文档库 最新最全的文档下载
当前位置:文档库 › 电磁学讲义04-散度、环路、旋度定理

电磁学讲义04-散度、环路、旋度定理

思考:如果已经知道电场分布,如何

求电荷分布?

?如图以P(x,y,z)点为中心,?x ,?y 和?z 为边长,取小立方体。先考虑与x 轴垂直的两个面贡献的通量,则只考虑A 的x 分量即可:同理有:z y z y x x A z y z y x x A x x x ΔΔ?Δ??ΔΔ?Δ+=),,2

(),,2(φz y x y A y

y ΔΔΔ??=φz y x z A z z ΔΔΔ??=φ则有散度:

A A A A z y x z y x ?+?+?=++=??φφφK )2(),,(),,2(x x A z y x A z y x x A x x x Δ±???+≈Δ±z y x x A z y x x A x x A x x x x ΔΔΔ??=ΔΔ???????Δ????Δ??≈)2(2

φ利用全微分概念,有:则:

电场的散度-讨论

?电场某处的单位体积内的电通量正比于此处单位体积内的电荷量。

?电场的散度定理说明,在电荷体密度不是无穷大的点,场强矢量在该点连续,在各方向可求导。

?只适用于电荷体密度

–而不能用于点电荷、线电荷、面电荷所在的位置,

那些位置没法定义电荷的体密度。同时这些位置的

电场强度值无意义。

?可用于计算电荷分布。

?计算场强一般采用高斯定理积分形式,不必采用微分形式,即散度定理。

–教材P54例题4用散度定理求电场的方法少见。

§2.4静电场的高斯定理和环路定理--静电场的矢量场理论

(二)

?静电场环路定理

?静电场旋度定理

# 旋度的定义

?如前所述,在矢量场空间任意点,取任意一个方向,则存在一个围绕此方向的环量面密度。在这一点,有无数个方向可以选择,也因此相应的存在无数个环路面密度。这些环量面密度之间存在确定的关系。

?旋度:是一个矢量,取矢量场某一点的环量面密度的最大值为模,并取相应的曲面法线方向。称为矢量场在该点的旋度,记为:–旋度是矢量!

?绕任一方向的环量面密度等于旋度在这一方向的投影(证明略)

A K ×?n ?n ?A K

A K

静电场矢量场原理的总结

?静电场:有源、无旋场。

『注:无旋场是指处处旋度(环量)为零的矢

量场;无源场是指处处散度(对闭曲面通量)为零的矢量场』

?静电场的高斯定理和环路定理各自独

立,不能互推;分别反映了静电场的不

同特点。

?静电场的高斯定理和环路定理合起来全

面的刻画了静电场,等价于库仑定律和

叠加原理;这形成了两种不同的刻画静

电场的方法。

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

电磁理论

电磁理论 自人们发现电现象、磁现象、电磁感应现象以来,对电、磁和电磁感应现象进行了深入广泛的研究,发现了电磁之间的关系及其规律,形成了完整、系统的电磁理论。电磁理论促进了科学技术的发展,有力的推动了社会的进步。电磁理论认为:变化着的电场伴随变化着的磁场,变化着的磁场也伴随变化着的电场。 麦克斯韦电磁理论基础的电学和磁学的经验定律包括:静电学的库仑定律,涉及磁性的高斯定理,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程预言:变化的电磁场以波的形式向空间传播. 麦克斯韦电磁场理论的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组是由四个微分方程构成,: (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 麦克斯韦方程都是用微积分表述的,涉及到的方程包括: 1. 安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和。 2.法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导。 3.磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零。 4.高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。 高斯定理 高斯定理1 矢量分析的重要定理之一。 穿过一封闭曲面的电通量与封闭曲面所包围的电荷量成正比。 换一种说法:电场强度在一封闭曲面上的面积分与封闭曲面所包围的电荷量成正比 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力

