文档库 最新最全的文档下载
当前位置:文档库 › 8211是数模拟转换芯片

8211是数模拟转换芯片

8211是数模拟转换芯片
8211是数模拟转换芯片

8211是数模拟转换芯片,通过8211转换出来左、右声道的两路音频信号,再由采用双运放4558构成的音频放大电路分别进行放大。【有的机顶盒没有采用4558】。8211的脚跟能如下:1:BCK 1.7V

2: WS 1.7V

3: DIN 0V

4: GND 0V

8: RCH 1.7V

7: NC 3V

6: LCH 1.7V

5: VDD 4.8V

有的机芯实际使用只有6脚输出。7脚,8脚空【测量红,白音频输出直通的基本不使用4558】。有的使用6脚8脚的,是有左右声道的【红,白音频输出不通的基本使用4558】。

以上电压为实测。部分出入不大。供产考。

实际维修中:如没有伴音输出,在确认4558完好的情况下,请测量8211各脚电压。或者直接更换。

如果4558损坏。又没有配件代换的可以从8211的8脚串个103瓷片电容到AUDIO

以上办法只供产考![color=chocolate][/color]

下面是4558资料

文章出处:LCDHOME论坛网https://www.wendangku.net/doc/af9662248.html,原文地址:运放集成电路MC4558引脚功能及代换

MC4558是双运放,增益高,噪音低,适用于音响前置放大级、有源滤波器以及其他电子线路中。推荐工作电压±15V。当Rl≥lk,输出电压Vo=±IOV时,增益86~100dB。MC4558采用8脚双列直插封装。各引脚功能是:①输出I,

②反向输入I,③正向输入I,④-Vcc,⑤正向输入Ⅱ,⑥反向输入Ⅱ,⑦输出Ⅱ,⑧+Vcc。MC4558可代换的型号较多,可用相同封装的下列型号直接代换,如:NE4558D,NJM4558,RC4558P,uPC4558,uA4558,LA6458,BA4558,TA75558P,CA1458E等

PT8211是一条双工通道,16位运用CMOS技术的数模转换器集成电路speciallydesigned为数字式音频应用。内部转换建筑学根据R-2Rresister梯子网络,内部电路是搭配得不错的,并且一个16位力学范围达到甚而全电源电压范围。做oversampling音频signalis的8X也支持的PT8211在digitalserial公共汽车上也提高了时间责任表现,在与快速的开关R-2R网络的一家公司中。PT8211可以是支持的大范围样品频率,它是与TDA1311兼容byfunctionally.It’s数字输入时间格式是最低有效位有正当理由的(LSBJ),或者那么calledJapanese输入格式。数字式代码格式首先是two’s补全和MSB.PT8211是可利用的在8别针SOP或垂度。

CMOS技术

Support 3.3V公共汽车输入级

Low电力消费

Two音频渠道在同一芯片输出了16位力学范围

Low总谐波畸变

No在两之间的周相移动输出通道在8个别针,SOP或垂度的Available

数字式音响器材

CD-ROM/VCD

Multimedia声卡

MPEG译码器卡片

模拟乘法器设计____模拟电路课程设计

乘法运算电路 1、课程设计的目的 模拟电子技术基础课程设计是学习模拟电子技术基础课程之后的实践教学环节。其目的是训练学生综合运用学过的模拟电子技术的基础知识。独立完成查找资料,选择方案,设计电路,撰写报告等工作。使学生进一步理解所学本课程的内容。并理论联系实际提高和培养学生的创新能力,为后续课程的学习毕业设计。毕业后的工作打下基础。 2、设计方案论证 理想模拟乘法器具备的条件:1.r i1和r i2为无穷大;2.r o为零; 3. k值不随信号幅值而变化,且不随频率而变化; 4.当u X或u Y为零时u o为零,电路没有失调电压、噪声。 由乘法电路的输出电压正比于其两个输入电压的乘积,即 u o = u I1u I2 求对数,得: 再求指数,得: 所以可以利用对数电路、求和电路和指数电路,得到乘法运算电路,其方块图1为: 对数电路 对数电路 u I1 u I2 ln u I1 ln u I2 求和电路 ln u I1+ ln u I2 指数电路

u O = u I1u I2 图1 乘法运算电路方块图 2.1 Multisim介绍 Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。它的前身为 EWB(Electronics Workbench)软件。它以界面形象直观、操作方便、分析功能强大、易学易用等突出优点,早在20世纪90年代初就在我国得到迅速推广,并作为电子类专业课程教学和实验的一种辅助手段。21世纪初,EWB 5.0更新换代推出EWB 6.0,并更名为Multisim 2001;2003年升级为Multisim 7.0;2005年发布Multisim 8.0时其功能已十分强大,能胜任电路分析、模拟电路、数字电路、高频电路、RF电路、电力电子及自动控制原理等个方面的虚拟仿真,并提供多达18种基本分析方法。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。2.1.1破解版Multisim7安装方法注:电脑第一次安装Multisim7,须安装两遍;第二次及以后安装均会将跳过第一遍步骤,直接从第二遍步骤开始。第一遍安装步骤:(1)双击Multisim7破解版文件夹/双击Electronics Workbench MULTISMv7.0文件夹/Setup/Next/ 接受协议/Next安装DAO3.5。(2)第一遍安装结束,问是否现在重起计算机?选择“NO”/Finish。第二遍安装步骤:(1)仍双击Electronics Workbench MULTISMv7.0文件夹下的Setup/Next/接受协议/在Serial栏输入任意密码,Next/要求第二次输入密

