文档库 最新最全的文档下载
当前位置:文档库 › 配合物几何构型

配合物几何构型

配合物几何构型
配合物几何构型

8-2-1 配合物的价键理论

近代配合物价键理论基本要点是:形成配合物时,形成体(M)的某些价层原子轨道在配体(L)作用下进行杂化,用空的杂化轨道接受配体提供的孤对电子,以σ配位键(M←:L)的方式结合。从近代结构理论的观点来说,亦即形成体的杂化轨道与配位原子的某个孤对电子原子轨道相互重叠,形成配位键。因而,配合物是由形成体与配体以配位键结合而成的复杂化合物。

1. 配合物的几何构型和配位键

(1)几何构型

由于形成体的杂化轨道都具有一定的方向性,所以配合物具有一定的几何构型,如表8-4所示。

例如 Fe3+的价层电子结构为:

Fe3+ 3d 4s 4p 4d

当Fe3+与6个F-结合为[FeF6]3-时,由于F-的作用,Fe3+ 的1个4s、3个4p 和2个4d轨道进行杂化,组成6个sp3d2杂化轨道,接受6个F-提供的6对孤对电子而形成6个配位键。所以[FeF6]3-的几何构型为正八面体形。

[FeF6]3- 3d 4s 4p 4d

sp3d2杂化

而当Fe3+与6个CN-结合为[Fe(CN)6]3-时,由于配体CN-的作用,导致Fe3+的价层电子结构重排,原有的5个未成对电子中有4个配成两对,空出的2个3d

轨道与1个4s、3个4p轨道组成6个d2sp3杂化轨道,接受6个CN-中C原子

提供的6对孤对电子而形成6个配位键。所以[Fe(CN)6]3-的几何构型为正八面体形。

[Fe(CN)6]3- 3d 4s 4p

d2sp3杂化

(2) 配合物中配位键的类型

形成体杂化轨道类型不仅决定配位个体的几何构型,而且决定其配位键的类型[陶布(H.Taube)提出分为内轨和外轨配键]。若形成体全以最外层轨道(n s, n p, n d )杂化成键的,所成的配键称为外轨配键,对应的配合物称为外轨型配合物,如[FeF6]3-、[Ni(NH3)4]2+等。若形成体还使用了次外层轨道[(n-1)d, n s, n p]杂化成键的,所成的配键称为内轨配键,对应的配合物称为内轨型配合物,如[Fe(CN)6]3-、[Co(NH3)6]3+等。

配合物是内轨型还是外轨型与中心离子(电子构型、电荷)配位原子的性质(电负性)有关。

2. 配合物的稳定性、磁性与键型的关系

由前面讨论可知,以sp3d2或sp3杂化轨道成键的配合物为外轨型,而以(n-1)d2sp3或(n-1)dsp2杂化轨道成键的配合物为内轨型。对于相同中心离子,由于sp3d2杂化轨道能量比(n-1)d2sp3杂化轨道能量高,sp3杂化轨道能量比(n-1)dsp2杂化轨道能量高,当形成相同配位数的配离子时,如[FeF6]3-和

[Fe(CN)6]3-;[Ni(NH3)4]2+ 和[Ni(CN)4]2-其稳定性是不同的,一般内轨型比外轨型稳定。

价键理论不仅成功地说明了配合物的几何构型和某些化学性质,而且也能根据配合物中未成对电子数的多少较好地解释配合物的磁性。

物质的磁性与组成物质的原子、分子或离子中电子自旋运动有关。如果物质中正自旋电子数和反自旋电子数相等(即电子皆已成对),电子自旋所产生的磁效应相互抵消,该物质就表现为反磁性。而当物质中正、反自旋电子数不等时(即有成单电子),总磁效应不能互相抵消,整个原子或分子就具有顺磁性。所以,物质的磁性强弱(用磁矩μ表示)与物质内部未成对的电子数多少有关。根据磁学理论,μ与未成对电子数(n)之间存在如下关系:

μ=(磁矩的单位为波尔磁子,单位符号为B.M.)

根据上式可估算出未成对电子数n =1~5的μ理论值。反之,测定配合物的磁矩,也可以了解中心离子未成对电子数,从而可以确定该配合物的磁性(μ>0的具有顺磁性,μ=0的具有反磁性),以及是内轨型还是外轨型的。

例如Fe3+中有5个未成对d电子,根据μ理=可估算出Fe3+的磁矩理论值为:

μ理= = 5.92(B.M.)

实验测得[FeF6]3-的磁矩为5.90(B.M.),由表8-5可知,在[FeF6]3-中,Fe3+仍保留有5个未成对电子,以sp3d2杂化轨道与配位原子(F)形成外轨配键,则[FeF6]3-属外轨型,而由实验测得[Fe(CN)6]3-的磁矩为 2.0(B.M.),此数值与具有一个未成对电子的磁矩理论值 1.73(B.M.)很接近,表明在成键过程中,中心离子的未成对d电子数减少,d电子重新分布,腾出2个空d轨道,而以d2sp3杂化轨道与配位原子(C)形成内轨配