卡诺循环与卡诺定理上课讲义

卡诺循环与卡诺定理

卡诺循环与卡诺定理 一、卡诺热机 1.卡诺定理的提出 从19世纪起,蒸汽机在工业、交通运输中起到愈来愈重要的作用。但是,蒸汽机的效率是很低的,还不到5%,有95%以上的热量都没有得到利用。在生产需要的推动下,一大批科学家和工程师开始由理论上来研究热机的效率。萨迪·卡诺(Sadi Carnot,1796—1832),这位法国工程师正是其中的一位。 当时盛行热质说,普遍认为热也是一种没有重量、可以在物体中自由流动的物质。卡诺也信奉热质说,他在他的论文《关于热的动力的思考》中有这样一段话:“我们可以恰当地把热的动力和一个瀑布的动力相比。……瀑布的动力依赖于它的高度和水量;热的动力依赖于所用的热质的量和我们可以称之为热质的下落高度,即交换热质的物体之间的温度差。”在这里,卡诺关于“热只在机器中重新分配,热量并不消耗”的观点是不正确的,他没有认识到热和功转化的内在的本质联系。但是卡诺定理的提出,却是一件具有划时代意义的事。 2.卡诺循环 热力学理论指出,要实现一个可逆循环过程,必须使循环过程中的每一分过程都是可逆的。而要实现过程的可逆,除了要使过程没有摩擦存在以外,更重要 的就是要求过程的进行是准静态的。如下图: 要完成一个双热源的可逆循环,其方式应当是由两个等温过程与两个绝热过程组成,如下图: 卡诺循环的效率为: 其中T2为低温热源的温度,T1为高温热源的温度。 3.卡诺定理及其推论 (1). 卡诺定理(Carnot principle):在两个不同温度的恒温热源间工作的所有热 机,以可逆热机的热效率为最高。即在恒温T1、T2下,ηt,IR≤ηt,R.

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

工程光学习题参考答案第十章 光的电磁理论基础

第十章 光的电磁理论基础 解:(1)平面电磁波cos[2()]E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10()]0.65E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?= -= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

解:∵ exp[()]E A i k r t ω=- x y z k r k x k y k z ?=?+?+? 0000000000 2,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=?+?+?=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试 求反射系数和透射系数。设玻璃折射率为1.5。 解:由折射定律 1 2211221122111122sin sin cos 1.5cos cos 0.3034cos cos 22cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ= =∴=--∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解: 22 2221 2 1112222221 22 111212sin sin 212111.54cos 4sin cos 30.8231cos sin () 2 cos 4sin cos 0.998cos sin ()cos ()() 0.91 2 s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=??= ?==+=?=+-+∴= = 8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

电磁学赵凯华答案第6章麦克斯韦电磁理论

1 一平行板电容器的两极板都是半径为的圆导体片,在充电时,其中电场强度的变化率为: 。试求:(1)两极板间的位移电流;(2)极板边缘的磁感应强度。 解: (1)如图所示,根据电容器极板带电情况,可知电场强度的方向水平向右(电位移矢量 的方向与的方向相同)。因电容器中为真空,故。忽略边缘效应,电场只分布在两板之间的空间内,且为匀强电场。 已知圆板的面积,故穿过该面积的的通量为 由位移电流的定义式,得电容器两板间位移电流为 因,所以的方向与的方向相同,即位移电流的方向与的方向相同。 (2)由于忽略边缘效应,则可认为两极板间的电场变化率是相同的,则极板间的位移电流是轴对称分布的,因此由它所产生的磁场对于两板中心线也具有轴对称性。 在平行板电容器中沿极板边缘作以半径为的圆,其上的大小相等,选积分方向与方向一致,