(完整版)外文翻译--模拟与数字转换器-精品

模拟与数字转换器 前面我们已经提到,人们在模拟转换器、信号调节器和A/D转换器等的使用上已经积累了大量的经验。因此,目前大部分的系统自然都采用这些技术。然而,还有很大一部分测量方法实质是数字的,在个别的测量仪中使用这些方法时,需要用到一些积分电路,如频率计数和计时电路等来提供指示输出。另外,如果把这种转换器和电脑相连的话,就可以省去一些器材;因为很多有积分电路执行的工作可以由计算机程序代为执行。 柯林斯把在控制和测量系统中处理的信号分为以下几类: (1)模拟式。尽管系统的被测数最初通过传感器得到的是模拟信号,然后通过设计或采用原有的方法将模拟形式的信号转换成电模拟信号。 (2)数字码式。产生的信号是并行的数字信号,每一位的基数权重由预先编定的号码系统决定。在本书中这些仪器称作直接数字转换器。 (3)数字式。其中的函数是指测量参数时用到的量度标准,如对重复信号取平均值。这些仪器在后来称为频域转换器。 特别地,一些模拟转换器适合用一些特别的技术来把模拟量转换成数字输出。其中最通用的方法是同步法和相似仪器的方法,即产生载波频率的调制输出的方法。在用作普通的模拟量输出仪器时,输出量必须经过解调。解调后输出的是直流信号,支流信号的大小和方向描述了转换器运动元件的偏移。虽然使用传统的A/D转换技术可以用来产生数字信号,在提供高精度时采用这些新技术将同步输出直接变为数字输出,比用A/D转换方法更快。 直接数字转换器实际上用得很少,因为在自然现象中很少有那种由温度变化、压力变化等因素作用而产生的可测量的离散的变化量。在普通的仪器系统中使用直接数字转换器有如下优点(即使在完成安装时不使用计算机):(1)容易产生、处理和存储信号,如打控带、磁带等; (2)高精度和高分辨率的需要; (3)高介数字信号对外部噪声的抗干扰性; (4)在简化数据描述时的人机工程学优势(例如:数字读出器能避免读刻度或图表时的判度错误)。 在直接数字转换器中最能起作用的发展是轴编码器。轴编码器在机床和飞行系统中被广泛应用。利用这些设备能达到很高的精度和分辨率,而且这些设备能进行激动连接,给出任何可测量物理偏移的直接数字输出。这类系统通常的缺点是仪器的惯性及编码器限制了相应的速度,因而也限制了操作频率。 频域转换器在线系统(测量量较少时)有着特殊的地位。因为计算机能担当

模拟数字转换器的基本原理

模拟数字转换器的基本原理 我们处在一个数字时代,而我们的视觉、听觉、感觉、嗅觉等所感知的却是一个模拟世界。如何将数字世界与模拟世界联系在一起,正是模拟数字转换器(ADC)和数字模拟转换器(DAC)大显身手之处。任何一个信号链系统,都需要传感器来探测来自模拟世界的电压、电流、温度、压力等信号。这些传感器探测到的信号量被送到放大器中进行放大,然后通过ADC把模拟信号转化为数字信号,经过处理器、DSP或FPGA信号处理后,再经由DAC还原为模拟信号。所以ADC和DAC在信号链的框架中起着桥梁的作用,即模拟世界与数字世界的一个接口。 信号链系统概要 一个信号链系统主要由模数转换器ADC、采样与保持电路和数模转换器DAC组成,见图1。DAC,简单来讲就是数字信号输入,模拟信号输出,即它是一种把数字信号转变为模拟信号的器件。以理想的4 bit DAC为例,其输入有bit0 到bit3,其组合方式有16种。使用R-2R梯形电阻的4bit DAC在假定Vbit0到Vbit3都等于1V时,R-2R间的四个抽头电压有四种,分别为V1到V4。 采样保持电路也叫取样保持电路,它的定义是指将一个电压信号从模拟转换成数字信号时需要保持稳定性直到完成转换工作。它有两个阶段,一个是zero phase,一个是compare phase。采样保持电路的比较器通常要求其offset比较小,这样才能使ADC的精度更好。通常在比较器的后面需要放置一个锁存器,其目的是为了保持稳定性。 在采样电压快速变化时,需要用到具有FET开关的采样与保持电路。当FET开关导通时,输入电压保存在某个位置如C1中,当开关关断时,电压仍保持在该位置中进行锁存,直到下一个采样脉冲的到来。 ADC与DAC在功用上正好相反,它是模拟信号输入,数字信号输出,是一个混合信号器件。 模数转换器ADC ADC按结构分有很多种,按其采样速度和精度可分为: 多比较器快速(Flash)ADC; 数字跃升式(Digital Ramp)ADC; 逐次逼近ADC; 管道ADC;

