文档库 最新最全的文档下载
当前位置:文档库 › 实验22光调制法测量光速

实验22光调制法测量光速

实验22光调制法测量光速
实验22光调制法测量光速

实验22光调制法测量光速

1.能否对光的频率进行绝对测量,为什么?(目前没有仪器能直接测量,要测量先要转换为电信号,目前也没有光电转换接收器能响应频率如此高的光强变化)

提示:如果已知光波长如(0.65微米,波长可以用光干涉(如迈克尔逊干涉)测量),再

应用本实验的测量方法测出光速,便可间接测出光的频率(C =f *λ)。绝对测量是什么意思?指的是直接测量?

2.仪器中光源的波长为0.65微米,为什么还要测量波长?

提示:因为实验是对光波进行调制后,通过测量光调制波波长λ调和频率f调来测量光速:C =f调*λ调,但调制波的波长并不等于原光波波长0.65微米。

3.什么是位相法测定调制波的波长?在本实验中是如何实现的?提示:看教材。

(1)通过测量调制波传播距离上两点位置处的位相差来间接测量调制波波长λ调的方法就叫做位相法测定调制波的波长。

实验通过对原红光光波进行调制使其变成光电接收器能响应的100MHz调制光波(调制光波光速不变),再通过差频法把高频基准调制波和接受到的高频待测调制波两信号分

别变为455KZH的两低频信号(变频后两信号相差不变),然后根据

(P.133,(22-3)式),应用“等距离法”或“等相位法”来实现)。

4.红光的波长为0.65微米,在空气中只走0.325微米就会产生相位差π。而我们在实验中却将棱镜小车移动了0.75米左右的距离,才能产生相位差π。这是为什么?

提示:,对波长为0.65微米的载波(红光)传播中相位改变一个π

所走

过的距离0.325微米,而实验是通过测量调制波波长来测量光速,调制波波长并不等于0.65

微米,而是约米。

5.本实验所测定的是100MHz调制波的波长和频率,能否把实验装置改成直接发射频率为

100MHz的无线电波并对它的波长和频率进行绝对测量。为什么?

6. 针对“等距法”用作图法处理数据,过程包括正确的画图,如作D-φ直线或

D-Δt直线,和相关计算,最后得到待测量C。

作图法处理数据示例:等间距测量法—等间距移动反射棱镜,从示波器读出待测波对基准波的相移时间ti。调制信号波频率f调=108Hz(100MHz),差频信号频率f′=452.6KHz,T′=1/f′

=1/452.6KHz =2.210μS,反射棱镜移动位置:xi,相应的待测波对基准波的相移时间:ti测量数据记录于下表一

表一仪器:数字示波器M:250nS CH1:500mV CH2:500mV

说明:x i从导轨上标尺读出,t i从数字示波器上测出,后三列数据

从测量数据计算得到,其中各由算出。

作图法处理数据:

由和

图线斜率

所以光速

由 6

所以光速

所以光速

光拍频法测量光速实验

图1 拍频波场在某一时刻t 的空间分布 光拍频法测量光速实验 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E 0、圆频率分别为1ω和2ω(频差 12ωωω?=-较小)的二光束: 1011120222cos()cos()E E t k x E E t k x ωφωφ=-+? ?=-+? (1) 式中112/k πλ=,222/k πλ=为波数, 1?和2?分别为两列波在坐标原点的初位相。若这两列光波的偏振方向相同,则叠加后的总场为: 1 2 1212012122cos[ ()]22cos[()](2) 22 x E E E E t c x t c ωω φφ ωωφφ--=+=-+++?-+ 上式是沿轴方向的前进波,其圆频率为12()/2ωω+,振幅为12 02cos[ ()]22 x E t c ωφφ?--+,因为振幅绝对值以频率为12/2f f f ωπ?=?=-周期性地变化,所以被称为拍频波,?f 称为光拍波频率。 实验中拍频波由光电探测器检测,光电探测器上的光电流如图1(b )和下式 []{} 2 01cos (/))i gE t x c ω?=+?-+ (3) 其中g 是光电探测器的转换常数,2f ωπ?=?,?是初相位。 如果有两路光频波,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系 2L f L c c ωπ????????= = (4) 当π? 2=?时,?L =Λ,恰为光拍波长,此时上式简化为 c f =??Λ (5) 可见,只要测定了Λ和f ?,即可确定光速c 。

光速测量调制法实验报告

竭诚为您提供优质文档/双击可除光速测量调制法实验报告 篇一:激光光速测量实验报告 综合物理实验实验报告 实验名称:激光光速的测定 系别专业班号实验日期20XX 年5日 姓名学号交报告日期20XX年6月1日 实验仪器: he-ne激光器及电源适配器,实验基台,透镜及反射平面镜,光接收器,示波器及函数发生器,30米卷尺及平板小车,连接电缆若干 实验简介 利用函数信号发生器,调整激光器输出为高频周期脉冲方波信号,等距改变激光传输光程并用光接收器接收反射信号,利用示波器便可以测定光速。理论基础 在自由空间内光的速度是一个重要而有趣的自然常数,光源的速度与观察者的相对速度无关,且有以下规律

1.光的速度,是宇宙见任何事物速度的上限 2移动物体接近光速,遵循一套物理原则,不符合牛顿定律且超过了我们的直觉假设。 实验预备 1.准备了光接收器和红光激光器 2.在实验基台上,依次放置好激光器,透镜和光接收器,并将反射平面镜放置在另外一个平板小车上。 3.反射平面镜放置的平板小车须有10—20m活动空间。 4.调整平面镜垂直及水平,使反射光和入射光在同一水平高度。 5.使用bnc同轴线缆连接TTL与示波器通道1,使用RcA-bnc线缆连接光接收器与示波器通道2,使用3.5mm耳机线-bnc线缆连接激光器电源与函数发生器输出接口。 6.设置函数发生器为方波,频率设置-3mhZ,调节函数发生器的直流输出和偏移,直至激光器亮度始终为止。 7.调节示波器参数,调整示波器时间轴为25ns/div 实验内容 1.调整激光反射镜透镜位置和接收器,使信号最大化。 2.在示波器上,调整信号以最大限度的显(:光速测量调制法实验报告)示显示信号变化。注意测量全程不要更改示踪的水平位置。 3.记录的反射镜的位置d和示波器信号的相位差T