则由安培环路定理可得(全电流) 因在电容器内传导电流,位移电流为,则全电流为 所以极板边缘的磁感应强度为 根据右手螺旋定则,可知电容器边缘处的磁感应强度的方向,如图所示。 2 一平行板电容器的两极板为圆形金属板,面积均为,接于一交流电源时,板上的电荷随时间变化,即。试求:(1)电容器中的位移电流密度的大小;(2)设为由圆板中心到该点的距离,两板之间的磁感应强度分布。 解: (1)由题意可知,,对于平行板电容器电位移矢量的大小为 所以,位移电流密度的大小为 (2)由于电容器内无传导电流,故。又由于位移电流具有轴对称性,故可用安培环路求解磁感应强度。 设为圆板中心到场点的距离,并以为半径做圆周路径。 根据全电流安培环路定理可知通过所围面积的位移电流为

所以.最后可得 3. 如图(a)所示,用二面积为的大圆盘组成一间距为的平行板电容器,用两根长导线垂直地接在二圆盘的中心。今用可调电源使此电容器以恒定的电流充电,试求:(1)此电容器中位移电流密度;(2)如图(b)所示,电容器中点的磁感应强度;(3)证明在此电容器中从半径为﹑厚度为的圆柱体表面流进的电磁能与圆柱体内增加的电磁能相等。 解:(1)由全电流概念可知,全电流是连续的。 电容器中位移电流密度的方向应如图(c)所示,其大小为 通过电源给电容器充电时,使电容器极板上电荷随时间变化,从而使极板间电场发生变化。 因此,也可以这样来求: 因为由于,因此所以

环路定理电势

环路定理 电势 - 选择题 题号:30411001 分值:3分 难度系数等级:1 1. 下列关于场强和电势的关系的说法中,正确的是: ()A 已知某点的场强E ,就可以确定该点电势U ;()B 已知某点的电势U ,就可以确定该点场强E ; ()C 在某空间内的场强不变,则U 也一定不变; ()D 在等势面上,场强E 不一定处处相等。 答案:()D 题号:30411002 分值:3分 难度系数等级:1 下列关于静电场的说法中,正确的是: ()A 电势高的地方场强就大; ()B 带正电的物体电势一定是正的; ()C 场强为零的地方电势一定为零; ()D 电场线与等势面一定处处正交。 答案:()D 题号:30413003 分值:3分 难度系数等级:3 在均匀电场中各点,下列诸物理量中:(1)电场强度、(2)电势、(3)电势梯度,哪些是大小相等的? ()A (1)、(2)、(3)都相等; ()B (1)、(2)相等; ()C (1)、(3)相等; ()D (2)、(3)相等。 答案:()C 题号:30412004 分值:3分 难度系数等级:2 图中实线为某电场中的电场线,虚线表示等势面,由图可看出: ()A ,A B C A B C E E E U U U >>>>; ()B ,A B C A B C E E E U U U <<<<; ()C ,A B C A B C E E E U U U >><<; ()D ,A B C A B C E E E U U U <<>>。 答案:()D 题号:30413005 分值:3分 难度系数等级:3 关于静电场的保守性的叙述可以表述为: ()A 静电场场强沿任一曲线积分时,只要积分路径是某环路的一部分,积分结果就一定为零; ()B 静电场场强沿任意路径的积分与起点和终点的位置有关,也要考虑所经历的路径; ()C 当点电荷q 在任意静电场中运动时,电场力所做的功只取决于运动的始末位置而与路径无关。()D 静电场场强沿某一长度不为零的路径做积分,若积分结果为零,则路径一定闭合。 答案:()C

