文档库 最新最全的文档下载
当前位置:文档库 › 调速装置

调速装置

调速装置
调速装置

课题八调速装置

目的要求:

1.了解调速器的作用、分类。

2.掌握机械调速器的结构和工作原理。

3.掌握调速器的静态、动态性能指标。

4.熟悉液压调速器、电子调速器的工作原理。

5.熟悉液压调速器的典型结构。

6.掌握液压调速器的调节。

重点难点:

1.调速器的静态、动态性能指标。

2.液压调速器稳定调速率的调节。

教学时数:4学时

教学方法:多媒体讲授

课外思考题:

1.按调速范围可将调速器分成几种?简述其调速特点及应用场合?

2.为什么船舶发电柴油机必须装定速调速器?

3.调速器中的哪些参数反映灵敏性、稳定性、准确性?

4.调速器的动态性能指标与静态性能指标是什么?我国有关规定对它们有什么具体要求?

5.什么叫调速器标定工况的稳定调速率δ2?它的作用是什么?

6.试述Woodward UG-8型液压调速器面板上四个旋钮的名称及作用是什么?

7.什么叫电子调速器?与普通的调速器相比有哪些优点?

课题八调速装置

第一节柴油机转速的调节

一、调速器的作用

柴油机的不同转速是通过改变每一循环的喷油量获得的。在一定的外界负荷条件下,供给柴油机一定燃油量,使柴油机发出的功率与外界负荷相平衡,柴油机就在某一转速下稳定运行。

船用柴油机的外界负荷是经常变动的,欲使柴油机的功率与新的外界负荷相适应,就应及时改变喷油量。为了使柴油机在选定的转速下稳定运行,必须装有专门的调速装置─一调速器,通过它自动地改变柴油机喷油泵的喷油量,以适应外界负荷的变化。

发电柴油机要求在外界负荷(用电量)变化时能保持恒定的转速,以保证发电机输出的电压和频率恒定,满足并车及供电需要。所以发电柴油机必须装设定速调速器,确保外界负荷变化时,柴油机的转速基本不变。

用作船舶推进的柴油机,受装载、风力、波浪及水流等影响,外负荷(船舶阻力)会忽大忽小。但为了保证主机在特殊航行条件下(风浪中螺旋桨露出水面、断轴、掉桨)的安全,根据我国有关规定必须装“极限调速器”(简称限速器),当主机转速增至115%标定转速时自动切断燃油供给。另外,为了避免海况变化造成的主机转速上下波动,提高柴油机的工作可靠性和工作寿命,通常都在主机上装设“全制式调速器”,使转速不随外界负荷变化而产生波动。

二、调速器的分类

1.接转速调节范围分类

(1)极限调速器(限速器)

(2)定速调速器(单制式调速器)

(3)双制式调速器

(4)全制式调速器

2.按作用原理分类

(1)机械调速器(直接作用式):它直接利用飞铁(飞重)产生的离心力与调速弹簧张力之间的不平衡力去移动油量调节机构来稳定柴油机的转速。其结构简单、工作可靠、维修方便,广泛用于中、小型柴油机。其缺点是工作能力较小,不能实现恒速调节。

(2)液压调速器(间接作用式):它利用飞铁产生的离心力与调速弹簧张力之间的不平衡力去操纵液压伺服器(油压放大器),利用液压作用产生更大的动力去移动油量调节机构来调节柴油机的转速。液压调速器转速调节范围广、调节精度高、稳定性好、通用性强,但其结构复杂、调试及维护所要求的技术较高,它广泛用于大、中型柴油机。

(3)电子调速器:信号监测或执行机构采用电气方式的调速器称电子调速器。

三、超速保护装置

此种超速保护装置是一种运转安全装置,它与调速器不同,它只能限制柴油机转速,本身无调速特性,在柴油机正常运转范围内不起作用,只在柴油机转速达到规定限值时才发生动作

使柴油机立即停车或降速。按规定,超速保护装置必须与调速器分开设立而独立工作,无论柴油机的操纵机构处于什么状态,该装置的保护性动作必须迅速而准确。

第二节机械式调速器

一、机械式调速器的结构和工作原理(图8-1)

图8-1 机械式调速器原理图

柴油机运转时,飞铁座架和转轴一同旋转,飞铁便产生离心力,通过推脚向上作用在滑动套筒下端,滑套的上端受调速弹簧向下的张力作用。当柴油机发出的功率与外界负荷刚好平衡时,其转速稳定,飞铁的离心力与弹簧张力相等,柴油处于稳定运转。

若外界负荷减小,则柴油机发出的功率会大于外界负荷而使转速增加,这时飞铁离心力将大于弹簧的预紧力而使滑动套筒上移,通过直角形杠杆迫使油量调节机构向减油方向(右)移动(图中虚线所示)。随着喷油量减少,柴油机转速便下降,飞铁离心力也减小了,直到其离心力与调速弹簧张力又平衡为止,此时柴油机又重新稳定运行。从图中虚线可以看出,新的滑动套筒位置稍高于原来位置,调速弹簧又稍被压缩。说明:外负荷减小后,在新的稳定位置,飞铁的离心力比原先的大,经调速器自动调速后的转速比原来稍高,出现“转速差”。这是机械式调速器所固有的特性,是避免不了的。

同理,当外界负荷增加时,调速器的动作与上述相反,飞铁离心力与弹簧作用力在彼此都减小的情况下重新稳定的转速比原转速稍低。

另外,若想提高柴油机的转速,可以将调整螺钉向下旋动,加大调速弹簧5的张力,使油量调节机构左移加油。同理也可通过调整螺钉降低柴油机的转速。

二、调速器的性能指标(图8-2)

1.调速器的静态指标

1)稳定调速率δ 2

调速器标定工况下的稳定调速率δ2是根据标定工况突卸全部负载求得的。它是指当操纵手柄在标定供油位置不变,柴油机在标定工况稳定运行时突卸全部负载,调速器起作用使柴油机重新稳定运行后,其最高空载转速(空车稳定转速)n 0max 与标定转速n b 之差同标定转速n b 比值的百分比,即

稳定调速率δ2用来衡量调速器的准确性。调速器存在调速率(也称速度降)说明当外界负荷变化时,柴油机的转速会有少量波动,其值较小就表示准确性好;如果δ2过大,不仅对被带动的工作设备的稳定工作不利,即便对空转时柴油机零件的磨损也是有害的。

稳定调速率的大小应根据柴油机的用途和要求而定,我国海船建造规范规定,船用主机调速器的稳定调速率应不超过10%,船用发电柴油机调速器的稳定调速率应不超过5%。对于单台柴油机允许δ2=0,它表示柴油机的转速不会随外界负荷变化而保持恒速运转。但在几台柴油机并联工作时,为了按比例均衡分配负载,各柴油机的稳定调速率δ2必须相等且不为零。

图8-2 突卸、突增负载时转速调节过渡过程

2)转速波动率Φ或转速变化率?

柴油机在稳定运转时,转速也会产生微小的波动,转速的变化程度可用“转速波动率Φ”或“转速变化率?”来评价,两者定义不同,均用来衡量调速器的稳定性。一般让柴油机在某转速稳定运行15min ,测定其间的转速波动情况。

转速波动率Φ表征稳定工况下转速波动的大小,转速变化率?表征其转速变化的大小。为保证柴油机可靠运转,一般规定在标定工况时,Ф≤0.25%~0.5%,?≤0.5%~1%。如果超过规定范围,就表示调速系统的工作不正常。

%100max 02?-=b

b n n n δ%100)(min max ?-=Φm

m c c n n n n %100min max ?-=

m c c n n n ?