光速测量实验报告参考

佛山科学技术学院 实 验 报 告 课程名称大学物理实验 实验项目 专业班级 姓 名 学号 指导教师成 绩 日期2010 年月日 一、实验目的 1.了解和掌握光调制的基本原理和技术。 2.学习使用示波器测量同频正弦信号相位差的方法。 3.测量光在空气中的速度。 二、实验器材 光速测量仪,双踪示波器。 三、实验原理 1.利用光的波长和光频率(=1014Hz)测速度 但=1014Hz,太高,目前电路最高只能响应108Hz的频率。 2.用调制波波长和频率(108Hz)测速度 108Hz,容易测量。 3.实验装置如图:

求出D-图像(直线)的斜率k,光速c=4πf?k = (2)“等相位”法测波长 表2 “等相位”法测波长 0123456 t() ) x(mm) D(mm) (同(1)处理,求出光速): 六.实验结果 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题 1.本实验中,光速测量的误差主要来源于什么物理量的测量误差?为什么? 答:误差主要来源于波长的测量误差。因为频率可以做到很稳定。 2.通过光速测量实验,你认为波长测量的主要误差来源是什么?为提高测量精度需做哪些改进? 答:波长测量的主要误差来源是相位的测量误差。可采用高精度的相位计改进测量。

实验报告内容:一.实验目的 二.实验仪器(仪器名称、型号、参数、编号) 三.实验原理(原理文字叙述和公式、原理图) 四.实验步骤 五、实验数据和数据处理 六.实验结果 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题

光拍频法测量光速

光拍法测量光速 光在真空中的传播速度是一个极其重要的基本物理量,许多物理概念和物理量都与它有密切的联系,因此光速的测量是物理学中的一个十分重要的课题。本实验的目的是通过测量光拍的波长和频率来确定光速,掌握光拍频法测量光速的原理和实验方法。 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理,频差较小,速度相同的 两列同向传播的简谐波叠加即形成拍。若有振幅 相同为E 0、圆频率分别为1ω和2ω(频差 21ωωω-=?较小)的二光束: )cos(11101?ω+-=x k t E E )cos(22202?ω+-=x k t E E 式中11/2λπ=k ,22/λπ=k 为圆波数, 1?和2?分别为两列波在坐标原点的初位相。若 这两列光波的偏振方向相同,则叠加后的总场为: 图1 拍频波场在某一时刻t 的空间分布 ]2)(2cos[]2)(2cos[ 221212121021??ωω??ωω++-+?-+--=+=c x t c x t E E E E 上式是沿x 轴方向的前进波,其圆频率为2/)(21ωω+,振幅为]2 )(2cos[2210??ω-+-?c x t E ,因为振幅以频率为πω4/?=?f 周期性地变化,所以被称为拍频波,f ? 称为拍频。如果将光频波分为两路,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差??与两路光的光程差L ?之间的关系仍由上式确定。当π?2=?时,?L=Λ,恰为光拍波长,此时上式简化为:Λ??=f c ,可见,只要测定了Λ和f ?,即可确定光速c 。 为产生光拍频波, 要求相叠加的两光波具有一定的频差, 这可通过超声与光波的相互作用来实现。超声(弹性波)在介质中传播,使介质内部产生应变引起介质折射率的周期性变化,就使介质成为一个位相光栅。当入射光通过该介质时发生衍射,其衍射光的频率与声频有关。 具体方法有两种,一种是行波法,如图2(a )所示,在声光介质与声源(压电换能器)相对的端面敷以吸声材料,防止声反射,以保证只有声行波通过介质。当激光束通过相当于位相光栅的介质时,使激光束产生对称多级衍射和频移,第L 级衍射光的圆频率为L ΩL +=0ωω,其中

关于光速测量的方法及其本质异同的报告77

关于光速测量的方法及其本质异同的报告 小组成员:白美丹白云瑞郭佳昌 郭丝丝贺小平王阳凡

关于光,那是我们每一个人都特别熟悉的。基于我们现在学习的理解,我们都知道光是一种电磁波,那即是这样,光也具有粒子性和波动性。那么光也有自己的速度,我们每天都在用光速解决问题。那么光速是怎么来的,它的数值那么大,怎么测量的?今天我们讨论讨论光速的测量史。 一.光速的几种测量方法及其原理 1.罗默木星蚀法 早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差

甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s。 罗默很快意识到,如果认为光速是有限的话,这1000秒时间恰好对应光穿过地球轨道直径所需要的时间。那个时代,地球轨道直径被认为是大约2.76亿公里(正确值是约3.0亿公里),因此罗默得到的光速比正确值略小,但作为对光速的第一次成功测量,罗默的方法被载入了史册。 2.布莱德雷光行差法 1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为: C=299930千米/秒 1725年,英国天文学家布莱德雷发现了恒星的“光行差”现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,