电磁场基本理论

电磁场基本理论 安培环路定理在恒定电流的磁场中,磁感强度沿任何闭合路径的线积分等于此路径所环绕的电流的代数和的μ0倍。这是非常基本的定律 安培载流导线在磁场中所受的作用力。 毕奥-萨伐尔定律实验指出,一个电流元Idl产生的磁场为 场强叠加原理电场中某点的电场强度等于各个电荷单独在该点产生的电场强度的叠加(矢量和)。主要是积分表达式 磁场叠加原理空间某一点的磁场(以磁感强度示)是各个磁场源(电流或运动电荷)各自在该点产生的磁场的叠加(矢量和)。 磁场能量密度单位磁场体积的能量。 磁场强度是讨论有磁介质时的磁场问题引入的辅助物理量,其定义是 磁场强度的环路定理沿磁场中任一闭合路径的磁场强度的环量(线积分)等于此闭合路径所环绕的传导电流的代数和。 磁畴铁磁质中存在的自发磁化的小区域。一个磁畴中的所有原子的磁矩(铁磁质中起主要作用的是电子的自旋磁矩)可以不靠外磁场而通过一种量子力学效应(交换耦合作用)取得一致方向。 磁化在外磁场作用下磁介质出现磁性或磁性发生变化的现象。 磁化电流(束缚电流) 磁介质磁化后,在磁介质体内和表面上出现的电流,它们分别称作体磁化电流和面磁化电流。 磁化强度单位体积内分子磁矩的矢量和。 磁链穿过一个线圈的各匝线圈的磁通量之和称作穿过整个线圈的磁链,又称"全磁通"。 磁屏蔽闭合的铁磁质壳体可有效地减弱外界磁场对壳内空间的影响的作用称作磁屏蔽。 磁通连续原理(磁场的高斯定理) 在任何磁场中,通过任意封闭曲面的磁通量总为零。 磁通量通过某一面积的磁通量的概念由下式定义 磁滞伸缩铁磁质中磁化方向的改变会引起介质晶格间距的改变,从而使得铁磁质的长度和体积发生改变的现象。 磁滞损耗铁磁质在交变磁场作用下反复磁化时的发热损耗。它是磁畴反复变向时,由磁畴壁的摩擦引起的。 磁滞现象铁磁质工作在反复磁化时,B 的变化落后于H的变化的现象。 D的高斯定理通过任意闭合曲面的电位移通量等于该闭合面所包围的自由电荷的代数和。其表示式是带电体在外电场中的电势能即该带电体和产生外电场的电荷间的相互作用能。 电场能量密度电场中单位体积的能量 电场强度电场中某点的电场强度 ( 简称场强)的大小等于位于该点的单位正电荷(检验电荷)所受的电场力的大小,方向为该正电荷所受电场力的方向。 电场线数密度通过垂直于电场强度的单位面积的电场线的条数。返回页首 电磁波的动量密度单位体积的电磁波具有的动量,表示式为: 电磁波的能量密度电磁波的单位体积的能量,其大小为 电磁波的能流密度(坡印廷矢量) 单位时间内通过与电磁波传播方向垂直的单位面积的电磁波的能量,其表示式为, 电磁场方程组麦克斯韦综合了电磁场的所有规律提出表述电磁场普遍规律的方程组。其积分形式是, (1)电场的高斯定理 (2)磁场的高斯定理 (3)电场的环路定理 (4)磁场的环路定理即全电流定律 电磁单位制的有理化在库仑定律的表示式中引入"4p"因子的作法,称作单位制的有理化。这样作可使

高数中需要掌握证明过程的定理

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的。 由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想 过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim (1 )x x x e →+=与0sin lim 1x x x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技 巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01 lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

卡诺循环与卡诺定理

卡诺循环与卡诺定理 一、卡诺热机 1.卡诺定理的提出 从19世纪起,蒸汽机在工业、交通运输中起到愈来愈重要的作用。但是,蒸汽机的效率是很低的,还不到5%,有95%以上的热量都没有得到利用。在生产需 要的推动下,一大批科学家和工程师开始由理论上来研究热机的效率。萨迪·卡诺 (Sadi Carnot,1796—1832),这位法国工程师正是其中的一位。 当时盛行热质说,普遍认为热也是一种没有重量、可以在物体中自由流动的物质。卡诺也信奉热质说,他在他的论文《关于热的动力的思考》中有这样一段话:“我们可以恰当地把热的动力和一个瀑布的动力相比。……瀑布的动力依赖于它的 高度和水量;热的动力依赖于所用的热质的量和我们可以称之为热质的下落高度,即交换热质的物体之间的温度差。”在这里,卡诺关于“热只在机器中重新分配,热量并不消耗”的观点是不正确的,他没有认识到热和功转化的内在的本质联系。 但是卡诺定理的提出,却是一件具有划时代意义的事。 2.卡诺循环 热力学理论指出,要实现一个可逆循环过程,必须使循环过程中的每一分过程都是可逆的。而要实现过程的可逆,除了要使过程没有摩擦存在以外,更重要的就 是要求过程的进行是准静态的。如下图: 要完成一个双热源的可逆循环,其方式应当是由两个等温过程与两个绝热过程组成,如下图: 卡诺循环的效率为: 其中T 2 为低温热源的温度,T1为高温热源的温度。 3.卡诺定理及其推论 (1). 卡诺定理(Carnot principle):在两个不同温度的恒温热源间工作的所有热机, 以可逆热机的热效率为最高。即在恒温T1、T2下,η t,IR ≤η t,R.