3)不灵敏度ε

调速器在工作时,因为调速器内的运动元件之间存在摩擦阻力,从调速器到喷油泵之间的传动件(拉杆、杠杆、销轴等)之间有间隙,各零件运动时有摩擦阻力和惯性力。因此当柴油机外界负荷有点变化并引起转速微量增加或减少时,调速器不会立即作出反应去改变供油量,而要到转速变化量足够大时,调速器才开始起到喷油量的调节作用。这种现象称为调速器的不灵敏性,通常用不灵敏度ε来表示不灵敏性的大小:

不灵敏度过大会引起柴油机转速不稳定,严重时会导致调速器失去作用,甚至产生飞车事故。不灵敏度ε随柴油机转速高低会有差异,当柴油机转速较低时,因调速器预紧力较小,产生张力也小,而传动机构的阻力却反而增大,造成不灵敏度加大。

一般规定在标定转速时ε≤1.5%~2%,在最低稳定转速时ε≤10%~13%。

2.调速器的动态指标

由一个平衡转速过渡到另一个平衡转速之间所反应的调速系统的特性,称为调速器的动态特性,用作评定调速系统调节过渡过程性能的动态指示,通常采用下列二项。

1)瞬时调速率1δ

根据试验时负荷的突卸与突加,可分为突卸负荷瞬时调速率+1δ和突加负荷瞬时调速率_1δ两种。

①突卸负荷瞬时调速率+1δ:指柴油机先在标定工况下稳定运行,然后突然卸去全部负荷,测定转速随时间的变化关系。

②突加负荷瞬时调速率_1δ:与突卸负荷情况相似,当柴油机在最高空载转速n max 下稳定

运转时,突加全部负荷,转速也会突然下降,最低瞬时转速为n min ,再经几次收敛性的波动后,才会稳定在标定转速n b 运行。

船用主机一般要求1δ≤10%~12%,对船用发电柴油机要求1δ≤10%。

2)稳定时间t s

%10012?-=m

n n n ε%100max 0min 1?-=-b

n n n δ%100max 1?-=+b

b n n n δ

过渡过程的稳定时间是指突卸(或突加)全负荷后,转速开始波动到转速达到新的稳定范围(指转速波动率Ф不大于规定值)为止的时间,表明消除过渡过程中波动现象的快慢,以秒计。

稳定时间t s越短,说明转速消除得快,调速器的稳定性越好。t s一般限制在5s~10s,对于船用柴油发电机,要求t s≤5s。

一个好的调速系统,其调速过程应满足三个条件:一是过渡过程的转速波动是收敛的,即转速波动的幅度随时间增长而减小;二是过渡中转速瞬时波动的幅度不应过大,以免柴油机超速而影响其可靠性;三是过渡时间不应过长,转速应迅速达到稳定。

第三节液压调速器

对于大功率柴油机,移动油量调节机构需要较大的力,为此在感应元件和油量调节机构之间插入一个液压放大元件(液压伺服器),利用放大了的动力去拉动油量调节机构;为了改善调节性能,在感应元件和驱动机构之间还设有“反馈装置”。

一、液压调速器的工作原理

1.无反馈简单的液压调速器(图8-3)

在稳定运行时,飞重3的离心力和调速弹簧4的张力平衡,滑阀7处于图示位置,正好切断伺服器油缸的工作通路,齿轮油泵8产生的压力油经溢流阀9回流。

当外负荷减小时,柴油机转速增高,飞重3的离心力增加,推动速度杆2右移,于是摇杆5以A点为中心逆时针摆动,使节点B带动滑阀7右移,控制孔打开,压力油进入油缸6的右腔;同时油缸6的左腔与低压油路相通,在压差作用下,伺服活塞带动油泵齿条10左移,减少供油,使柴油机转速回降至原来转速。速度杆2和滑阀7又回到原来平衡(中央)位置,切断伺服油缸的工作油通路。此时,动力活塞停止在新的位置,调节过程结束。

当外负荷增加时,柴油机转速降低,调节过程按相反方向进行。

这种无反馈装置的简单调速器,在调速过程中,由于惯性使滑阀和动力活塞的运动总是滞后于发动机转速的变化,因而其油量的增减不可能根据负荷的变化而做到“适可而止”,调节总是位移过度,而又总是企图维持原速,最终使转速连续波动而不能稳定工作,甚至有可能发生急剧波动而根本不能工作。

图8-3 无反馈简单的液压调速器工作原理图图8-4 刚性反馈液压调速器简图

图8-6 双反馈液压调速器简图 2.刚性反馈液压调速器(图8-4)

要想使液压调速器能稳定调节,在调速器中还要加一个“反馈机构”(又称补偿装置),其作用是:在伺服活塞移动的同时,对滑阀产生一个反作用,使其向平衡位置方向移动,防止油量调节过度,使增减油“适可而止”,提高调速系统的稳定性。

与前述无反馈的简单液压调速器不同的是杠杆AC 上端A 不安装在固定的铰链L ,而是改为用销轴与伺服活塞3的活塞杆相连。这样动力活塞的位移就通过杠杆反馈至滑阀6上,反馈环节采用机械连接,故称为“刚性反馈”。

但是这种调速器调速终了时,滑阀回到原位,伺服活塞(连同油量调节杆)移到了一个新的平衡位置,故A 点已不在原位而随着外负荷大小而变动。与滑阀6相连的B 点在任何稳定工况下均回到原来位置,因而C 点就稳定在新的位置,此时调速弹簧的新张力就不同于原来的张力,故柴油机不能回复到原有的转速。从图8-4的情况分析可知:当外负荷减小时(弹簧又稍被压缩),新的稳定转速将比原来转速升高;反之当外负荷增加时,新的稳定转速将比原速稍有降低。其结论是:刚性反馈液压调速器不能实现“无差调速”,其稳定调速率δ2不能为零。

3.弹性反馈液压调速器(图8-5,P203)

这种反馈形式是在刚性反馈的基础上增

加了一个弹性环节,它由缓冲器5、补偿活塞

6、补偿弹簧

7、节流针阀8组成。缓冲器油

缸内充满了工作油,左右两空间通过管道及针

阀8接通。当缸体5受力后左右移动时,缸内

液体从一空间经针阀流到另一空间,由于针阀

的节流使活塞6的移动比缸体5的移动滞后,

起到缓冲作用。

由于被压缩的补偿弹簧7有弹性复原的

功能,使A 点带动补偿活塞6在缓冲器油缸内

向右移动,回到原来位置,补偿活塞右方油缸

中的油经节流针阀8回流至左方,最后弹簧7及杠杆

AC 均恢复到原来位置,使速度杆也回到起始位置。这

样,调速过程结束后的发动机转速能保持原速不变,稳

定调速率δ2可以为零。

4.双反馈液压调速器(图8-6)