兰州大学近物实验考题

近物实验面试考题 试题(朋兴平;三个实验 17题) 真空镀膜 1.真空镀膜原理; 2.加热烘烤基片对膜的质量有什么影响? 3.基片性能、蒸发速度、蒸发时的真空度以及蒸发源与基片之间的距离等因素对膜的质量有什么影响? 4.轰击的物理作用? 5.真空镀膜的实验操作过程 霍尔效应 1.什么是霍尔效应; 2.若导体中同时有两种极性的载流子参与导电,其综合霍耳系数比单一载流子导电的霍耳系数是增大还是减小,为什么? 3.如何分离霍尔效应与其它效应? 4.霍耳系数误差因子0.69的说明? 5.实际测量与理论相差的原因? 红外分光测量 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收铺?为什么? 2.以亚甲基为例说明分子的基本振动形式。 3.何谓基团频率?它有什么重要性及用途? 4.红外光谱定性分析的基本依据是什么?简述红外定性分析的过程。

5.影响基团频率的因素有哪些? 6.何谓“指纹区”?它有什么特点和用途? 7.已知HCl在红外光谱中吸收频率为2993cm-1,试求出H-Cl键的键力常数。 红外光谱的用途? 一. 真空的获得与测量(宋长安二个实验19个题)06.6 1.低真空获得过程中,用火花枪激发玻璃系统,呈现出紫色、分红色说明什么?2.低真空获得过程中,加热或激发被抽容器,压强升高说明什么? 3.激发或加热“热偶规”,压强减小说明什么问题? 4.低真空测量过程中压强起伏说明什么? 5.扩散泵油间歇沸腾的物理原因是什么? 6.前级泵能否将扩散泵油蒸汽抽走?为什么? 7.如何观察扩散泵油蒸汽流的喷发射程? 8.简述气体分子在高真空下的扩散过程。 9.突然停电或者结束机械泵的工作时,必须要做什么? 10.操作高真空的测量。 二. 汽液两相制冷机 1.F12冷凝器中发生的物理过程? 2.F12蒸发器中发生的物理过程? 3.环境温度对制冷机的影响? 4.制冷剂用量对制冷效果的影响? 5.工质的命名与定义? 6.在什么情况下,压缩机吸气管会结霜?

光速测量实验报告(实验总结)参考

光速测量实验报告参考 一、光及光速测量的发展史 (一)古代中国对于光的认识 “景,光之人煦若射。下者之人也高,高者之人也下。足敝下光,故景障内也。”——《墨经》(光的直线传播) “阳艘向日照之?则光聚向内,离镜一二寸,光聚为一点,大如麻寂,着物则火发;阳健面洼,以一指迫而照之则正,渐远则无所见,过此遂倒。”一一《梦溪笔谈》(小孔成像) (二)西方人对于光的认识 崐神说,要有光,就有了光。一一《圣经》 光是由发光体向四面八方射出的一种东西,这种东西碰到障碍物上就立刻被弹开。如果它偶然进入人的眼睛,就叫人感觉到看见使它最后被弹开的那个东西。――毕达哥拉斯 (三)光在近代物理学发展过程中的认识 光的颗粒说(1643-1727)——牛顿 光的波动说(1635-1703)——胡克 光是电磁波(1857-1894)――赫兹 粒子说(1879-1955)——爱因斯坦 二、究竟光是什么? 现代科学的认为:光是一种人类眼睛可以见的电磁波(可见光谱)。在科学上的定义,光有时候是指所有的电磁波谱。光是由一种称为光子的基本粒子组成具有粒子性与波动性,或称为波粒二象性。光可以在真空、空气、水等透明的物质中传播。 三、光速测量的方法

(一)伽利略首先提出了光速的测量,但失败了。(1607) (二)天文测定光速 1.罗默的卫星蚀法(1676) 2.布莱德雷的光行差法(1728) 点评:由于当时天文仪器并无现在先进,且凭肉眼观察误差较大,所以测得的值都不精确 (三)大地测定光速(以光行过的路程和时间得出速度c=s/t) 1.斐索旋转齿轮法(1849) 2.惠更斯旋转镜法(1834) 3.迈克尔逊旋转棱镜法(1926) 点评:想要得到越精确的值,就要尽量增大s和t,故实际操作繁琐和精确度不大是必然的。 (四)实验室测光速法(c= X ?) 1.埃森微波谐振腔法(1950) 2.激光法测光速 点评:是目前最普遍也是最准确测量光速的方法,也是本实验的思想方法 拍光法测光速 【学习目标】 1.进一步理解光拍频的概念、掌握光拍频法测量光速的技术,了解声光调制器的应用; 2.体会到光速也是一个有限值,并了解光年是一个空间量; 3.进一步学习光路的调整和熟练示波器的使用。 【实验原理及装置】 2. 1光拍的产生和传播血* 报摇掾劲迭扯廈逗.频蚤较小、速旻咱司的二司向传塔的就谐戒施迭扯即形或拍*考空预華分别为齐和f2傍差# = 並软小)的光束〔玫门假定它汨具有叩同閔振疇)“ E l=Ea^( - 5=加邪心八-它们的迭加“ 爲話讣心胡巴二环丿卜红纠“半g 卜令型也 出I a 丿£■V C J ■ (1)是烧频率为僚;饯振碍为ZEcos +的前进浚.注 意到巴的拽逼以频宴#二翌严周歩摊变化,所以我们称它为拍频忍“就是拍4' E:+E 汁