数字-模拟音频转换器

用户手册 数字-模拟音频转换器 2路光纤+2路同轴音频切换器 使用手册 产品型号:ADSW0006M1 聆听自然的声音! 备注 本公司保留不需要通知本手册读者而对产品实物的包装及其相关文档进行修改的权利。 ? 2012 本公司版权所有

引言 尊敬的客户: 您好! 非常感谢您购买本公司的产品。为了实现产品的最佳效果和保证安全,请您在对产品进行连接、操作、调试前仔细阅读本手册。此手册请予以保留,以备将来查阅。 本公司所生产的HDMI转换器、切换器、网线延长器、矩阵、分配器等系列产品,其设计之目的是为了让您的影音设备使用起来更便捷,更舒适,更高效,更节能。 这款音频转换器可以把四路SPDIF信号(2路光纤+2路同轴)信号自由切换到一路光纤信号输出,同时将LPCM格式的数字音频转换成立体声模拟音频输出。可广泛用于DVD播放机、蓝光机、网络播放器、高清播放器、PS2、PS3、Xbox360、PC等数字音频转换输出。 本公司所生产设备为以下应用提供解决方案:如对噪声、传输距离及安全有限制的场所、数据中心控制、信息分配、会议室演示以及教学环境和公司培训场所。 真诚服务是我们的理念,顾客满意是我们的宗旨。本公司将以最优惠的价格提供给客户最好的产品,并竭诚为客户提供优质服务。 产品简介 产品特点: ●4路SPDIF(2路光纤+2路同轴)数字音频输入,自由切换到一路光纤输出,同时转换成 1路L/R模拟音频输出和1路耳机输出 ●采用192KHz/24bit DAC音频转换芯片 ●光纤输出支持杜比AC3、DTS、THX、 HDCD、LPCM等数字音频格式 ●支持LPCM数字音频格式转换成模拟音频输出 ●自动检测识别输入数字音频信号格式,非LPCM音频输入时模拟输出自动静音 ●音频输入状态指示。当无音频输入或者输入错误数据时,对应通道指示灯开始闪烁 ●一键切换输入源及电源待机,操作方便快捷 ●耳机放大输出,能直接驱动3.5mm插头通用耳机 ●高品质音质,低噪音 ●断电记忆功能,重新开机后自动切换到上次使用信号通道 ●使用DC5V/1A外置电源适配器供电

数字模拟转换器(DAC)原理研究

电路分析课题研究之 数字—模拟转换器(DAC)原理研究一.数字模拟转换器的简介 简称“模数转换器”。把模拟量转换为数字量的装置。在计算机控制系统中,须经各种检测装置,以连续变化的电压或电流作为 模拟量,随时提供被控制对象的有关参数(如速度、压力、温度等)而进行控制。计算机的输入必须是数字量,故需用模数转换器达 到控制目的。 二.数字模拟转换器的原理简单描述 (1).数字模拟转换器的原理 DAC基本工作模式就是数模转换,数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器或DAC。数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的位权。为了将数字量转换成模拟量,必须将每1位的代码按其位权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是组成DAC转换器的基本指导思想。(2).数字模拟转换器的一般组成 n位二进制DAC组成一般包括:数字寄存器、模拟开关、基准电压源、电阻网络和放大器几个组成部分

(3).数字模拟转换器的技术指标 a.分辨率 分辨率说明D/A 转换器分辨最小输出电压的能力,通常用最小输出电压与最大输出电压之比表示。所谓最小输出电压ULSB 指当输入的数字量仅最低位为1时的输出电压,而最大输出电压UOMAX 是指当输入数字量各有效位全为1时的输出电压。 对于一个n 位的D/A 转换器,分辨率可表示为 b.转换误差 转换误差是指D/A 转换器输入端加最大数字量时,实际输出的模拟电压与理论输出模拟电压的最大误差。 通常要求D/A 转换器的误差小于 c.转换速度 转换速度是指D/A 转换器从数码输入开始,到输出的模拟电压达到稳定值所需的时间,也称为转换时间。 1 21 n OMAX LSB U U = = 分辨率2LSB U

模拟乘法器1496实验报告

实验课程名称:_高频电子线路

五.实验原理与电路设计仿真 1、集成模拟乘法器1496的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。 (1)MC1496的内部结构 MC1496 是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。 各引脚功能如下: 1:SIG+ 信号输入正端 2: GADJ 增益调节端 3:GADJ 增益调节端 4: SIG- 信号输入负端 5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端 13: NC 空脚 14: V- 负电源 (2)Multisim建立MC1496电路模块 启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。被选择的电路部分由周围的方框标示,表示完成子电路的选择。为了能对子电路进行外部连接,需要对子电路添加输入/输出。单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,