当柴油机并车运行时,除了要求调速器应有良好的

稳定性外,还应按正确的比例分配各机承担的负荷。由

此,调速器应具有弹性反馈机构以保证调节稳定性;同

时还应具有刚性反馈机构以使调节过程中具有一定的

稳定调速率,保证各机按比例分配负荷。图中刚性反馈

杠杆EFG 和弹性反馈机构(缓冲器K 、补偿弹簧S

、节

图8-5 弹性反馈液压调速器原理图

流针阀C)由动力活塞杆带动。当外界负荷降低,柴油机转速升高时,飞重向外飞开,带动杠杆AB以A点为支点逆时针转动,使滑阀杆D上移,工作压力油进入伺服器动力活塞的下方而由其上方泄回低压空间。由此,动力活塞上行减油。一方面使刚性反馈杠杆EFG绕G点顺时针转动,由F点增加弹簧预紧力,使其稳定后转速较原转速稍有提高(即δ2>0);另一方面通过弹性反馈机构保证恒速稳定调节。通常在这种双反馈调速器中,可通过弹性反馈中节流针阀的开度大小调节其稳定性。通过刚性反馈EFG的两臂比例调节稳定调速率的大小,如使F与G 重合,则δ2=0。

这种调速器具有广阔的转速调节范围,且稳定性好,调节精度高,灵敏度高,在船用柴油机中得到了广泛使用。

二、液压调速器的典型结构

船用柴油机使用的液压调速器大多为双反馈全制式。其中以 Woodward UG和 Woodward PGA型液压调速器应用最普遍。其UG型分为杠杆式(The lever option)和表盘式(The dial option)两种;PGA型为气动遥控式,多用于遥控主机。

1.Woodward UG8表盘式液压调速器

在其正面的表盘上有四个旋钮:调速旋钮、静速差旋钮、负荷限制旋钮、转速指示器。它的结构原理如图8-8所示。

图8-8 UG-8电表盘式液压调速器原理图

当柴油机在某一负荷下稳定运转时,飞重39的离心力与调速弹簧8的预紧力相平衡,滑阀38处于图示中间位置将控制孔27封闭,使动力活塞23下方空间封闭。由此动力活塞固定不动,输出轴12和油量调节杆13等均固定在某一位置,使柴油机有一个相应于外负荷的供油量。柴油机在由弹簧8所设定的转速下稳定运转。

当柴油机负荷增大时,转速下降,这时飞重的离心力小于调速弹簧的弹力,使飞重向内收拢,调速弹簧推动调速杆38向下移动,使浮动杆35以右端C为支点向下摆动,推动滑阀36下移并打开套筒上的控制孔27,让高压油进入动力活塞23的下腔。由于动力活塞下部面积为上部面积的两倍,即为差动式,高压油向上的作用力大于向下的作用力,使动力活塞向上移动,带动输出轴12朝加油方向(逆时针方向)旋转,使柴油机供油量增加,转速回升。当动力活塞上移转动输出轴12的同时,使反馈杠杆45左端上移,右端下移,带动大反馈活塞33下移,压缩反馈油路中的滑油,迫使一部分滑油从补偿针阀31的小孔流出。由于针阀的节流作用,反馈油路中的油压仍有上升,克服反馈弹簧29的弹力,使小反馈活塞30上移。这时浮动杆35以左端A点为支点逆时针转动,带动滑阀36上移,使其提前返回原来的平衡位置,重新封闭控制孔27,切断压力油,使动力活塞23停止加油。此后,由于反馈弹簧29的作用,使小反馈活塞30逐渐下移复位,多余的滑油经针阀31排出。此下移速度与调速杆38的上行速度相适应,使滑阀36处在中央位置不动,柴油机恒速转动。这一恒速反馈机构的作用是防止调速器加油过量。此时,飞重39、调速杆38、滑阀36和小反馈活塞30回到原先的平衡位置,而动力活塞23、输出轴12和大反馈活塞33就停在对应于负荷增加后所需的供油量位置上,柴油机在原先的转速下稳定运转,获得新的平衡。这样实现了恒速反馈调节。为了保证调速过程有一定的静态速差,即调速器具有一定的稳定调速率δ2,调速器中设有静速差机构(即刚性反馈机构)。当外负荷增加时,输出轴12向加油方向(逆时针)转动的同时,静速差杆7绕支持销6也按逆时针方向转动,其右端上移,调速齿轮44和中心螺杆随即一起上移,并将调速弹簧8稍微放松。由于调速弹簧的预紧力减少了,要使飞重、滑阀回复原来位置就必须降低柴油机的转速,即存在所谓“静速差”。也就是当负荷增加时,使柴油机在稍低于原来的转速下运转。反之,当负荷减小时,则稍高于原来转速。

当柴油机负荷减小时,调速器的调节过程与上述相反。

2.Woodward PGA调速器

PGA调速器是由原PG型调速器与遥控气动速度设定机构组合而成的一种调速器。它是一种双反馈、气动速度设定的全制式液压调速器。它的速度降仍由刚性反馈机构实现,而弹性反馈机构改用一种阻尼补偿系统(由阻尼活塞、弹簧和针阀组成)。

1)调速器主体部分

当柴油机的输出功率与外负荷平衡时,柴油机以恒速运转,此时飞重30产生的离心力与调速弹簧29的预紧力平衡,飞重处于图示垂直位置,滑阀柱塞8的控制环带6封闭套筒9上通向阻尼活塞12左方的油路,伺服油缸17内的动力活塞固定不动,输出轴16固定。柴油机稳定恒速运转。

当柴油机的外负荷增大时,柴油机转速下降,飞重产生的离心力减小,滑阀柱塞8下行。

其控制环带6开启通向阻尼活塞12左方的油路,压力油进入阻尼活塞左侧并推动它向右移动,并将右侧的油压入伺服油缸17内动力活塞的下部,推动动力活塞上行,加大油门使柴油机加速。与此同时阻尼活塞12左右两侧的油压同时作用在位于滑阀上部的补偿环带7的两侧,且作用在下侧的油压大于上侧油压,产生向上的补偿力,使滑阀8上移提前复位,即由补偿力产生负反馈作用。由此,滑阀8可在柴油机转速达到原转速之前提前回复至中央位置,关闭控制孔,避免了因调速系统的惯性而形成的过分加油。在此后柴油机的加速过程中,此补偿力将由阻尼活塞的缓慢左移复位而通过补偿针阀进行调节,使之逐渐减小。如果补偿针阀开度适当,则可使此补偿力的减小速度与飞重离心力的增加速率相同,使滑阀在中央位置不动。最后当转速恢复至原设定转速稳定运转时,补偿力消失,飞重回复至垂直位置,滑阀与阻尼活塞均回复到原中央位置,而动力活塞稳定在新的位置上,柴油机在增大的供油量下稳定运转。

如果柴油机外负荷大幅度增减,滑阀柱塞8移动较大,则阻尼活塞12迅速移向其极端位置,开启旁通口使高压油直接进出动力活塞下部空间,可大幅度加减油量。而且此时在补偿环带上下不产生压差,无补偿力,可减少调速器的瞬时调速率δ1,使调速过程能与外负荷的大幅度变化相适应。

2)速度设定部分

PGA调速器的速度设定机构由气压设定与手动设定机构两部分构成。前者使用的控制空气压力范围为(0.49~0.50)MPa,允许的最低压力为0.021 MPa,允许的最高压力为0.71MPa,速度设定值与控制空气压力值成正比;后者,使用手动旋钮可在切断控制空气的情况下任选一速度值。