光速测量。。。

人类最早对于光速的测量始于伽利略。最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。1983年,光速取代了保存在巴黎国际计量局的铂制米原器被选作定义“米”的标准,并且约定光速严格等于299,792,458米/秒,此数值与当时的米的定义和秒的定义一致。后来,随着实验精度的不断提高,光速的数值有所改变,米被定义为1/299,792,458秒内光通过的路程。根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的物件的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的物件的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。丹麦天文学家罗默从地球观测木卫一的掩蔽来测量光速。1676年奥勒·罗默使用望远镜研究木星的卫星艾欧的运动,第一次定量的估计出光速。艾欧的公转轨道可以用来计算时间,因为它会规律的进入木星的阴影中一段时间(图中的C至D)。罗默观测到当地球在最接近木星时(H点),艾欧的公转周期是42.5小时,当地球远离木星时(从L至K),艾欧从阴影中出现的时间会比预测的越来越晚,很明显的是因为木星与地球的距离增加,使得"信号"要花更多的时间传递。光要通过行星之间增加的距离,使得计时的信号在第一次和下一次之间因而延长了额外的时间。当地球向木星接近时(从F到G),情形则正好相反。罗默观测到艾欧在接近的40 个轨道周期中周期比远离的40个轨道周期缩短了22分钟。以这些观测为基础,罗默认为在80个轨道周期中光线要多花费22分钟行走艾欧与地球之间增加的距离。这意味着从L至K 和F至G,地球经历了80个艾欧轨道周期(42.5小时)的时间,光线只要花22分钟。这对应于一个地球在轨道上绕着太阳运动和光速之间的一个比例(如右图)。 意味着光速是地球的轨道速度的9,300倍,与现在的数值 10,100倍比较,相差无几。在当时,天文单位的估计数值是大约1亿4千万公里。克里斯蒂安·惠更斯结合了天文单位和罗默的时间估计,每分钟的光速是地球直径的1,000倍,他似乎误解了罗默22分钟的意思,以为是横越地球轨道所花费的时间。这相当于每秒220,000公里(136,000英里),比现在采用的数值低了26%,但仍比当时使用其他已知的物理方法测得的数值为佳。艾萨克·牛顿也接受光速是有限的观念,在他1704年出版的书光学中,他提出光每秒钟可以横越地球16.6次(相当于210,000公里/秒,比正确值低了30%)。这似乎是他自己的推断(不能确知他是否有引用或参考罗默的数据)。罗默随后依据同样的原理观察木星表面上的斑点在自转周期上的变化,也观察其他三颗伽利略卫星的相同现象。但是因为这种观测是很困难的,因而日后被其他的方法所取代。. 即使如此,靠著这些观测,光速是有限的仍不能被大众满意的接受(著名的有吉恩·多米尼克·卡西尼),直到在詹姆斯·布雷德里(1728)的观测之后,光速是无限的想法才被扬弃。布雷德里推论若光速是有限的,则因为地球的轨道速度,会使抵达地球的星光有一个微小角度的偏折,这就是所谓的光行差,他的大小只有1/200度。布雷德里计算的光速为298,000公里/秒(185,000英里/秒),这与现在的数值只有不到1%的差异。光行差的效应在19世纪已经被充分的研究,最著名的学者是瓦西里·雅可夫列维奇·斯特鲁维和de:Magnus Nyrén。1849年,法国物理学家A.H.L.菲佐用旋转齿轮法首次在地面实验室中成功地进行了光速测量,最早的结果为c=315000千米/秒。1862年,法国实验物理学家J.-B.-L.傅科根据D.F.J.阿拉戈的设想

光速测量实验报告

光速测量实验报告 光拍法测量光速 【实验名称】光拍法测量光速 【实验目的】1( 掌握光拍频法测量光速的原理和实验方法。 2( 通过测量光拍的波长和频率来确定光速。 【实验仪器】CG-IV型光速测定仪,示波器,数字频率计 【实验原理】根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E0、圆频率分别为和(频差较小)的二光 束: ,,,,,,,,1212 E,Ecos(,t,kx,,) E,Ecos(,t,kx,,) 1011120222 式中,为波数,和为初位相。若这两列光波的偏振方向相同, k,2,/,k,2,/,,,112212 则叠加后的总场为: ,,,,,,,,,,,,xx,,,,12121212EEEEtt ,,,2cos(,),,cos(,),120,,,,cc2222,,,,上式是沿x轴方向的前进波,其圆频率为,振幅为(,,,)/212 ,,,x,,,,12Et,因为振幅以频率为周期性地变化,所以 E2cos(,),,f,,,/4,0,,c22,, 被称为拍频波,称为拍频,为拍频波的波长。 ,,,,,c/,f,f 实验通过实验装置获得两束光拍信号,在示波器上对两光拍信号的相位进行比较,测出两光拍信号的光程差及相应光拍信号的频率,从而间接测出光速值。假设两束光的光程差为L,对应的光拍信号的相位差为,当二光拍信号的相位差为2π时,即光程差为光拍波,,'

,,的波长时,示波器荧光屏上的二光束的波形就会完全重合。由公,,c,,,,,f,L,2F便可测得光速值c。式中L为光程差,F为功率信号发生器的振荡频率。【实验步骤】1,观察实验装置,打开光速测定仪,示波器,数字频率计电源开关。 2,调节高频信号源的输出频率(15MHZ左右),使产生二级以上最强衍射光斑。 3,用斩光器挡住远程光,调节全反射镜和半反镜,使近程光沿光电二极管前透镜的光轴入射到光电二极管的光敏面上,这时,示波器上应有与近程光束相应的经分频的光拍波形出现。 4,用斩光器挡住近程光,调节半反镜、全反镜和正交反射镜组,经半反射镜与近程光同路入射到光电二极管的光敏面上,这时,示波器屏上应有与远程光光束相应的经分频的光拍波形出现。 5,示波器上这时有两列波出现,移动导轨上A的滑块,记下此时A的位置,然后移动滑块B,让两列波完全重合,记下滑块B的位置。 6,重复步骤5,然后再记下数据。 【实验数据与处理】 f=75.0035MHZ (mm) (mm) ,,,,D0D0AB 80.0 548.0 548.1 548.2 548.0 548.0 (mm) (mm) ,,,,D2,D2,AB 420.0 209.1 208.8 209.0 209.3 208.8 ,,,,,,,,,,,,L,2,D2,,D0,2,D2,,D0BBAA ,,D2,=(209.1+208.8+209.0+209.3+208.8) 5=209.0mm ,B ,,D0=(548.0+548.1+548.2+548.0+548.0)5=548.06mm ,B 1.88mm ,,,,L,2,209.00,548.06,2,420.0,80.0, 68c==1.88,,,2,75.0035,10=m/s ,,L,2F2.820,10 883.0,10,2.820,10,,=6.0% 83.0,10

