育性鉴定,其雄性不育特性十分稳定,B107是从掖107的杂株自交选育而成的,M206是从MO17Ht1中分离选育而成的,V8112和M丹1511是从省内引入的自交系。 1.2方法恢复系是从不育系转育后第3代开始测配筛选,每代用20~30个材料,3年5代共测配107份材料,其中,高代系34个,中低代材料73个。选育的重点放在有苗头组合上。对共测材料中某些纯合度较差,但配合力和恢复力较好的系采用“单株花粉两分法”测交选育。 育性的鉴定(包括不育系的雄花不育性和杂交种 基金项目:云南省玉米育种推广协作攻关项目;云南省现代农业玉米产业 技术体系建设项目 67

植物雄性不育类型及其遗传机制的研究进展

植物雄性不育类型及其遗传机制的研究进展 李泽福1) 夏加发2) 唐光勇2)  (1)安徽省农业科学院省部共建水稻遗传育种重点开放实验室,合肥230031;2)安徽省农业科学院水稻研究所) 摘要 对植物雄性不育分类方法和类型进行了概述;对细胞质雄性不育的经典遗传及其分子遗传机制、细胞核雄性不育的遗传及不育基因的定位等研究进展进行了综述。 关键词 植物雄性不育;类型;遗传机制 Types and G enetic Mechanisms of P lant M ale Sterility Li Z efu et al (K ey Lab of Rice G enetics and Heredity,Anhui Academy of Agricultural Sciencs Hefei230031) Abstract The classification methods and types of plant male sterility was concluded;Classic genetic researches and m olecular mechanisms of cyto2 plasm ic male sterility(C MS),classic genetic researches and m olecular-marked sterile genes of genetic male sterility(G MS)were reviewed in this paper. K ey w ords Plant male sterility,Classification,G enetic mechanism 植物雄性不育是一种植物在有性繁殖过程中不能产生正常的花药、花粉或雄配子的遗传现象,它广泛存在于开花植物中。早在1763年K olreuter就观察到雄性不育现象,一个世纪后,C oleman(1876)首先引入“植物雄性不育”概念。据K aul(1988)报道,已经在43科、162属、320个种的617个品种或种间杂种中发现雄性不育[1]。植物雄性不育是作物杂种优势利用的重要途径,杂种优势利用已成为许多作物育种的主要方向和目标,并在生产上取得了很大地成功,如我国杂交水稻种植面积占水稻总面积的46%~55%,其产量比常规品种增产20%~30%[2]。植物雄性不育性状的分类和遗传机制是杂种优势利用的基础,在这方面已取得许多研究进展,尤其是在不育性遗传上,已形成了较为科学的理论,并且用于指导雄性不育系的选育和改良。基于此,笔者对植物雄性不育的类型及其遗传机制的研究进展作一综述,以期为雄性不育系的选育提供理论参考。 1 植物雄性不育的类型 1.1 植物雄性不育类型概述 导致雄性不育的因素是多种多样的,因此,在分类上也因标准不同出现不同的分类系统。Sears(1947)根据雄性不育材料基因型的差异,将雄性不育划为3类,即细胞质不育型、细胞核不育型和质核互作不育型,即“三型学说”;Edwarson(1956)将“三型学说”修改为“二型学说”,即核不育型和核质互作不育型两类;G abelman(1956)根据花粉、雄蕊的形态将雄性不育划分为花粉型、雄蕊型和功能型3类;Heslop-Harrison(1971)按世代交替把雄性不育划分为孢子体不育和配子体不育2种类型。这说明只要分 作者简介:李泽福(1965-),男,安徽霍邱县人,副研究员,主要从事水稻遗传育种研究。 收稿日期:2000210226类的依据和标准不同,分类的结果就不同。即使在同一作物内,也会因分类标准不同而有不同分类系统。如水稻雄性不育就有4种分类方法[3],分别是按恢保关系、不育细胞质来源、花粉败育形态和遗传特点来划分的。 K aul[1]在总结前人研究的基础上将植物雄性不育归纳为非遗传型和可遗传型2大类。非遗传的类型根据不育性诱发原因被分为化学诱导、生理诱导和生态诱导3个类型;可遗传型又分为表现型雄性不育和基因型雄性不育2类。前者是以不育性表现为基础的,后者是以不育性的遗传本质为基础的。表现型雄性不育又根据导致雄性不育的表现型异常的不同划分为孢子发生型、结构型和功能型3类;基因型雄性不育又分为核不育型、胞质不育型和核质互作型。随着与细胞质不育基因特异作用的核基因的发现,已经证实,细胞质雄性不育仅仅是核质互作雄性不育的一个短暂的过程,不能被认为一种雄性不育类型,因此,从不育性的基因型组成角度上划分,植物雄性不育有核质互作雄性不育和细胞核雄性不育2种类型。 1.2 核质互作雄性不育 雄性不育性由核不育基因和细胞质不育基因相互作用而产生的,为了与核雄性不育对应,称为细胞质雄性不育(C ytoplasm ic m ale sterility,C M S)。根据水稻、玉米、小麦和油料等作物C M S分类研究情况,C M S可进一步做以下分类。 1.2.1 按不育胞质来源分类。核置换法是C MS选育的重要方法,大多数的C MS都是通过该方法选育成的,因此,按细胞质来源不同进行分类具有简单明了、易于应用的特点,而被广泛应用。水稻C MS可分为种间核置换,野生稻和栽培稻之间的核置换,栽培稻和野生稻之间的核置换,籼稻和粳稻亚种间的核置换,粳稻和籼稻亚种间的核置换及进化程度不同或地理上远距离的籼籼间或粳粳间的核置换等6种类型[4]。傅寿仲[5]按细胞质来源的不 安徽农业科学,2000,28(6):742-746 Journal of Anhui Agricultural Sciences

相关文档