3)速度降机构

本机构即为前述双反馈中的刚性反馈机构。该机构可在增加燃油量的同时,使柴油机的稳定转速成比例地降低以补偿负荷的增加。其反馈作用的实质是在负荷增加的同时,稍微降低调速弹簧的预紧力。本调速器的速度降机构由动力活塞上的尾杆18、速度降杆20以及速度降凸轮23等组成。当动力活塞上移增加供油量时,尾杆18上行推动速度降杆20通过速度降凸轮23的锁紧螺钉使速度降凸轮转动,从而速度降柱塞24稍微上移放松调速弹簧29的预紧力,以保证一定的稳定调速率。反之当动力活塞下行减油时,速度降凸轮稍许增大调速弹簧的预紧力。显然,调节凸轮的安装位置可调节稳定调速率的大小。

三、液压调速器的调节

1.稳定调速率的调节

1)几种调速器的稳定调速率δ2

机械式调速器由于本身的结构特点,其调速的准确性差,只能进行有差调速,它的稳定调速率δ2≠0。除非更换调速弹簧或飞重等零件,其δ2值一般不能调节。

具有弹性反馈装置的液压调速器,具有很高的调速准确性,可以实现恒速无差调速。可使柴油机转速非常稳定,在单机运行时可以采用。

为了柴油机并联运行的需要,在液压调速器内人为地增设一套速度降机构,使它具有可调节的静态速度差(稳定调速率δ2),满足在加油的同时稍稍降速的要求。通常是通过调节其刚

性反馈作用的大小来获得所需的δ2值。

2)并联运行的柴油机对稳定调速率δ2的要求(图8-10)

图8-10 柴油机的调速特性曲线图8-11 δ2相同负荷均匀分配图a)表示稳定调速率见δ2=0的调速特性,为恒速无差调节,调速前后无论工作点在1、2、3点,其转速均为n b。

图b)表示稳定调速率δ2>0的调速特性,为有差调速,特性线斜率越大,调节后转速的差别也越大。

对于并联运行的多台柴油机,要求每台机承担的负荷份额与其标定功率(或转矩)之比均相同。若标定功率相同,则每台机承担的负荷亦相同。若彼此的标定功率不同,则承担的负荷与标定功率之值成比例,即标定功率大者多承担负荷,小者少承担负荷。当总负荷增加至全负荷时,大小两者应同时达到全负荷。

图8-11表示两台柴油机并联运行,其δ2值相等并都大于零。两台机有重合的调速特性,M合为两台机合成的调速特性线。当n=n1时,每台机都在2点运行,合成工作点为1,两机负荷均匀分布。当外负荷增加时,两机同时加油,但两者转速也同时下降到n2,每台机运行点为2’,合成工作点为1’。其负荷分配仍然均匀。

图8-12 δ2不同负荷分配不均匀图8-13 并联运行负荷分配的特性曲线

图8-12表示若两台机的δ2不等,设(δ2)1<(δ2)2,两条调速特性曲线具有不同的倾斜度,δ2小者陡峭。若此时调节调速器的设定转速,使两台机同时运行在点2(见图8-13),即让其

调速特性曲线沿n轴平移后的两线交点2,这时两机负荷虽然相同,但这种均衡只是暂时的,严重时会一台机超负荷而使全船失电。

综上所述,调速器的δ2决定了并联运行的柴油机间的负荷分配情况,对于单台运行的柴油机δ2可以为零。但并联运行的各台柴油机的δ2值必须相等且均大于零,在满足调速系统稳定性要求的前提下,尽量选用小的δ2值。

3)稳定调速率δ2的调节

表盘式调速器可通过静速差旋钮进行调节。如将旋钮刻度旋转至“30~50”)之间,则表示相应的δ2值约为3%~5%。实践中应通过并联运行柴油机的负荷分配比例进行调节,如果并联机承担负荷小,则应减少该机的δ2数值。

杠杆式PGA型调速器其外部无δ2调节机构。如需调节δ2值,应打开调速器顶盖旋松速度降凸轮上的锁紧螺钉,则速度降凸轮可沿支架销L的槽道滑动。若将速率降凸轮沿槽道向右移动,即朝动力活塞尾杆18的方向移动凸轮,则δ2值增加;反向移动凸轮则δ2值减小,若使凸轮中心线与支点销中心线重合,则δ2值为零。决不允许使速度降凸轮移动超过“0”稳定调速率的位置,因为此时发生负的速度降而使调速器动作非常不稳定。在这些调速器中δ2的调节约为0~12%。

机械调速器的δ2值与其结构参数有关,除非更换调速弹簧(刚度)或飞重等零件,一般是不可调整的。若调速弹簧换用刚度小行,则其δ2变小,准确性提高,但稳定性降低。

2.稳定性调节

为了保证调速过程稳定,在液压调速器中设有反馈系统,以使调速器具有良好的稳定性。通常在调速器换新或修理后装机时应对反馈系统进行综合调节,以获得尽可能小的瞬时调速率δ1和尽可能短的稳定时间t s。

反馈系统调节的环节主要有两个(见图8-8):一是扳动反馈指针46,借以改变活动支点47的位置,用以调节反馈行程的大小;二是调节补偿针阀31的开度,用以调节反馈速度的快慢。如果反馈指针的位置和补偿针阀的开度调节得正确,控制滑阀36提前复位后,在飞重和小反馈活塞30的复位过程中,控制滑阀36在中央位置上一直保持不动。

3)速度设定的调节( PGA调速器)

速度设定的调节主要包括气动低速设定值调节,控制空气压力与相应转速范围调节,以及手动设定旋钮的最高转速调节。

第四节电子调速器

电子调速器是一种电子控制系统,凡转速感测元件或执行机构采用电气方式的调速器。通常包括三种:①全电子调速器;②电一液或电一气调速器;③液一电双脉冲调速器。

电子调速器不使用机械机构,动作灵敏,响应速度快,响应时间只有液压调速器的1/10~1/2;动态和静态精度很高;无调速器驱动机构,装置简单安装方便,便于实现遥控和自动控制,是近代发展起来的精密调速器。

一、电子调速器的工作原理(图8-14)

工作时,先通过转速设定器,利用可调节的电位器设定所需的转速,将其产生的转速设定信号以直流电的形式作为“正信号”输入放大器;柴油机起动运转后,速度传感器(或负载传感器)将磁性测速头感应的转速情况转化成直流电的形式作为“负信号”输入放大器,在放大器内将两种信号相加,当两者之和为零时,不向执行器输出控制信号,柴油机即在设定的转速运行。

图8-14 电子调速器原理框图

当外负荷变化使柴油机转速增加时,磁性测速头感应产生的交流电压频率立即增加,经速度传感器转换后的直流电压也随之增加。在放大器内它与转速设定信号之和变为“负值”,此时放大器即向执行器输出“减油”的信号,通过执行器使柴油机的燃油量减少,转速随之下降。同理,当柴油机转速减小时,放大器会立即向执行器输出“加油”的信号,通过执行器使柴油机加油,提升其转速。

放大器在工作时,根据转速变化不断地输出“加油”或“减油”信号,由于其反应极为灵敏,很难做到根据转速变化“适可而止”地改变喷油泵的供油量,柴油机转速不易很快稳定而产生转速的波动。为此,在放大器中专门设置了“增益控制单元”和“复位单元”,使电子调速器能稳定地工作。“增益控制单元”用来控制反馈信号的大小,如果增大增益,则执行器的输出轴转角随放大器输入偏差而增大。“增益控制单元”在这里起着液压调速器中的“补偿机构”的作用。“复位单元”用来给定放大器的复位时间常数,用以改变放大器的响应时间,如果增大复位的给定值,复位时间常数将增大。只要通过合理的调节就能提高控制回路的稳定性,满足柴油机稳定运行的要求。“复位单元”在这里起着液压调速器中的“针阀”作用。