近代物理实验期末考试试题及答题要点

近代物理实验期末考试试题及答题要点 1.(实验名称:核衰变的统计规律) (1)测量G-M 计数管的坪曲线目的是什么? (2)某学生用G-M 计数管探测到某一放射源放射的粒子,每次测量的时间为30秒,共测量100次,测量数据如下表所示;用χ2检验方法判断测量结果是否服从泊松分布(2 19.49αχ-=)。已知泊松分布的 概率函数式为: ()P n =! n m m e n - 。 【答题要点】 (1) 检验G-M 管是否正常和确定工作电压。 (2) m=2.51,选用皮尔逊统计量作X 2检验,考虑到计算X 2值时每个区间的频数不能太少,于是把5i k >以上的数据合为一个区间,其余数据均可单独作为一个区间。因,100 i i E NP N ==则 0 2.511 2.51(0)1008.1!0! m k m E k N e e k --===?= 1 2.512 2.51(1)10020.41! E k e -==?= 同理可得3(2)25.5E k ==;4(3)21.3E k ==;5(4)13.4E k ==;6(5)11.3E k >=可求得: 2 6 21() 2.12i i i i N E E χ=-==∑ 选定显著水平 a=0.05,查X 2分布表得2 19.49αχ-=。由于22 1αχχ-<,故可判断观测结果与泊松分 布无显著差异。 2.(实验名称:高真空的获得与测量) (1)真空的基本特点:1) 2) 3) 。 (2)衡量真空泵的两个重要指标是: 和 。 (3)某一真空系统当用机械泵抽到1.2×10-1 Pa 后打开扩散泵,几分钟后真空度开始下降,直到几十Pa ,后又开始上升直到小于1×10-2Pa 。请解释这一现象。 【答题要点】 (1)真空空间气体分子密度极小,仅为大气压下分子密度的万亿分之一;气体分子或带电粒子的平均自由程极长;气体分子与固体表面碰撞的频率极低。 (2)极限压强; 抽气速率 (3)首先是油受热体积膨胀致使压强增大,真空度下降;当油蒸气遇到冷却水冷凝后,压强变小,真空

光速测量实验报告

光速测量实验报告 实验目的: 1. 了解和掌握光调制的基本原理和技术 2. 学习和使用示波器测量同频正弦方波信号相位差的方法 3. 测量光在空气中的速度 实验仪器: 激光器、信号发生器、光接收器、示波器、反射镜等 实验原理 相位φ=κ*d ,其中φ为相位差,κ为波数,d 为光程差。实验采用平面镜改变光程差d,实验中可以通过测量平面镜之间的距离来确定光程差d 。信号发生器为直流方波输出,则激光器发出激光脉冲。激光接收器收到激光信号后输出基频信号,且输出的信号为一正弦波,前后移动平面反射镜的距离,并测出移动的距离进而测出光程差Δd,由于光程差的改变,则信号反射光的信号的相位发生变化,由示波器上可以确定时间t1和t2,计算出时间差Δt=∣t1-t2∣,所以光速c=Δd/Δt 。下面是测量图: 1. 预习实验的内容,了解实验的目的,理解实验的原理,思考应当怎样把实验 做好,实验过程中都要做什么,同时,复习一下示波器一些基本的使用和各个按键的功能。为实验做好准备工作。 2. 实验前,认真读完实验仪器的操作说明,了解实验仪器的基本结构,以及实 验仪器各部分在实验中的功能和作用,分析实验中应该怎样正确的使用仪器,进入实验状态。 3. 在对实验分析的基础上,正确的连接线,把实验仪器连接摆放好 4. 调试实验仪器,由于如果反射镜离的太远,不利于实验中对实验仪器的调试, 因此,在调试仪器阶段应当使反射镜离激光器近。同时,反射镜,激光器,信号接收器应该保持在同一水平面上。由信号发生器发出一矩形方波,作用在激光器上使激光器发出光脉冲,由反射镜反射的信号由接收器转换成正弦波,把正弦波与方波同时输入示波器,由于方波是很稳定的不随反射镜位置的变化,把触发信号选择成方波。 5. 选择合适的反射镜位置作为基点,然后移动反射镜的位置,测量实验数据Δd 和Δt ,处理实验数据,可以用线性来求。 示波器 信号发生器 激光接收器 激光器 平面反射镜 Δd

光拍法测量光速(教案)

光拍法测量光速 从17世纪伽利略第一次尝试测量光速以来,各个时期人们都采用最先进的技术来测量光速。现在,光在一定时间中走过的距离已经成为一切长度测量的单位标准,即“米的长度等于真空中光在299792458/1秒的时间间隔中所传播的距离”。光速也已直接用于距离测量,在国民经济建设和国防事来上大显身手,光的速度又与天文学密切相关,光速还是物理学中一个重要的基本的常数,许多其它常数都与它有关,例如光谱学中的里德堡常数,电子学中真空磁导率与真空电导率之间的关系,普朗克黑体辐射公式中的第一辐射常数,第二辐射常数,质子、中子、电子、μ子等基本粒子的质量等都与光速c 相关。正因为如此,巨大的魅力把科学工作者牢牢地吸引到这个课题上来,几十年如一日,兢兢业业地埋头于提高光速测量精度的事业。 [目的] 1.了解声光频移法获得光拍的方法。 2.掌握光拍法测光速的原理和实验方法。 3.熟练掌握用光速测定仪测量光速的技术。 本实验是采用高频声光器件,利用声光频移效应产生150MHz 的拍频波,移动反光镜,用示波器比较近程光与远程光的相位差,求得拍频波的波长和频率,测得光的传播速度。 [仪器] 光速测量仪(LM2000C )(包括光学系统及光路系统)、多功能等精度频率计(HC-F1000L )、示波器(YB4320)。 [原理] 1.光拍的产生和传播 根据振动的迭加原理,频差较小、速度相同的二同向传播的简谐波相迭加即形成拍。考虑频率分别为1f 和2f (频差21f f f -=?较小)的光束(为简化讨论,我们假定它们具有相同的振幅): )cos(1111?ω+-=x k t E E )cos(2222?ω+-=x k t E E 它们的迭加 ]2 )(2cos[]2)(2cos[ 22 121212 121??ωω??ωω++-+?-+--=+=c x t c x t E E E E s (1) 是角频率为 2 2 1ωω+,振幅为]2 )(2 cos[ 22 12 1??ωω-+--c x t E 的前进波。 注意到s E 的振幅以频率π ωω22 1-= ?f 周期地变化,所以我们称它为拍频波,f ?就是拍频,如图一所示:

光拍频测量光速实验

近代物理学实验报告 —光拍频法测量光速 实验组员:付静静091204121 陈聪091204120 实验班级:电信科学091班 指导老师:李鸣 2011-12-15

一、实验目的 1、掌握光拍频法测量光速的原理和实验方法,并对声光效应有一定初步了解; 2、通过测量光拍的波长和频率来确定光速。 二、实验原理 根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加若有振幅相同为E0,圆频率分别为E1和E2(频差较小)的两光束 : 这两列光波的偏振方向相同,则叠加后的总场为: , 上式是沿x 轴方向的前进波,其振幅为 ?? ??? ?++ ??? ?? -+?????? ?-+??? ?? --=+=22cos 22cos 22121212 1 021????????c x t c x t E E E E

因为振幅以频率为 ,周期性地变化,所以被称为 拍频波,称为拍频,如果将光拍频波分为两路,使其通过 同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差 , 两路光的光程差,之间的关系仍由上式确定, 当 时,恰为光拍波长,则: 三、实验安装 1. 滤波放大器 由于He-Ne 激光器的噪声(噪声谱在25MHz 以下)和频移光束之 中频率成分很复杂,致使光拍信号被淹没在噪声中,无法观察。采用声表面波滤波器有效地抑制噪声,获得纯净的中心角频率为2Ω的光拍信号。滤波放大器方框图如图五所示。 ?? ? ???-+??? ??-?22cos 2210???c x t E π ? 4?=?f f ???L ?π ?2=?Λ=?L f c 图五 滤波放大器方框图

光拍频波和光速测量

一、实验目的 1.理解光拍频概念及其获得。 2.掌握光拍法测量光速的技术。 二、实验原理 光拍频法测量光速是利用光拍的空间分布,测出同一时刻相邻同相位点的光程差和光拍频率,从而间接测出光速。 1、光拍的产生和接受 根据振动迭加原理,两列速度相同,振面和传播方向相同,频差又较小的简谐波迭加形成拍。假设有两列振幅相同(只是为了简化讨论)、角频率分别为ω1和ω2的简谐拨沿x 方向传播。 10111cos()E E t k x ω?=-+ 20222cos() E E t k x ω?=-+ k 1=2π/λ1,k 2=2π/λ2称为波数,?1和?2称为初位相,这两列简谐波迭加后得: 1 2 1212 121202cos cos 2222x x E E E E t t c c ωω??ωω??--++????? ?? ?=+=-+ -+ ? ???? ? ? ? ? ?? ?? ? (1) E 是以角频率为12 2 ωω+,振幅为12122cos 022x E t c ωω??--?? ??-+ ?? ????? 的前进波。注意到其振幅是 以角频率12 2 ωωω-?= 随时间作周期性的缓慢变化。所以称E 为拍频波,其中 12 2 F ωωωπ-?==?,F ?称为拍频。s λ?是拍的波长。 2、相拍二光束的获得 假设超声波()(),cos 0u y t u t k y s s ω=-沿y 方向以行波传播,它引起介质在y 方向的应变为: ()() 00sin sin s s s s s u S u k t k y s t k y y ωω?= =-=-? (2) 若介质y 方向的宽度b 恰好是超声波半波长的整数倍,且在声源相对的端面敷上反射材料,使超声波反射,在介质中形成驻波声场,(),2cos cos 0u y t u t k y s s ω=g ,它使介质在y 方向的应变为: 002cos sin 2cos sin s s s s s u S u k t k y s t k y y ωω?=- ==? (3) 即用同样的超声波源激励,驻波引起的应变量幅值是行波的两倍,这样光通过介质产生衍射的强度比行波法强的多,所以本实验采用驻波法。

激光光束分析实验报告

激光光束分析实验报告 引言 1960年,世界上第一台激光器诞生。激光作为一种相干光源,以其高亮度、高准直性、高单色性的优点,一直在各种生产和研究领域发挥着重要的作用。b5E2RGbCAP 虽然激光具有上述优点,然而严格地说,激光并不是平面光束,而是一种满足旁轴近似的旁轴波。由稳定谐振腔发出的激光束大多为高斯光束,其主要参数为光束宽度、光束发散角和光束传播因子。由于这几个参数不同,不同激光束的质量也就有了差别,因此就需要制定评价光束质量的普适方法。常用来评价光束质量的因 子有:衍射极限倍数因子、斯特列耳比、环围能量比、因子和 因子的倒数K因子<通常称为光束传播因子)。其中因子为国际ISO组织推荐的评价标准,也是我们在实验中采用的评价标准。p1EanqFDPw 因子的定义为: 其中为实际光束束腰宽度,为实际光束远场发散角。 采用因子时,作为光束质量比较标准的是理想高斯光束。基 模(模> 高斯光束有最好的光束质量,其,可以证明对于 一般的激光光束有。因子越大,实际光束偏离理想高斯光束越远,光束品质越差。当高斯光束通过无像差、衍射效应可忽略的透镜、望远镜系统聚焦或扩束镜时,虽然光腰尺寸或远场发散角