数字模拟转换器

数字模拟转换器 DAC 电脑对声音这种信号不能直接处理,先把它转化成电脑能识别的数字信号,就要用到声卡中的DAC(数字/模拟转换),它把声音信号转换成数字信号,要分两步进行,采样和转换。即数/模转装换器,一种将数字信号转换成模拟信号的装置。DAC的位数越高,信号失真就越小。声音也更清晰稳定。DAC格式是英文Digital Audio Compress的简称,是北京豪杰纵横网络技术有限公司(以超级解霸的成功开发而闻名),凭借自己多年积累的音频编码技术,独创自然声学模型,开发出的专业级音频压缩格式,超高音质,并且具有很好的定位能力。传统的音频压缩技术,基于人耳听觉模型,这种理论的依据是在一定的频率附近,大声音压过小声音,从而可以删去小声音;如一声巨响会让你听不到其他声音。事实上,人听不到小的声音,但可以分辨出这个小的声音,细听还是有的。所以DAC创造了自己的自然声学模型,保证了所有声音的分辨感觉。DAC 格式具有以下特点:支持AC-3、DTS同一级别的高质量音频压缩算法;支持频率从22K-1M;支持通道数从1-32通道,包括5.1和7.1;支持16位到32位;每通道独立编码,无干扰、串扰问题;每通道位率为75、100、120、150Kbps

等等。计算效率:采用100MHZ的PDA,完全能够实时解码播放高质量的44KHZ以上音乐,CPU占用50%左右。DAC格式具有以下优势:低码率时DAC压缩的大小与MP3差不多,但声音不发沙,定位感依然存在,与原始无损压缩相比只是会发现截止频率以上的声音有些小差别;中等码率时DAC音质与AC-3差不多,截止频率越过了人耳的范围,从仪器中可以测出;高码率时DAC音质与CD的差别是人耳几乎分辨不出来,只能从仪器中的波形进行比较才能分出差别;DAC的效率绝对不会发沙,因为它不删去频率,它不认为人耳听不到;也不会发闷,因为它不针对低质量的音频进行处理。 标准确定标准的确定要让市场应用说了算DAC在数字家庭中,可以用于建立高质量的电影院级数码音响系统及其处理。由于计算效率高,占用CPU少,DAC还可以支持互联网高质量音频实时传送和编解码的需求。豪杰公司DAC格式的推出,填补国内空白,节约外汇资金,对我国音频产业推动作用不可小视。DAC格式的推广目标就是要使DAC逐步成为音频编码的市场标准之一。“世上本没有路,走的人多了也就成了路”。标准也是这样,用的人多了才能成为标准,市场应用是检验标准成功与否的关键。标准并不唯一,就音频编码来说,MP3、WMA都可以称为市场标

数字转换器

数字—模拟转换器(DAC )原理研究 一.内容描述: D/A 转换器通常是把加权值与二进制码的各比特相对应的电压或者电流,按二进制码进行相加,从而得到模拟信号的方法。产生加权电压和电流的方法有使用负载电阻的方法和使用梯形电阻网络的方法。 二,原理描述 本次实验主要以三位转换器为主要的研究对象。先对其原理进行分析,如下 图所示为建立的电路图: 建立的仿真电路图: 假设输入的数字为D 2D 1D 0=001,即D 0=1时,此时只有一个开关接至电压源,其他的均接地,T 型电阻网络的等效电路: 2 2122 V 0 k Ω1k Ω 1k Ω 2k Ω 2k Ω2k Ω 2k Ω 2V s V s V s

根据戴维南等效电路,每等效一次电压源的值都缩小为原来的一半。下图为其等效电路图的演化过程: =》 =》 由于输出端开路则V0= 32 3 2s V ,同理当输入数字分别为010,100时即D 1, D 2分别单独

接至参考电压源V s ,根据上述方法,可求得D/A 转换器的输出电压分别为 V 0= 32?22s V , V 0=32?2 Vs ,对于任意输入的数字信号D 2D 1D 0, 根据叠加定理,可求得D/A 转换器的输出电压为:V 0= D 0?32?32s V + D 1?32?2 2s V ,+ D 2?32?2 Vs = 32?32 1 ?V D D D )222(001122++s 三 进行仿真实验: 1. 下图为建立的仿真电路图。 首先手动观察V0的值的变化:Di=1:开关接Vs Di=0:开关接地 进行仿真实验得到的结果建立表格得: 二进制数 000 100 101 010 011 001 110 111 电压值(v ) 0 1.0 5.0 2.0 6.0 4.0 3.0 7.0 输出矩形波时的仿真电路图:

根据模拟乘法器芯片MC1496的调幅与检波电路设计与实现

HUNAN UNIVERSITY 工程训练报告 题目:基于模拟乘法器芯片MC1496 的调幅与检波电路设计与实现 学生姓名:秦雨晨 学生学号:20110803305 专业班级:通信工程1103

指导老师(签名): 二〇一四年九月十五日

目录 1 项目概述---------------------------------------------------------2 1.1引言---------------------------------------------------------2 1.1 项目简介----------------------------------------------------2 1.2 任务及要求--------------------------------------------------2 1.3 项目运行环境------------------------------------------------3 2 相关介绍--------------------------------------------------------3 3 项目实施过程----------------------------------------------------5 3.1 项目原理---------------------------------------------------5 3.2 项目设计内容------------------------------------------------9 3.2.1 调幅电路仿真--------------------------------------------9 3.2.2 检波电路仿真-------------------------------------------12 4 结果分析-------------------------------------------------------14 4.1调幅电路---------------------------------------------------14 4.2 检波电路---------------------------------------------------18 5 项目总结-------------------------------------------------------21 6 参考文献-------------------------------------------------------22 7 附录--------------------------------------------------------23