卡诺的证明基于热质说,是错误的。下面给出克劳修斯在1850年给出的反证法: (2). 卡诺定理的推论: A. 不可能制造出在两个温度不同的热源间工作的热机,而使其效率超过在同样热源间工作的可逆热机。证明如下: B. 在两个热源间工作的一切可逆热机具有相同的效率。证明如下: 结论:由卡诺定理的两个推论我们可以得出——卡诺循环的热效率最大。

高数中的重要定理与公式及其证明(一)

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1 lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想 过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim(1 )x x x e →+=与0sin lim 1x x x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技 巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

(完整版)高数中需要掌握证明过程的定理(二)

高数中的重要定理与公式及其证明(二) 在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。现将后半部分补上。希望对大家有所帮助。 1)泰勒公式(皮亚诺余项) 设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立 () ()()()2 00' '' ()000 00()()()()...()2! ! n n n x x x x f x f x x x f x f x f x o x x n --??=+-+ ++ +-?? 【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。在复习的前期, 如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。但由于证明过程中所用到的方法还是很常用的。因此把它写在这里。 证明: 令()()()200'''() 00000()()()()()...()2!!n n x x x x R x f x f x x x f x f x f x n ??--=-+-+ ++?????? 则我们要证明()0()n R x o x x ??=-?? 。 由高阶无穷小量的定义可知,需要证明() 0() lim 0n x x R x x x →=-。 这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得 () ()()()() 1 ''''()0 0000100()()()...()1!() lim lim n n n n x x x x x x f x f x x x f x f x n R x x x n x x --→→??--+-++?? -????=-- 再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。 不难验证该过程可以一直进行下去, 运用过1n -次洛必达法则后我们可以得到 () ()() ()0 00 (1)(1)()00000(1) (1) () 000()()()() lim lim !()()() lim !! n n n n x x x x n n n x x f x f x x x f x R x n x x x x f x f x f x n x x n --→→--→---=---=- - 由于()f x 在点0x 处存在n 阶导数,由导数的定义可知() (1)(1)()000()() lim ()n n n x x f x f x f x x x --→-=-