会发生变化,但光束宽度和发散角之积不变,是几何光学中的拉格朗日守恒量。DXDiTa9E3d 实验原理 如图选定坐标系。设光束的束腰位置为,束腰直径为,远 场发散角为。为了简化问题,假设光束关于束腰对称,则可求出传播轴上任一垂直面上的光束直径。光束传播方程的一级近似为:RTCrpUDGiT 光束的因子为: 其中n为传播介质折射率,为光束波长。对于束腰宽度和远场发散角,可用如下方法测得。 本实验中,我们采用的CCD能够测量在柱坐标系中传播轴上任 一垂直面上的光束能量密度函数。由于能量密度函数关于传 播轴中心对称,故在分布函数中没有自变量。对于高斯光束,可以证明:5PCzVD7HxA 其中:

用光拍频法测量光速

用光拍频法测量光速 光速一般是指光在真空中的传播速度,实验测得各种波长的电磁波(广义的光)在真空中的传播速度都相同。据近代的精确测量,光速为。它是自然界重要常数之一。近代物理学理论的两大支柱之一——爱因斯坦的相对论,是建立在两个基本“公设”之上的,这两个公设之一就是“光在空虚空间里总是以确定的速度v 传播着”s m /102.997924588×1,即通常所说的真空中光速不变。由麦克斯韦电磁理论得到电磁波在真空中的传播是一个恒量,通过电磁学测出的这一恒量与实际测定的光速十分接近,于是麦克斯韦提出了光的电磁理论,认为光是在一定频率范围内的电磁波。1887年的“迈克尔逊——莫雷实验”表明光速在任何惯性系都是不变的。爱因斯坦采用了麦克斯韦的理论作为他相对论的基础之一,而迈克尔逊——莫雷实验是相对论的重要实验基础。 目前光速测量技术,如光脉冲测量法、相位法等,还用于激光测距仪等测量仪器。 实验目的 1. 理解光的拍频概念。 2. 掌握拍频法测量光速的技术。 实验原理 1.光拍的产生和传播 两个同方向传播、同方向振动的简谐波,如果其频率差远小于它们的频率时,两波迭加即形成拍。 考虑满足上述条件的两束光,频率为f 1 和f 2 ,且f f f 12?<<1 及f f f 12?<<2 ,设两光强相等,初相为 0,沿 x 方向传播: )(cos )(cos 202101c x t E E c x t E E ?=?=ωω (1) 1 爱因斯坦 “论动体的电动力学”,1905年9月

可推导出合成波E s 的方程: )](22cos[)](22cos[2 )](2cos[)](2cos[ 212120121 202 1c x t f f c x t f f E c x t c x t E E E E s ?+???=?+???=+=ππωωωω (2) 可见合成波是频率为 2)(12f f + ,振幅为222021E f f t x c cos[()]π?? 的行波。 注意到在传播方向x 上,任何一个确定点上E s 的振幅以频率()f f 212? 周期地变化,所以我们称它为光拍频波,如图(1)所示。 图(1)拍频波 使用光敏二极管接收任何光信号时,光敏二极管输出的光电流与光强的平方,即电场强度的平方成正比。对于合成波E s ,光敏二极管在空间一点检测,其输出的光电流为 20s kE i = (3) 其中k 为由光敏二极管特性所决定的系数。将式(2)代入式(3),可以得到光电流 i 0 )](2cos 2 1)(2cos 21 ) )(cos( ) )(cos(1[2112122 00?ω?ω?ωω?ωω?+?+?+????=t t t t kE i (4) 其中?=x c 。 由式(4)可知,光电流 应由直流分量、i 012f f ?、、 和等频率成分组成。但由于光敏二极管能够输出的光电流信号频率远远低于、2 和12f 22f 12f 12f f +2f f f 2+1,因此这些项不会在光电流 中出现。滤去直流分量后得到的光电流为 i 0

光拍频法测光速

实验名称:光拍频法测光速 一、实验目的 1. 理解光拍概念及其获得 2. 掌握光拍频法测量光速技术。 二、实验原理 光拍频法测量光速实验装置如图六所示。高频信号源产生角频率为Ω的超声波信号输入声光频移器,在声光介质中形成驻波声场,介质成为超声相位光栅,632.8nmHe-Ne 激光在通过介质时发生衍射。任一级衍射光都可用来作本实验的工作拍频光束,一般用一级光,因为信号成分较强。分近程和远程二路光到达光电检测器,不同光程的光拍频波具有不同的相位。光程差为零,则相位差为零,即同相。逐渐增加至相位差又为零时, 则光程差恰为一个光拍波长,即L S ?=?λ。又F f 2=?(F 是与Ω相应的频率),则L F c ?=2。光电检测和显示系统任一时刻都只检测和显示二光路之一的光拍频波信号。 我们用一小电机驱动旋转式斩光器,它任何时刻只让一束光通过达到光电检测器,截断另一束。斩光器的旋转,使两路光交替达到光电检测器并显示出波形。利用示波管的余辉,示波器单通道上可“同时”看到两路光拍频波波形,以达到比较两路光拍频波相位的目的。应当指出,为了正确比较相位,必须统一时基,示波器工作切不可用内触发同步,要用高频信号作为示波器外触发同步信号,否则将会引起较大测量误差。 三、实验步骤 1. 仪器连接 光速测定仪高频信号源插孔连至函数信号发生器输入插孔,分频器Y 、EXT 插孔分别连至示波器Y 、EXT 插孔。 2. 仪器调整 接通仪器电源开关。 高频信号源 示波器 滤波放大器 数字计数器 半反镜 半反镜 1级 驻波型 声光频移器 ② He-Ne 激光器 ① ① ② ② 0级 0 ωEXT Y 图六 光拍频法测量光速实验装置 Ω Ω 2