模拟量转换数字量公式

信号的变换需要经过以下过程:物理量-传感器信号-标准电信号-A/D转换-数值显示。 声明:为简单起见,我们在此讨论的是线性的信号变换。同时略过传感器的信号变换过程。 假定物理量为A,范围即为A0-Am,实时物理量为X;标准电信号是B0-Bm,实时电信号为Y;A/D转换数值为C0-Cm,实时数值为Z。 如此,B0对应于A0,Bm对应于Am,Y对应于X,及Y=f(X)。由于是线性关系,得出方程式为Y=(Bm-B0)*(X-A0)/(Am-A0)+B0。又由于是线性关系,经过A/D转换后的数学方程Z=f(X)可以表示为Z=(Cm-C0)*(X-A0)/(Am-A0)+C0。那么就很容易得出逆变换的数学方程为X=(Am-A0)*(Z-C0)/(Cm-C0)+A0。方程中计算出来的X就可以在显示器上直接表达为被检测的物理量。 5、PLC中逆变换的计算方法 以S7-200和4-20mA为例,经A/D转换后,我们得到的数值是6400-32000,及C0=6400,Cm=32000 。于是,X=(Am-A0)*(Z-6400)/(32000-6400)+A0。 例如某温度传感器和变送器检测的是-10-60℃,用上述的方程表达为X=70*(Z-6400)/25600-10。经过PLC的数学运算指令计算后,HMI可以从结果寄存器中读取并直接显示为工程量。 用同样的原理,我们可以在HMI上输入工程量,然后由软件转换成控制系统使用的标准化数值。 在S7-200中,(Z-6400)/25600的计算结果是非常重要的数值。这是一个0-1.0(100%)的实数,可以直接送到PID指令(不是指令向导)的检测值输入端。PID指令输出的也是0-1.0的实数,通过前面的计算式的反计算,可以转换成6400-32000,送到D/A端口变成4-20mA输出。 1.自己写转换程序。 2.需要注意你的模拟量是单极性的还是双极性的。 函数关系A=f(D)可以表示为数学方程: A=(D-D0)×(Am-A0)/(Dm-D0)+A0。 根据该方程式,可以方便地根据D值计算出A值。将该方程式逆变换,得出函数关系D=f (A)可以表示为数学方程: D=(A-A0)×(Dm-D0)/(Am-A0)+D0。

模拟信号到数字信号转换器

K部分模拟信号到数字信号转换器 K.1 摘要 本章介绍了模拟信号到数字信号转换器电路板并包括介绍一个元件分布的丝网印层面。 其电路图可在总电路图集中找到;而元件表可在第七章中找到。模拟信号到数字信号的转换称为“A/D”或A到D转换。A/D转换器位于中心控制组合中。 ———————————————————————————————————————K.2 电路工作基本原理 从模拟输入板来的模拟音频信号进入A/D转换板,在这里信号被转换为12位数字音频信号,此功能由A/D转换集成块完成。其转换的速率为1.2到2.5微秒,主要取决于发射机载波频率。A/D转换过程是与发射载波RF信号同步的,因此PA模块的开关过程是在发射载波RF驱动器过零处进行的。来自A/D转换器的数字音频信号存贮在锁存器中。 锁存器的输出信号送至调制编码板,在编码板上信号被用来打开PA模块。锁存器输出也送入音频信号重现电路和在A/D板上的大台阶同步电路。重现的音频信号送入在控制器板(A38)上的包络误差电路。大台阶同步信号送“Dither”振荡器,其位于模拟信号输入电路板。 下面的说明请参阅模拟信号到数字信号转换电路板的电路图集(图839-7855-177)。 参阅第五章使用维护手册,作为调整和印制板维护操作过程参考。 参阅第四章全系统原理说明,来了解发射机音频和数字音频部分的总体说明和有关框图。 ———————————————————————————————————————K.3 电路说明 K.3.1 转换PA采样为A/D编码脉冲(T1,U29,Q9) 有两路RF采样信号输入到A/D转换器板。一路是RF分配器(A15)来的在J3-1和J3-2上的分配器采样频率输入信号。另一路是从输出合成器来的输出采样频率信号在J8-1和J8-2。作为这个采样的输入网络是一个R-C-L网络,它在525kHz处提供一个固定90°相移。跳转插头P11A-P11B允许不连接这个采样。 PA模块必须在RF驱动信号过零点时进行开关控制过程。在调制信号期间这个时间定位需要稍有移动尤其是对发射机载波频率的低频端,因此射频RF驱动信号和被90°相移的RF 输出其叠加在一起。两个信号矢量在R62迭加。其结果在有调制时输出有约+/-15°的相移值(在等宽的低端)。 射频RF输入送入宽带环形RF变压器T1的初级绕组。电阻R18和L-C网络及有关器件由针式双列直插开关S1部分选择提供可调整的,频率指定的相移(参阅在第五章中调谐和频率改变操作过程,及有关设置S1的使用维护信息)。 斯密特触发器U12C转换射频RF信号为TTL电平脉冲。二极管CR14和CR15使斯密特触发器的输入信号限制在+0.7和+4.3V之间。 K.3.2 频率分配器(U29,Q9) 在TP6的频率输出是RF输入频率(从J3的1脚),如果跳转插头插入在JP10的5脚和6脚之间。在TP6输出的是RF输入频率的一半如果跳转插头插在1脚和2脚之间。跳转插头插入3脚和4脚之间在TP6输出的是RF输入频率的三分之一。 跳转插头的位置取决于发射机工作频率。请参阅有关A/D转换器的电路图注释或频率