电磁学原理及其应用

电磁学原理及其应用 摘要:本文简介了电磁学的发展史,通过阐述磁悬浮技术,微波炉,磁卡技术中的电磁学原理,进一步探讨其中的科学方法及给我们带来的启示,揭示电磁学在生产生活中的重要性。关键字:电磁波微波排斥吸引 电磁现象是一种极为普遍的自然现象,人类对电磁现象的认识、研究以至利用,经历了 相当长的时期。在春秋战国时期,我国人民已对天然磁石(Fe 3O 4 )有了认识,战国时期《韩 非子》中有“司南”和《吕氏春秋》中有“慈石召铁”的记载。对电磁的近代研究应该从18 世纪的库伦(C.A.de Coulomb)开始,建立了库仑定量定律,标志着电 磁学进入了严密科学的阶段。1820年,奥斯特发现的电流磁效应,揭示 了电现象和磁现象之间的联系。安培则根据当时的一系列实验,提出磁 现象的本质是电流,物质的磁性来源于分子电流的看法,得出了电流元 之间相互作用力的规律——安培定律。1831年,法拉第发现了电磁感应 现象,是第一次明确提出了场的概念,进一步揭示了电与磁的联系。19 世纪60年代麦克斯韦(J.C.Maxwell)总结了前人的研究结果,提出感 生电场和位移电流的假设,建立了以麦克斯韦方程组为基础的麦克斯韦像完整的、宏观的电磁场理论,以及1887年赫兹(H.R.Hertz)做了一系列电磁波实验,最终使电磁学成为一门统一的学科。 电磁学主要研究电荷产生电场和电流产生磁场的规律;电场、磁场对电荷、电流作用的 规律;电场和磁场的相互联系及其运动变化的规律;电路的导电规律;以及电磁场的各种效 应等等。由于电磁现象的普遍存在和广泛应用,电磁学已经成为科学技术的重要基础,电工学、电子学以及其他与电有关的科学往往都是以电磁学为基础建立和发展起来的。 下面将阐述电磁学几大重要基本原理及其应用。 一.同级相吸异极相斥——磁悬浮列车 磁悬浮列车利用“同名磁极相斥,异名磁极相吸”的原理,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。科学家将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全 脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮 列车”,亦称之为“磁垫车”。 由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它

MM定理证明过程-MM定理证明过程

1无税收条件下的MM定理 1.1假设条件 假设1:无摩擦市场假设 ?不考虑税收; ?公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用; ?无关联交易存在; ?不管举债多少,公司和个人均无破产风险; ?产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;不存在自然垄 断、外部性、信息不对称、公共物品等市场失灵 状况;不存在帕累托改善;等等; ?资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会; ?投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。 假设2:一致预期假设 ?所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且对其进行完全 理性的前瞻性分析,因此大家对证券价格预期都 是相同的,且投资者对组合的预期收益率和风险 都按照马克维兹的投资组合理论衡量。

1.2MM定理第一命题及其推论 MM定理第一命题: 有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。 证明方法是无套利均衡分析法。 MM定理第一命题推论一: 债转股后如果盈利未变,那么企业的股票价格也不变。 MM定理第一命题推论二: 股东期望收益率会随财务杠杆的上升而上升。 含义:正常情况下B公司在债转股之后会降低其股票的预期收益率,或者说A公司的股票预期收益率小于B公司的股票的预期收益率。 MM定理第一命题推论三: 股东每股盈利也会随着财务杠杆的上升而上升。 1.3MM定理第二命题及其推论 MM定理第二命题: 公司加权平均资本成本(WACC)与公司的资本结构无关。 MM定理第二命题推论:

有负债的公司的权益资本成本等于同一风险等级的无负债公司的权益资本成本加上风险补偿,风险补偿的比例因子是负债权益比k。 2有税收条件下的MM定理 2.1假设条件 考虑税收,其他假设与前面相同。有税收条件下的MM定理仅一个定理,有四个推论。 2.2MM定理第一命题及其推论 MM定理第一命题: 在考虑税收的情况下,有财务杠杆的企业的市场价值等于无财务杠杆的企业的市场价值加上“税盾”的市场价值。 MM定理第一命题推论一: 在考虑税收情况下,股东的期望收益率仍然会随着财务杠杆的上升而上升。即在考虑税收的情况下,不考虑税收时MM定理的命题一的推论二仍然成立。 MM定理第一命题推论二: 考虑税收情况下,股东的每股收益也仍然会随着财务杠杆的上升而上升,即在考虑税收情况下,不考虑税收MM定理命题一推论三仍然成立。 MM定理第一命题推论三:

电磁场与传输理论B基本概念

电磁场与传输理论B基本概念 1.1什么是右手法则或右手螺旋法则? 1.2标量函数的梯度的定义是什么?物理意义是什么? 1.3什么是通量?什么是环量? 1.4矢量函数的散度的定义是什么?物理意义是什么? 1.5矢量函数的旋度的定义是什么?物理意义是什么? 1.6什么是拉普拉斯算子? 1.7直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的? 1.8三个重要的矢量恒等式是怎样的? 1.9什么是无源场?什么是无旋场? 1.10在无限大空间中是否存在既无源又无旋的场?为什么? 2.1什么是自由空间?什么是线性各向同性的电介质?什么是线性各向同性的磁介质?什 么是微分形式欧姆定律? 2.2电磁学的三大基本实验定律是哪三个? 2.3穿过任一高斯面的电场强度通量与该闭合曲面所包围的哪些电荷有关?穿过任一高斯 面的电位移通量与该闭合曲面所包围的哪些电荷有关?高斯面上的场矢量与高斯面外的电荷是否有关?为什么? 2.4磁场强度沿任一闭合回路的环量与哪些电流有关?磁感应强度沿任一闭合回路的环量 与哪些电流有关?闭合回路上的磁场强度与闭合回路以外的电流是否有关?为什么? 2.5什么是位移电流?什么是位移电流密度? 2.6什么是电磁场的边界条件?他们是如何得到的?在不同媒质分界面上,永远是连续的 是电磁场的哪些分量?电磁场的哪些分量当不存在传导面电流和自由面电荷时是连续的? 2.7边界条件有哪三种常用形式?他们有什么特点?什么是理想介质?什么是理想导体? 3.1静电场是无源场还是无旋场? 3.2静电场边界条件有哪两种常用形式?他们有什么特点? 3.3什么是静电场折射定律? 3.4静电场中任一点的电位是否是唯一的?电场强度是否是唯一的? 3.5什么是等位面?电场强度矢量与等位面有什么关系?为什么? 3.6什么是电位的泊松方程和拉普拉斯方程?什么是电场强度的泊松方程和拉普拉斯方 程? 3.7静电场的能量和能量密度是如何计算的? 3.8导体的电容与哪些因素有关?与导体的电位和所带的电量是否有关? 3.9什么是电容器?电容器的电容是如何定义的?电容器的电容与其电场储能有什么关 系? 3.10静电场的边值问题可以分为哪三类? 3.11什么是直接积分法?什么情况下可以采用直接积分法?直接积分法的基本步骤是什 么? 3.12直角坐标系中一维电位分布的拉普拉斯方程的通解是怎样的?电荷均匀分布和线性分 布区域电位的通解各是怎样的? 3.13什么是分离变量法?什么是分离常数?什么是分离方程? 3.14直角坐标系中的分离常数有哪几个?直角坐标系中的分离方程是怎样的? 3.15直角坐标系中的分离方程的通解与分离常数有什么关系? 3.16直角坐标系中分离变量法的的两种常见的二维问题是指什么情况? 3.17什么是直角坐标系中分离变量法的基本问题? 3.18如何根据基本问题的边界条件选取通解的具体形式?

几何证明定理(精选多篇)

几何证明定理(精选多篇) 第一篇:高中几何证明定理第二篇:几何证明定理第三篇:初一常用几何证明的定理第四篇:初一常用几何证明的定理总结第五篇:立体几何证明的向量公式和定理证明更多相关范文高中几何证明定理 一.直线与平面平行的(判定) 1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行. 2.应用:反证法(证明直线不平行于平面) 二.平面与平面平行的(判定) 1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行 2.关键:判定两个平面是否有公共点 三.直线与平面平行的(性质) 1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行 2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线 四.平面与平面平行的(性质) 1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行 2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行

五:直线与平面垂直的(定理) 1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直) 六.平面与平面的垂直(定理) 1.一个平面过另一个平面的垂线,则这两个平面垂直 (或者做二面角判定) 2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换 七.平面与平面垂直的(性质) 1.性质一:垂直于同一个平面的两条垂线平行 2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记) 以上,是立体几何的定理和性质.是一定要记住的基本!。 想要变-态的这里多的是-- 欧拉定理&欧拉线&欧拉公式(不一样) 九点圆定理 葛尔刚点

相关文档
相关文档 最新文档