二、典型电子调速器简介

Woodward 2301型电子调速器是一种使用广泛的电子调速器,它属于电一液调速器,其测速传感器采用磁电式,控制单元采用2301型电子控制器,控制机构采用EG3P液压执行器。它有单纯调频型(单脉冲)和调频调载型(双脉冲)两种。前者用于单机运行,其瞬时调速率δ1一般在5%~7%,稳定时间t s在3s~5s范围内;后者用于并联运行机组,其瞬时调速率一般不大于2%,稳定时间t s不大于1s。

图8-15系单脉冲2301型电子控制器外形图。其正面面板上有四个调节旋钮,自左而右分别有:

怠速(Low idle speed)调节旋钮──用于调节滑油低压,保护运转时的最低转速;设定转速(Rated speed)调节旋钮──用于调节设定转速;

稳定度(Stability)调节旋钮──用于稳定性调节;

增益量如(Gain)调节旋钮──用于稳定性调节。

图8-15 单脉冲2301型电子控制器外形图

变频调速的基本原理

变频器多段速度控制 1.变频调速的原理 异步电机的转速n可以表示为 式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变电源频率就可以改变同步转速和电机转速。 频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近似正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 2.电机调速的分类 按变换的环节分类 (1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器 按直流电源性质分类 (1)电压型变频器 电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。 (2)电流型变频器 电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。 按主电路工作方法 电压型变频器、电流型变频器 按照工作原理分类 可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等 按照开关方式分类 可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器 按照用途分类 可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。 按变频器调压方法 PAM变频器是一种通过改变电压源Ud 或电流源Id的幅值进行输出控制的。 PWM变频器方式是在变频器输出波形的一个周期产生个脉冲波个脉冲,其等值电压为正弦波,波形较平滑。

柴油机的调速装置汇总

2.7柴油机的调速装置 2.7.2超速保护装置 2.7.2.1超速保护装置的作用7题 按我国有关规定,凡标定功率大于220 kW的船用主机和船用柴油发电机应分别装设超速保护装置,以防止船舶主机转速超过120%标定转速和柴油发电机转速超过115%标定转速。此种超速保护装置是一种运转安全装置。它与调速器不同,它只能限制柴油机的最高转速,本身没有调速特性,它在柴油机正常运转范围内不起作用,只在柴油机转速达到规定限值时才发生动作,使柴油机立即停车或降速。按规定,超速保护装置必须与调速器分开设置而独立工作,无论柴油机的操纵机构处于什么状态,该装置的保护性动作必须迅速而准确。 1. 按我国有关规定,必须装设超速保护装置的柴油机是()。 A.标定功率大于220 kW的船用主机 B.标定功率大于220 kW的船用发电柴油机 C.功率大于220 kW主机,功率大于110 kW发电柴油机 D.A+B 2.按我国有关规定,必须装设超速保护装置的柴油机是()。 A.标定功率大于220 kW的船用主机和船用发电柴油机 B.标定功率大于220 kW的船用主机和标定功率大于110 kW的船用发电柴油机C.标定功率大于110 kW的船用主机和标定功率大于220 kW的船用发电柴油机D.标定功率大于110 kW的船用主机和船用发电柴油机 3. 下述关于超速保护装置论述中不正确的是()。 A.它是极限调速器的一种 B.它自身无调速特性 C.它是一种安全装置 D.它对柴油机的控制动作不受操纵机构限制 4. 超速保护装置的作用是()。 A.维持柴油机稳定运转 B.柴油机超速时使柴油机立即降速或停车 C.柴油机超速时立即报警 D.A或B 5.根据我国有关规定,船舶主机所装极限调速器的限制转速是()。A.103%n b(标定转速) B.110%n b C.115%n b D.120%n b 6. 根据我国有关规定,超速保护装置的作用是()。 A.防止主机转速超过110%n b(标定转速),发电柴油机转速超过115%n b B.防止主机转速超过115%n b,发电柴油机转速超过110%n b C.防止主机转速超过120%n b,发电柴油机转速超过115%n b D.防止主机转速超过115%n b,发电柴油机转速超过120%n b 7.下列情况中,柴油机不必装设超速保护装置的是()。 A.柴油机装有全制式调速器 B.柴油机装有定速调速器 C.柴油机装有限速器

变频器的调速原理)

变频器调速基本原理 变频器调速基本原理 1、变频器概述。 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控 制装置。它的主电路都采用交—直—交电路。JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz; JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW,工作频率为0~60Hz; 2、变频原理。 从理论上我们可知,电机的转速N 与供电频率f 有以下关系: )1(*60sP fN 其中: p ——电机极数 S——转差率 由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 3、节能调速原理 一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。因此浪费大量电能,属不经济的调节方式。从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。对不同使用频率时的节电率N%可查表。 上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟一的途径。变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。容易实现协调控制和闭环控制,可利用原有异步电动机对旧设备进行技术改造,它既保留了原有电动机,具有改造简单,可靠、耐用,维护方便的优点,即能达到节电的显著效果,又能恒压力的工艺需求,还能减小机械磨损。因此,可理论上认为风机、水泵采用交流调速来实现较大幅度的节能(可达20-50%)是种较

船舶柴油机主推进动力装置832第八章柴油机调速装置129题Word版

第八章柴油机的调速装置129题 第一节柴油机的调速装置0 第二节超速保护装置11 考点 1:超速保护装置的作用 按我国有关规定,凡标定功率大于220 kW的船用主机和船用柴油发电机应分别装设超速保护装置,以防止船舶主机转速超过120%标定转速和柴油发电机转速超过115%标定转速。此种超速保护装置是一种运转安全装置。它与调速器不同,它只能限制柴油机的最高转速,本身没有调速特性,它在柴油机正常运转范围内不起作用,只在柴油机转速达到规定限值时才发生动作,使柴油机立即停车或降速。按规定,超速保护装置必须与调速器分开设置而独立工作,无论柴油机的操纵机构处于什么状态,该装置的保护性动作必须迅速而准确。 D1. 按我国有关规定,必须装设超速保护装置的柴油机是()。 A.标定功率大于220 kW的船用主机 B.标定功率大于220 kW的船用发电柴油机 C.功率大于220 kW主机,功率大于110 kW发电柴油机 D.A+B A2. 按我国有关规定,必须装设超速保护装置的柴油机是()。 A.标定功率大于220 kW的船用主机和船用发电柴油机 B.标定功率大于220 kW的船用主机和标定功率大于110 kW的船用发电柴油机C.标定功率大于110 kW的船用主机和标定功率大于220 kW的船用发电柴油机D.标定功率大于110 kW的船用主机和船用发电柴油机 A3. 下述关于超速保护装置论述中不正确的是()。 A.它是极限调速器的一种 B.它自身无调速特性 C.它是一种安全装置 D.它对柴油机的控制动作不受操纵机构限制 B4. 超速保护装置的作用是()。 A.维持柴油机稳定运转 B.柴油机超速时使柴油机立即降速或停车 C.柴油机超速时立即报警 D.A或B C5. 根据我国有关规定,船舶主机所装极限调速器的限制转速是()。A.103%n b (标定转速) B.110%n b C.115%n b D.120%n b C6. 根据我国有关规定,超速保护装置的作用是()。 A.防止主机转速超过110%n b (标定转速),发电柴油机转速超过115%n b B.防止主机转速超过115%n b ,发电柴油机转速超过110%n b