基于模拟乘法器芯片MC1496的调幅与检波电路设计与实现

湖南大学工程训练 HUNAN UNIVERSITY 工程训练报告 题目:基于模拟乘法器芯片MC1496 的调幅与检波电路设计与实现 学生姓名:秦雨晨 学生学号: 20110803305 专业班级:通信工程1103 指导老师(签名): 二〇一四年九月十五日

目录 1 项目概述--------------------------------------------------------- 2 1.1引言---------------------------------------------------------2 1.1 项目简介----------------------------------------------------2 1.2 任务及要求--------------------------------------------------2 1.3 项目运行环境------------------------------------------------3 2 相关介绍--------------------------------------------------------3 3 项目实施过程----------------------------------------------------5 3.1 项目原理 ---------------------------------------------------5 3.2 项目设计内容------------------------------------------------9 3.2.1 调幅电路仿真--------------------------------------------9 3.2.2 检波电路仿真-------------------------------------------12 4 结果分析-------------------------------------------------------14 4.1调幅电路---------------------------------------------------14 4.2 检波电路---------------------------------------------------18 5 项目总结-------------------------------------------------------21 6 参考文献-------------------------------------------------------22 7 附录 --------------------------------------------------------23

模拟乘法器

沈阳大学科技工程学院 模拟乘法器 1.课程设计目的 随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。 在本次课程设计实验中,通过对高频电子线路的振幅调制与解调,模拟乘法器的学习设计出由双差分对乘法器为主构成的乘法器常规调幅电路,通过对电路的设计,参数的确定,设计出了方案,按照设计的电路图在Multisim 仿真软件中画出具体的仿真电路图并进行了调试,观察实验结果并与课题要求的性能指标做了对比,最后对实验结果经行了分析总结。 2.设计方案论证 2.1 乘法器常规调幅的设计作用 随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。用集成模拟乘法器可以构成性能优良的调幅和解调电路,其电路元件参数通常采用器件典型应用参数值。作调幅时,高频信号加到输入端,低频信号加到Y 输入端;作解调时,同步信号加到X 输入端,已调信号加到Y 输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 2.2乘法器常规调幅设计 调制就是指携带有用信息的调制信号去控制高频载波信号解调是调制的逆过程,将有用的低频信号从高频载波中还原出来。调幅过程是非线性变换的过程。 普通调幅是用需传送的信息(调制信号))(t u Ω去控制高频载波)(t u c 的振幅,使其随调制信号)(t u Ω的规律而变化。 调幅时,载波的频率和相位不变,而振幅将随调制信号线性变化。若载波信号为 t U t u c cm c ωcos )(=,调制信号为)(t u Ω。则普通调幅波的振幅为: )()(t u k U t U a cm cm Ω+=

模拟乘法器ADL5391的原理与应用

模拟乘法器ADL5391的原理与应用邮件群发 模拟乘法器是现代信号处理系统的重要组成单元,它广泛应用于锁相环、混频器、滤波器等信号处理电路中。ADL5391是美国ADI公司推出的宽频带、高性能、超对称的模拟乘法器。它具有2 GHz的可用带宽,是此前所有模拟乘法器所无法相比的。同时,ADL5391也是目前速度最快的模拟乘法器芯片之一。它将所有电路集成于一块芯片之中,使得ADL5391具有极高的速度。在文中的应用实例中,设计了一种基于ADL5 391的二倍频电路,可对输入的信号进行准确的二倍频,电路性能稳定,可广泛应用于混频、倍频、脉冲调制等领域。 1 ADL5391的主要特性 ADL5391凝聚了ADI公司三十年的先进模拟乘法器技术经验,其主要特性如下: 1)DC至2 GHz对称乘法器,传递函数为VW=αx(VXxVY),1 V+Vz; 2)独特的设计确保了X、Y的绝对对称,X、Y的幅度,时间响应相同; 3)可调、不随温度而变化、增益调整为α; 4)完全差分输入,输出或单端操作; 5)低噪声和高输出线性度; 6)单电源供电:4(5,5(5 V,130 mA; 7)3x3 mm、16引脚小型LFCSP封装。 2 ADL5391的工作原理 ADL5391的功能结构框图如图1所示,传递函数由下式给出: W=aXY,U+Z (1) 其中:X和Y是被乘数;U是乘法器的比例因子;α是乘法器增益;W是乘法器