光拍频法测量光速.doc

光拍法测量光速 光在真空中的传播速度是一个极其重要的基本物理量, 许多物理概念和物理量都与它有 密切的联系, 因此光速的测量是物理学中的一个十分重要的课题。 本实验的目的是通过测量 光拍的波长和频率来确定光速,掌握光拍频法测量光速的原理和实验方法。 一、实验目的 1. 掌握光拍频法测量光速的原理和实验方法 ,并对声光效应有一初步了解。 2. 通过测量光拍的波长和频率来确定光速。 二、原理 根据振动叠加原理, 频差较小, 速度相同的 两列同向传播的简谐波叠加即形成拍。 若有振幅 相 同 为 E 、 圆 频 率 分 别 为 1 和 2 ( 频 差 1 2 较小)的二光束: E 1 E 0 cos( 1t k 1 x 1 ) E 2 E 0 cos( 2 t k 2 x 2 ) 式中 k 1 2 / 1 , k 2 / 2 为圆波数, 1 和2 分别为两列波在坐标原点的初位相。 若 这两列光波的偏振方向相同,则叠加后的总场为: 图 1 拍频波场在某一时刻 t 的空间分布 E E 1 E 2 2E 0 cos[ 1 2 x ) 1 2 1 2 (t x ) 1 2 (t ] cos[ 2 ] 2 c 2 c 2 上 式 是 沿 x 轴 方 向 的 前 进 波 , 其 圆 频 率 为 ( 1 2 ) / 2 , 振 幅 为 2E 0 cos[ (t x ) 1 2 f / 4 ] ,因为振幅以频率为 周期性地变化,所以 2 c 2 被称为拍频波, f 称为拍频。如果将光频波分为两路,使其通过不同光程后入射同一光 电探测器, 则该探测器所输出的两个光拍信号的位相差 与两路光的光程差 L 之间的关 系 仍 由 上 式 确 定 。 当 2 时 , L= , 恰 为 光拍 波 长 , 此 时 上 式 简 化 为 : c f ,可见,只要测定了 和 f ,即可确定光速 c 。 为产生光拍频波 , 要求相叠加的两光波具有一定的频差 , 这可通过超声与光波的相互作 用来实现。超声 (弹性波 )在介质中传播 ,使介质内部产生应变引起介质折射率的周期性变化 , 就使介质成为一个位相光栅。 当入射光通过该介质时发生衍射 ,其衍射光的频率与声频有关。 具体方法有两种 ,一种是行波法 ,如图 2(a )所示 ,在声光介质与声源 (压电换能器 )相对的端面 敷以吸声材料 ,防止声反射 ,以保证只有声行波通过介质。当激光束通过相当于位相光栅 的介质时, 使激光束产生对称多级衍射和频移 ,第 L 级衍射光的圆频率为 L 0 L Ω,其中

光拍法测量光速

光拍法测量光速 前言 光在真空中的传播速度是一个重要的基本物理常数,许多重要的物理概念和物理量都与它有密切的关系。麦克斯韦的光的电磁理论中的常数c,一方面等于电荷的电磁单位与静电单位的比值,另一方面它又预示了电磁场的传播速度,即电磁波以光速传播,光是一种电磁波.此后首先被赫兹的实验所证实。历史上围绕运动介质对光的传播速度的影响问题,曾做过许多重要实验;同时在实验上和理论上作过各种探讨,最终导致了爱因斯坦相对论的建立。 光的速度与许多物理量有关,例如电磁学中的真空电容率ε0与真空磁导率μ0,里德伯常数R ,质子、中子、电子、μ子等基本粒子的质量等。因此光速值的精确测量将关系到许多物理量值精度的提高,它是一项十分重要的课题。自17世纪伽利略第一次测定光速以来,在各个时期,人们都用当时最先进的技术和方法来测量光速。 1941年美国人安德森用电光调制法,即利用克尔盒作为一个光开关,调制光束,使光强产生1.9×107赫的变化,测得光速值为2.99766×108m/s 。此值的前四位与现在的公认值一致。 1966年卡洛路斯,赫姆伯格用声光频移法,产生光拍频波,测量光拍频波的波长和频率,测得光速c=(299,792.47±0.15)×103m/s 。 1970年美国国家标准局和美国国立物理实验室最先用激光作了光速测定。根据波动基本公式c=λυ,之间测量光波波长与光波频率而求得c 的数值。光的波长是用迈克耳孙干涉仪来直接测定;光波的频率是通过一系列混频、倍频、差频技术,利用较低频率的电磁波去测量较高频率,再以较高频率测量更高频率,最后达到测得光频的目的。因此,于1975年第十五届国际计量大会提出了真空中光速为:c=(299,792,458±1) m/s 。 1983年国际计量局召开的第七次米定义咨询委员会和第八次单位咨询委员会决定,以光在真空中 458 ,792,2991 秒时间间隔内所传播的距离,作为长度单位米的定义。这样,光速c=(299,792,458m/s 就成了定义性常数,这个值被定义为精确值。 直到现在,不少科学发达的国家仍集中了一批优秀的科学家,在提高光速的精确度方面进行着工作。 本实验是用声光频移法获得光拍,通过测量光拍的波长和频率,来确定光速。通过实验,学习光拍法测光速的原理和实验方法,同时对声光效应有一初步的了解。 一、 实验目的: 通过光拍的波长和频率来确定光速,掌握光拍频法测量光速的原理和实验方法,并对声光效应有初步了解。 二、 实验仪器: GY-IV 型光速测定仪、示波器、数字频率计。 三、 原理和方法: (一) 仪器装置图: 1、G-IV 型光速测定仪原理方框图:

相关文档
相关文档 最新文档