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路 输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

直流调速器的工作原理

直流调速器的工作原理 The manuscript was revised on the evening of 2021

直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 其实就是可控硅调压电路,电机拖动课本上非常清楚了 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 ? 1.海拔高度不超过00米。(超过0米,额定输出值有所降低) 2.周围环境温度不高于℃不低于-10℃。

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

电动机调速方法

一、直流电动机调速 直流电动机是指将直流电送到直流,把直流电动机的电能转换成机械能。这里首先要介绍如何将市电的交流电转换成需要的直流电。六十年代以前采用的是发电机--电动机系统(F-D),这种方法只有在由专用的发电机供电时才有可能。 另一种是可控硅--电动机系统(SCR-D)。 直流电动机的调速还比较方便,可以通过调节电枢供电电压,电枢中串联电阻,激磁回路串联电阻来实现。 可见直流电动机调速有三种方法,而且调节电枢供电电压的方法容易实现平滑、无级、宽范围、低损耗的要求。尽管直流电动机调速就其性能而言,可以相当满意,但因其结构夏杂,惯量大,维护麻烦,不适宜在恶劣环境中运行,不易实现大容量化、高压化、高速化,而且价格昂贵。 二、交流电动机调速 交流电动机刚好相反。电动机结构简单、惯量小、维护方便,可在恶劣环境中运行,容易实现大容量化,高压化、高速化,而且价格低廉。 从节能的角度看,交流电动机的调速装置可以分为高效调速装置和低效调速装置两大类。高效调速装置的特点是:调速时基本保持额定转差,不增加转差损耗,或可以将转差动率回馈至电网。低效调速装置的特点是:调速时改变转差,增加转差损耗。 (一)具体的交流调速装置有: 高效调速方法包括: 改变极对数调速——鼠笼式电机 变频调速——鼠笼式电机 串级调速——绕线式电机 换向器电机调速——同步电机 低效调速方法包括: 定子调压调速——鼠笼式电机 电磁滑差离合器调速——鼠笼式电机 转子串电阻调速——绕线式电机 (二)各种调速装置的特点: (1)改变极对数调速 优点: ①无附加转差损耗,效率高; ②控制电路简单,易维修,价格低; ③与定子调压或电磁转差离合器配合可得到效率较高的平滑调速。转自电气自动化技术网 缺点: 有级调速,不能实现无级平滑的调速。且由于受到电机结构和制造工艺的限制,通常只能实现2~3种极对数的有级调速,调速范围相当有限。 (2)变频调速 优点: ①无附加转差损耗,效率高,调速范围宽; ②对于低负载运行时间较长,或起、停较频繁的场合,可以达到节电和保护电机的目的。 缺点:技术较复杂,价格较高。 (3)换向器电机调速 优点:

变频器调速原理

变频器调速基本原理 1、 变频器概述。 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 它的主电路都采用交—直—交电路。JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V ,功率为0.75~800kW ,工作频率为0~400Hz ;JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V ,功率为37~1000kW ,工作频率为0~400Hz ;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV ,功率为280~20000kW ,工作频率为0~60Hz ; 2、变频原理。 从理论上我们可知,电机的转速N 与供电频率f 有以下关系: )1(*60s P f N -= 其中: p ——电机极数 S ——转差率 由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 3、 节能调速原理 一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。因此浪费大量电能,属不经济的调节方式。从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。对不同使用频率时的节电率N%可查表。 上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟 一的途径。变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。容易实现协调控制和闭环控制,可利用原有异步电动机对旧设备进行技术改造,它既保留了原有电动机,具有改造简单,可靠、耐用,维护方便的优点,即能达到节电的显著效果,又能恒压力的工艺需求,还能减小机械磨损。因此,可

柴油机的调速装置

柴油机的调速装置 2.7柴油机的调速装置 2.7.2超速保护装置 2.721超速保护装置的作用7题 按我国有关规定,凡标定功率大于220 kW的船用主机和船用柴油发电机应分 别装设超速保护装置,以防止船舶主机转速超过120%标定转速和柴油发电机转速超过115%标定转速。此种超速保护装置是一种运转安全装置。它与调速器不同,它只能限制柴油机的最高转速,本身没有调速特性,它在柴油机正常运转范围内不起作用,只在柴油机转速达到规定限值时才发生动作,使柴油机立即停车或降速。按规定,超速保护装置必须与调速器分开设置而独立工作,无论柴油机的操纵机构处于什么状态,该装置的保护性动作必须迅速而准确。 1. 按我国有关规定,必须装设超速保护装置的柴油机是()。 A ?标定功率大于220 kW的船用主机 B ?标定功率大于220 kW的船用发电柴油机 C ?功率大于220 kW主机,功率大于110 kW发电柴油机 D. A + B 2. 按我国有关规定,必须装设超速保护装置的柴油机是()。 A. 标定功率大于220 kW的船用主机和船用发电柴油机 B .标定功率大于220 kW的船用主机和标定功率大于110 kW的船用发电柴油机 C. 标定功率大于110 kW的船用主机和标定功率大于220 kW的船用发电柴油机 D. 标定功率大于110 kW的船用主机和船用发电柴油机 3. 下述关于超速保护装置论述中不正确的是()。 A .它是极限调速器的一种 B. 它自身无调速特性 C. 它是一种安全装置 D. 它对柴油机的控制动作不受操纵机构限制 4. 超速保护装置的作用是()。 A .维持柴油机稳定运转 B .柴油机超速时使柴油机立即降速或停车

调速器地功能及工作原理

一、调速器功用及分类 调速器是一种自动调节装置,它根据柴油机负荷的变化,自动增减喷油泵的供油量,使柴油机能够以稳定的转速运行。 在柴油机上装设调速器是由柴油机的工作特性决定的。汽车柴油机的负荷经常变化,当负荷突然减小时,若不及时减少喷油泵的供油量,则柴油机的转速将迅速增高,甚至超出柴油机设计所允许的最高转速,这种现象称“超速”或“飞车”。相反,当负荷骤然增大时,若不及时增加喷油泵的供油量,则柴油机的转速将急速下降直至熄火。柴油机超速或怠速不稳,往往出自于偶然的原因,汽车驾驶员难于作出响应。这时,惟有借助调速器,及时调节喷油泵的供油量,才能保持柴油机稳定运行。 汽车柴油机调速器按其工作原理的不同,可分为机械式、气动式、液压式、机械气动复合式、机械液压复合式和电子式等多种形式。但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。 按调速器起作用的转速围不同,又可分为两极式调速器和全程式调速器。中、小型汽车柴油机多数采用两极式调速器,以起到防止超速和稳定怠速的作用。在重型汽车上则多采用全程式调速器,这种调速器除具有两极式调速器的功能外,还能对柴油机工作转速围的任何转速起调节作用,使柴油机在各种转速下都能稳定运转。 二、两极式调速器 两极式调速器只在柴油机的最高转速和怠速起自动调节作用,而在最高转速和怠速之间的其他任何转速,调速器不起调节作用。 (一)RQ型调速器结构 通常调速器由感应元件、传动元件和附加装置三部分构成。感应元件用来感知柴油机转速的变化,并发出相应的信号。传动元件则根据此信号进行供油量的调节。