的输出;Z是一个求和输入。所有的变量和比例因子单位都是伏特。 ADL5391最重大的改进就是采用了新型乘法器内核架构,它与自1970年开始使用的传统架构明显不同。传统的模拟乘法器(如AD835)几乎完全由吉尔伯特单元的拓扑结构或与其相近的电路实现。X和Y不对称的信号路径造成了X和Y之间幅度和时延的不平衡,这在高频时会出现问题。在ADL5391中,新型的乘法器内核提供了X和Y之间绝对的对称,尽量减小吉尔伯特单元中本身的差异。 ADL5391的功能结构框图展示了主乘法器单元和反馈乘法器单元,其中主乘法器用于接收X和Y输入信号,反馈乘法器位于反馈路径上,围绕在积分缓冲区附近,它的输入量是输出信号与求和输入信号之差(W-Z),和内部比例参考值。其中,反馈乘法器和主乘法器是相同的,由于该反馈乘法器基本上补偿了主乘法器上产生的缺损,因此常见的噪声、漂移或失真基本上被限制在了一阶。 3 ADL5391的应用实例 ADL5391主要运用于高频信号的运算和处理,如宽带的乘法和加法,高频模拟调制,自适应天线,平方律探测器,倍频等。以下给出了基于ADL5391的宽带乘法器电路,并且设计了基于该模拟乘法器的二倍频电路,并对其分别进行了性能测试。

数字-模拟转换器(DAC)原理研究

电路分析专题研讨报告 数字-模拟转换器(DAC)原理研究 摘要: 数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器或DAC。我们分析了D/A转换的原理,以三位转换器为主要的研究对象,利用Multisim对输出信号进行了仿真。 成绩评定: 10221062

数字-模拟转换器(DAC)原理研究 一.内容描述: D/A 转换器通常是把加权值与二进制码的各比特相对应的电压或者电流,按二进制码进行相加,从而得到模拟信号的方法。产生加权电压和电流的方法有使用负载电阻的方法和使用梯形电阻网络的方法。 二.实验原理: 如图可作为研究DA 转换电路的模型,其中开关20,21,22 分别与三位二进制数相对应。当某位二进制数为“1”时开关接入相应电压Vs ,为“0”时开关接地。 利用叠加定理和等效分析证明运放输出电压与3 位二进制数字成比例。即 其中:012D D D 用来控制电路图中得三个开关。(从右往左依次是 012D D D ) 证明: 当J1接左端,J2、J3接右端时,即D0=1,D1=D2=0;分析等效电路

逐步简化电路如下: 进一步等效 最终等效电路:

从而 同理: 当J2接左端,J1、J3接右端时,分析等效电路,得 当J3接左端,J1、J2接右端时,即D2=1,D0=D1=0,分析等效电路,得 ?) V s=12D x ?因此,U1=1/12 V s V U2=1/6V s U3=1/3V s ? =D0 =2D1 =22D2 由线性电路的叠加原理,得 三.仿真过程: (1)输入电压001,V0=1V

声音与模拟数字转换

音资源常见的几种声与声电、数模转换 来源:电子音乐与计算机音乐基础理论 常见的几种声音资源与声电、数模转换 音乐声学基础之三 5.1电子音乐中常见的几种波形和声音资源 客观物质世界的声音资源是丰富多彩的,但音频合成技术往往是从一些基本的声音材料入手,从而有利于控制和把握。下面,我们介绍音频合成中最常见的几个基本波形。这些基本波形在模拟声音合成中,是电压控制振荡器(VCO)与低频振荡器(LFO)的发声依据。当然在数字音频合成中,也是最基本的和需要了解的波形。 一、正弦波(Sine Wave) 前面已经对正弦波作了一般的介绍。需要进一步说明的是,正弦音是最纯的音响,它只由一个力度水平均匀的单一频率构成,即只有一个基频,也就是它自已本身,而没有其他泛音。之所以称作“正弦”音,是因为在图表显示中,正弦波波形振动曲线是随三角函数正弦曲线的规律来变化的。 二、三角波(Triangle Wave) 三角波的形状包含两个线性阶段,所以三角波的泛音的位置会落在其奇数的地方。如果与相同频率的正弦波来作比较,三角波听起来有C,E,G,B四个音,三角波第一泛音可以明显地辨别出来,而其他泛音能量很小,因此我们经常将三角波误认为正弦波。 三、锯齿波(Sawtooth Wave) 锯齿波的形状类似于三角波,但锯齿波包含了奇数与偶数的泛音,只是分为正向(Positive Sawtooth)和反向(Negative Sawtooth),锯齿波的声音听起来非常明亮。 四、方波(Square Wave) 方波的泛音只落在奇数位位置,方波有着丰富的泛音内容,因此,其产生的声音效果与正弦音形成对照,在古典工作室里被广泛应用。方波发生器不只在早期工作室里受到欢迎,由于其丰富的声音资源,后来已经成为标准的设备。