(二)RQ型调速器基本工作原理 1)起动 将调速手柄从停车挡块移至最高速挡块上。在此过程中,调速手柄带动摇杆,摇杆带动滑块,使调速杠杆以其下端的铰接点为支点向右摆动,并推动喷油泵供油量调节齿杆克服供油量限制弹性挡块的阻力,向右移到起动油量的位置。起动油量多于全负荷油量,旨在加浓混合气,以利柴油机低温起动。 2)怠速 柴油机起动之后,将调速手柄置于怠速位置。这时调速手柄通过摇杆、滑块使调速杠杆仍以其下端的铰接点支点向左摆动,并拉动供油量调节齿杆7左移至怠速油量的位置。怠速时柴油机转速很低,飞锤的离心力较小,只能与怠速弹簧力相平衡,飞锤处于弹簧座与安装飞锤的轴套之

基于PWM的电机调速系统

基于PWM勺电机调速系统 实验目的: 1. 学会并掌握可keil软件的使用; 2. 学会并掌握protues软件的使用; 3. 通过实验巩固单片机相关知识和检验自身动手能力 实验要求: 掌握单片机相关知识,利用调PWm空比的方式来控制直流电机的转速,并且在led 数码管上显示转速。 实验设备和仪器: 单片机最小系统 2. 直流电机 3. 示波器 实验内容: 本次实验设计是由小组五个成员共同完成基于PWM勺电机调速系统并完成实物搭建和撰写实验报告。本次实验小组共提供了两个方案,方案一和方案二,两个方案各自具有优缺点,详细内容会在下面给出。 方案一实验步骤:

1.利用protues画电路图,电路图如图1所示: 图1:方案一电路图 2.根据电路图编写C语言'代码: 代码如下: #include <> sbit PWM=P2A7; sbit CS3=P2A3; sbit CS2=P2A2; sbit CS1=P2A1; sbit CS0=P2A0; sbit key1=P1A。; sbit key2=P1A1; sbit key3=P1A2; sbit key4=P1A3; unsigned char timer1; unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

void Time1Config(); void main(void) ( Time1Config(); while(1) ( if(timer1>100) 验仿真,部分仿真结果如图2图3所示: 图2:仿真结果图(1) 图3:仿真结果图(2) 4. 实物验证结果如图4所示: 图4:方案一实物验证结果 实物验证可以明显感觉到电机转速的变化,由于每个开发板不同,相比仿真程序,对实物验证程序进行了略微的修改,最终能达到要求。

直流调速系统设计

直流调速系统设计 电气工程学院)摘要: 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。常用的电机调速系统有转速闭环控制系统和电流闭环控制系统,二者都可以在一定程度上克服开环系统造成的电动机静差率,但是不够理想。实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。本文是按照工程设计的方法来设计转速和电流调节器的。使电动机满足所要求的静态和动态性能指标。电流环应以跟随性能为主,即应选用典型Ⅰ型系统,而转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主。关键词:直流双闭环调速系统电流调节器转速调节器1 设计任务及要求1、1设计任务设计V-M双闭环直流可逆调速系统1、1、1技术数据:?直流电动机:额定电枢电压=400V,额定功率1、 9kW,额定电枢电流=6、9A,额定转速=855r/min,电动机电动势系数Ce=0、1925Vmin/r,允许过载倍数λ=1、5;?晶闸管装置放大系数:Ks=40;整流装置平均滞后时间常数=0、00167s,? 电枢回路总电阻:R=

11、67Ω;?电枢回路电感110mH,电力拖动系统机电时间常数Tm=0、075s;?电枢电流反馈系数:β=0、121V/A (≈10V/1、5),电流滤波时间常数=0、002s;?转速反馈系数α=0、01 V、min/r(≈10V/);转速滤波时间常数=0、01s;1、2设计要求:(1) 根据试凑法设计电流调节器和转速调节器参数进行仿真,电流超调量≤5%;实现转速无静差,空载起动到额定转速时的转速超调量≤5%;(2) 试利用Matlab仿真软件中的Simulink或Simulink中的Power system模块进行仿真,在Matlab仿真软件中构建仿真模型;(3) 用Plot函数绘制理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-10V时正反转启动过程中转速、电枢电流波形。(4) 对仿真波形及结果进行分析。2 V-M双闭环调速系统的设计改变电枢两端的电压能使电动机改变转向。尽管电枢反接需要较大容量的晶闸管装置,但是它反向过程快,由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,电动机正转时,由正组晶闸管装置VF供电;反转时,由反组晶闸管装置VR供电。如图1所示两组晶闸管分别由两套触发装置控制,可以做到互不干扰,都能灵活地控制电动机的可逆运行,所以本设计采用两组晶闸管反并联的方式。并且采用三相

变频器调速工作原理

变频器调速工作原理 目前交流调速电气传动已经上升为电气调速传动的主流,在电气传动领域内,由直流电动机占统治地位的局面已经受到了猛烈的冲击。 现在人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。 1变频器的发展 近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能

从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。其发展情况可粗略地由以下几方面来说明。 1.容量不断扩大80年代采用BJT的PWM变频器实现了 通用化。到了90年代初BJT通用变频器的容量达到600KV A,400KV A 以下的已经系列化。前几年主开关器件开始采用IGBT,仅三四年的时间,IGBT变频器的单机容量已达1800KV A,随着IGBT容量的扩大,通用变频器的容量将随之扩大。 2.结构的小型化变频器主电路中功率电路的模块化、控 制电路采用大规模集成电路(LSI)和全数字控制技术、结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。 3.多功能化和高性能化电力电子器件和控制技术的不断 进步,使变频器向多功能化和高性能化方向发展。特别是微机的应用,以其简练的硬件结构和丰富的软件功能,为变频器多功能化和高性能化提供了可靠的保证。由于全数字控制技术的实现,并且运算速度不断提高,使得通用变频器的性能不断提高,功能不断增强。 4.应用领域不断扩大通用变频器经历了模拟控制、数模 混合控制直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。目前其应用领域得到了相当的扩展。如搬运机械,从反抗性负载的搬运车辆,带式运输机到位能负载的起重机、提升机、立体仓库、立体停

柴油发电机调速器的分类介绍

柴油发电机调速器的分类介绍 (1)柴油机调速器按工作原理可分为机械离心式调速器、气动式调速器、液压式调速器和电子式调速器四种。 1)机械离心式调速器。所有机械式调速器的工作原理大致相同,它们都具有被曲轴驱动旋转的飞锤(或飞球),当转速变化时飞锤的离心力也随着变化,然后利用离心力的作用,通过一些杆件来调节发动机的供油量,使供油量与负载大小相适应,从而保持发动机的转速稳定。 在中小功率柴油机上,应用最广泛的是机械离心式调速器。 机械离心调速器有卧式和立式两种,主要构件是钝盘、飞铁、调速弹簧、调整螺钉和传动拉杆等。转速在额定值时,飞铁的离心力与调速弹簧的张力平衡。当转速高于额定值时,飞铁离心力增大超过弹簧的张力,使飞铁张开带动拉杆减少油门,柴油机自动恢复额定转速。相反,当转速低于额定值时,飞铁向内靠拢,带动拉杆增大油门,使柴油机增速。 机械离心式调速器结构简单,维护比较方便,但是灵敏度和调节特性较差。 2)气动式调速器。气动式调速器的感应元件用膜片等气动元件来感应进气管压力的变化,以便调节柴油机转速。 3)液压式调速器。液压式调速器是利用飞铁的离心作用来控制一个导阀,再由导阀控制压力油的流向,通过油压来驱动调节机构增大或减小油门,完成转速自动调节的目的。 液压调速器的优点是输出转矩大,调速特性和灵敏度比机械离心式调速器好,缺点是结构较复杂,维护技术的水平要求较高。 4)电子式调速器。电子式调速器是近年来研究应用的较先进的调速器,它的感应元件和执行机构主要使用电子元件,可接受转速信号和功率信号,通过电子电路的分析比较,输出调节信号来调节油门。 电子调速器的调速精度高,灵敏度也高,主要缺点是需要工作电源,并要求电子元器件具有很高的可靠性。

西门子直流调速装置的设计特点

西门子直流调速装置的设计特点 1 西门子应用较广的直流调速装置是6RA70系列与6RA24系列。 2 流调装置6RA70与6RA24的区别 (1)6RA24单机额定电流最大1200安培,6RA70单机额定电流最大2000安培。 (2)6RA24单机励磁电流最大30安培,6RA70单机励磁电流最大40安培, (3)6RA24基本装置具有8个开关量输入口,8个开关量输出口,4个模拟量入口,4个 模拟量输出口。 6RA70基本装置具有4个开关量输入口,4个开关量输出口,2个模拟量输入口,2 个模拟量输出口。但6RA70装置可选择CUD2、EB1、EB2端子扩展板。 (4)一般来讲,6RA70基本装置即不加CUD2,S00等件)比6RA24基本装置价低。 (5)6RA70装置的通讯板、工业板及端子扩展板与6SE70系列可以通用。 (6)6RA70基本装置可选用OP1S舒适型操作面板,可存贮多套参数。 3 西门子6RA70系列与6RA24系列直流调速装置是全数字直流调速产品

4 应用-6RA70 SIMOREG DC MASTER系列整流器为全数字紧凑型整流器,输入为三相电源,可为变速直流驱动提供电枢和励磁供电,额定电枢电流从15A至2000A。紧凑型整流器可以并联连接,提供高至10000A的电流,励磁电路可以提供最大40A的电流(此电流取决于电枢额定电流)。 5 设计 我们选用6RA7081型装置整流器以其紧凑和节省空间的结构为特色,由于独立的部件容易拿在手中,其紧凑式设计使它们特别容易保养与维护,电子板箱包含基本电子电路和任何附加板。 所有SIMOREG DC MASTER装置均配备一个安装在整流器门上的简易操作面板PMU,面板由一个5位,7段显示,作为状态显示LED 和三个参数化键组成。PMU也具有根据RS232或RS485标准同USS 接口的连接器X300。 操作面板提供了为了启动整流器所需进行的调整和设定及测量值显示的所有手段。 OP1S整流器选件操作面板既可以安装在整流器上,又可外部安装,例如在柜门上。因此,它可以通过一根5米长电缆连接。如果有一个独立的5V电源可以使用,则电缆可长至200米。OP1S通过X300连接到SIMOREG。PO1S可以作为一个经济的测量仪器安装在控制柜,用来显示一定数量的物理测量值。 OP1S提供一个4×16字符的LCD以简单文字显示参数名称,可以选择德语,英语,法语,西班牙语和意大利语作为显示语种。为了容易

变频器的六大调速方法

电动机知识 变频器的六大调速方法 1.变极对数调速方法 这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。本方法适用于要求精度高、调速性能较好场合。变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。 2.串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装臵,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装

臵容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装臵故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。变频器调速原理及调速方法 3.绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 4.定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。调压调速的主要装臵是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点:调压调速线路简单,易实现自动控制;调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。调压调速一般适用于100KW以下的生产机械。 5.电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由

变频器及其调速设备

第14章 变频器及其调速设备 14.1.1概述 随着电子技术和电力电子技术的飞速发展,各类变频器得以广泛的应用,在石油化工行业中被大量地用于风机、水泵的调节,不仅取得节能的效果,而且变频器又具有性能良好、控制方便等优点,因此它在电动机调速中占有绝对优势,因此本章仅就变频器的调速应用技术做介绍,其他调速方式不再赘述。 1、 通用变频器的调速原理及结构框图 (1) 调速原理 众所周知,三相交流电动机的转速n 为: p /f 60n = (1) 而对于异步电动机可表示为: s l p 60f n )(-= (2) 式中:n 电动机转速(r/min ) f 电动机工作频率(hz ) p 电动机磁极极对数 s 电动机转差率 由上式可见借助于变频器改变加于电动机工作时的频率,则便可以取得调速的需要,并用以替代如风机、水泵用阀门、挡板节流进行流量调节,从而避免在节流上的能量损失,达到节能的效果。 在工程的应用中不会单独的采用仅控制或调节频率的做法。因为在电动机运行中不致因磁通影响导致损害,必须采用v/f 同步调节的办法,其目的在于保持电动机主磁通 m φ不变。 因为:wf 44.4e m K E X =φ (3) 而 x x E U ≈ (4) 所以:常数=≈f f x 1E U (5) 则 m φ不变。 式中: m φ电动机主磁通(Wb) Ex 定子电势(v ) e K 比例常数 W 每相绕组匝数 U 电源相电压(V ) (2)通用变频器电路框图 目前,通用变频器绝大多数是交—直-交型,其主回路结构示意图如图一所示。

1)整流电路:其功能是将工频交流电压变成直流电压;三相交流电源一般需要经过吸收电容和压敏电阻网络引入整流桥的输入端。其作用是吸收来自电网的高频信号和浪涌过电压。 2)滤波电路:其功能是对三相整流桥输出的直流进行滤波,以减小直流电压和电流的波动。故此环节也称直流平波。同时由于该电路由电容或电感储能元件构成,故它可以对与异步电动机之间的无功能量交换起到缓冲作用。 3)逆变电路:其功能是将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源,即为变频器的输出。 逆变电路由功率开关器件(如:GTO 、IGBT 、IGCT 、SGCT )组成三相桥逆变电路。功率开关器件的通断受控于控制电路,其产生的脉冲经脉宽调制(PWM )或正强脉宽调制(SPWM )使波形近于正弦波而输出。 4)控制系统:其任务是用来产生并发出逆变桥所需要的各驱动信号,这个信号是受外部指令决定。同时该系统还包括变频内部各种保护和反馈信号的控制。 5)变频调速的主要控制方式 A 、U/f 控制方式 由式(3)~(5)可知U/f 控制调频而达到电动机转速是基本的方法,有较强的通用性;由于异步机的实际转速与转差率有关,因此特别在低转速时U/f 方法颇感不足,需采取磁通补偿、转矩补偿和电流限制等措施。 为达到较精确的控制以及应对不同机械负载的需要又发展有矢量控制、直接转矩控制和直接转速控制。 B 、矢量控制方式 所谓矢量控制即是将定子电流瞬时值i 分解成为励磁电流分量m i 和转矩电流分量T i ;而调节m i 及T i 并使之与其转子磁通和转矩保持线性关系,故可以得到精确的速度和转矩控

相关文档
相关文档 最新文档