集成模拟乘法器

集成模拟乘法器 单片集成模拟乘法器种类较多, 由于内部电路结构不同, 各项参数指标也不同。在选择时, 应注意以下主要参数:工作频率范围、电源电压、输入电压动态范围、线性度等现将常用的 公司MC1496/1596(国内同类型号是XFC-1596), MC1495/1595(国内同类型号是BG314)和 MC1494/1594单片模拟乘法器的参 数指标简介如下。 MC14系列与MC15系列的主 要区别在于工作温度, 前者为0℃~ 70℃, 后者为-55℃~125℃。其余 指标大部分相同, 个别后者稍好一 些。表6.3.1给出了MC15系列三种 型号模拟乘法器的参数典型值。 MC1596是以双差分电路为基础, 在Y输入通道加入了反馈电阻, 故Y通道输入电压动态范围较大, X通道输入电压动态范围很小。图6.3.3是MC1596内部电路图。MC1595是在MC1596中增加了X通道线性补偿网络, 使X通道输入动态范围增大。MC1594是以MC1595为基础, 增加了电 压调整器和输出电流放大器。 MC1595和MC1594分别作为第一代和第二代模拟乘法器的典型产品, 线性度很好, 既可用于 乘、除等模拟运算, 也可用于调制、解调等频率变换, 缺点是工作频率不高。 MC1596工作频率高, 常用作调制、解调和混频, 通常X通道作为载波或本振的输入端, 而调制信号或已调波信号从Y通道输入。当X通道输入是小信号(小于26 mV)时, 输出信号是X、Y通道输入信号的线性乘积。 MC1596是以双差分电路为基础, 在Y输入通道加入了反馈电阻, 故Y通道输入电压动态范围较大, X通道输入电压动态范围很小。图6.3.3是MC1596内部电路图。MC1595是在MC1596中增加了X通道线性补偿网络, 使X通道输入动态范围增大。MC1594是以MC1595为基础, 增加了电压调整器和输出电流放大器。MC1595和MC1594分别作为第一代和第二代模拟乘法器的典型产品, 线性度很好, 既可用于乘、除等模拟运算, 也可用于调制、解调等频率变换, 缺点是工作频率不高。MC1596工作频率高, 常用作调制、解调和混频, 通常X通道作为载波或本振的输入端, 而调制信号或已调波信号从Y通道输入。当X通道输入是小信号(小于26 mV)时, 输出信号是X、Y通道输入信号的线性乘积。

模拟乘法器3

模拟乘法器 摘要 本设计以集成模拟乘法器芯片MC1595构成乘法电路,以通用的51系列单片机+周立功最小系统(ZLG )对TLC5615的电压控制输出直流信号输出,并用信号发生器实现交流信号输出,同时还可实现波形幅度的数控可调。 一、方案论证与选择 方案一、采用数控可调电阻AD8403对一个输入端的电阻阻值进行修改,这样便可以修改MC1595的K 值,但是计算出的阻值并不精确,这样会使 误差变大,故不采用。 方案二、采用通用的51系列单片对DA 芯片TLC5615进行控制,将DA 输出的值输入到模拟乘法器的一个输入端,这样就可以直接控制且数控可调,可将误差变至最小,故采用此方案。 系统整体结构如图1所示,本系统主要有最小系统+ZLG 控制模块、DA 转换模块、MC1595模块、741运放模块组成。 二、电路设计与分析 1、最小系统+ZLG 模块 本系统采用现在比较通用的51系列单片机。51系列单片机的发展已经有比较长的时间,应用比较广泛,各种技术都比较成熟,此系列单片机是8位机,其最小系统的外围电路由自己设计和制作,可以灵活应用。 周立功显示模块,主要以ZLG7289芯片为单位。数码管显示,十六按键。周立功芯片控制端分为四个端口,CS 片选端、DIO 数据输入输出端,CLOCK 最小系统 +ZLG 模块 DA 转换模块 MC1595模块 741运放模块 输入 输入 信号输出 图1 系统框图

时钟信号端,KEY 按键信号端。芯片本身含有八个段选端,八个位选端。按键部分可以由八个位选,八个段选构成8×8=64个按键。数码管显示可以最多8位。据实际情况,我们选用按键2×8=16个按键。程序对按键的判断通过判断是否周立功KEY 端是否有按键按下的信号,有就通过读DIO 发来的数据来判断哪个按键按下。通过软件的处理,实现D/A 数字量的输入。 2、模拟乘法器模块 模拟乘法器是一种时变参量电路。在高频电路中,乘法器是实现频率变换的基本组件,与一般非线性器件相比,乘法器可进步一克服某些无用的组合频率分量,使输出信号频谱得以净化。 模拟乘法器以MC1595芯片为核心,它是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件。其主要功能是实现两个互不相关信号的相乘,且输出信号与两输入信号之乘积成正比,可以表示为: 21I I O u Ku u = (1) K 为比例系数,为正值时是同相乘法器,为负值时是反向乘法器。所以可得出MC1595电路中K 的值,可表示为: )(231I R R R K Y X ??= (2) 1R 为芯片1号脚所接的电阻,X R 、Y R 分别为两个输入端的电阻。 由DATASHEET 可得出MC1595通用电路,如图2所示。 图2 MC1595原理图 模拟乘法器属于非线性器件还是线性器件取决于两个输入电压的性质。一般情况下当两个输入信号ux 和uy 均不确定时,模拟乘法器体现出非线性特性,属于非线性器件;然而,在一定的条件下,当两个输入信号u x 或u y 中,有一个

相关文档