键,所以[Fe(CN)6]3-属内轨型。

又如配位数为4的配离子[Ni(NH3)4]2+和[Ni(CN)4]2-也可通过磁性实验来确定它们属于内轨型还是外轨型。Ni2+中有2个未成对d电子,其磁矩理论值

μ理===2.83B.M.,实验测得[Ni(NH3)4]2+的μ实数值与μ理接近,而[Ni(CN)4]2-的μ实等于0,表明前者属外轨型而后者属内轨型。

分子的几何构型优化计算

分子的几何构型优化计算(2)Molecular Modelling Experiments (2) (Gaussian98) 1.优化目的: 对分子性质的研究是从优化而不是单点能计算开始。这是因为我们认为在自然情况下分子主要以能量最低的形式存在。只有能量最低的构型才能具有代表性,其性质才能代表所研究体系的性质。在建模过程中,我们无法保证所建立的模型有最低的能量,所以所有研究工作的起点都是构型优化,要将所建立的模型优化到一个能量的极小点上。只有找到合理的能够代表所研究体系的构型,才能保证其后所得到的研究结果有意义。 分子性质研究的一般模式: 2 高斯中所用到的一些术语的介绍 Gaussian98的界面

2.1势能面 在不分解的前提下,分子可以有很多个可能的构型,每个构型都有一个能量值,所有这些可能的结构所对应的能量值的图形表示就是一个势能面,势能面描述的是分子结构和其能量之间的关系,以能量和坐标作图。根据分子中的原子数和相互作用形式,有可能是二维的,也有可能是多维的。势能面上的每一个点对应一个具有一个能量的结构。能量最低的点叫全局最小点,局域最小点是在势能面上某一区域内能量最小的点,一般对应着可能存在的异构体。鞍点是势能面上在一个方向有极大值而在其他方向上有极小值的点,通常对应的都是过渡态。优化的目的就是找到势能面上的最小点,因为这个点所对应的构型能量最低,是最稳定的。 2.2确定能量最小值 构型优化就是找体系的最小点或鞍点。能量的一阶导(也就是梯度,注意在数学中,一阶导表示着函数的变化趋势,一阶导为零就表明找到了极值点,这是确定最小值的数学基础)是零,这表明在这个点上的力也是零(因为梯度的负值是力)。我们把势能面上这样的点称为静态点(也就是上面所说的极小点)。所有成功的优化都会找到一个静态点,虽然有时找到的静态点并不是想要的静态点。 程序从输入的分子构型开始沿势能面进行优化计算,其目的是要找到一个梯度为零的点。计算过程中,程序根据上一个点的能量和梯度来确定下一步计算的方向和步幅。梯度其实就是我们所说的斜率,表示从当前点开始能量下降最快的方向。以这种方式,程序

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

第9章 配位化合物习题

第9章配位化合物 一判断题 1 价键理论认为,配合物具有不同的空间构型是由于中心离子(或原子)采用不同杂化轨道与配体成键的结果。() 2 价键理论能够较好地说明配合物的配位数、空间构型、磁性和稳定性,也能解释配合物的颜色。() 3 价键理论认为,在配合物形成时由配体提供孤对电子进入中心离子(或原子)的空的价电子轨道而形成配位键。() 4 同一元素带有不同电荷的离子作为中心离子,与相同配体形成配合物时,中心离子的电荷越多,其配位数一般也越大。() 5 在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。() 6 所有八面体构型的配合物比平面四方形的稳定性强。() 7 所有金属离子的氨配合物在水中都能稳定存在。() 8 价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 9 所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。() 10 内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。() 11 内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。() 12 不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。 13 [Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。() 14 [Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 15 K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 16 Fe2+的六配位配合物都是反磁性的。() 17 在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配离子的空间构型也不同。() 18 已知E(Cu2+/Cu) = 0.337V,E([Cu(NH3)4]2+/Cu) = -0.048V,则E([Cu(CN)4]2-/Cu) < -0.048V。() 19 已知E(Ag+/Ag) = 0.771V,E([Ag(NH3)2]+/Ag) = 0.373V,则E([Ag(CN)2]-/Ag) > 0.373V。() 20 按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配合物,中心离子电荷数高时,才能形成内轨型配合物。() 21 以CN-为配体的配合物,往往较稳定。() 22 Ni2+的平面四方形构型的配合物,必定是反磁性的。() 23 Ni2+的四面体构型的配合物,必定是顺磁性的。() 24 磁矩大的配合物,其稳定性强。() 25 所有Ni2+的八面体配合物都属于外轨型配合物。() 26 所有Fe3+的八面体配合物都属于外轨型配合物。() 27 已知K2[Ni(CN)4]与Ni(CO)4均呈反磁性,所以这两种配合物的空间构型均为平面正方形。() 28 按照晶体场理论,对给定的任一中心离子而言,强场配体造成d轨道的分裂能大。()。 29 按照晶体场理论可知,强场配体易形成高自旋配合物。()。 30 晶体场理论认为配合物的中心离子与配体之间的作用力是静电引力。() 31 具有d0、d10结构的配离子都没颜色,因为不能产生d-d跃迁。()

单糖的结构→己醛糖和己酮糖的环状结构

单糖的结构 T 己醛糖和己酮糖的环状结构 经研究证明,单糖不仅以开链结构存在,还可以环状结构形式存在。因为虽然大多数单糖的特 性可用开链结构来说明,但当深入一步探讨单糖的性质时,又会发现新的矛盾。下面列举的两个事 实,是不能用开链结构来说明的。 (1)糖苷的生成。按照醛类的化学性质,一般的醛溶于无水甲醇中,通入干燥氯化氢,加热反 应,得到半缩醛, 然后再变成缩醛,需消耗两分子甲醇: 0E IL KI 0CK 3 半缩醛 醛糖含有醛基,理应和两分子醇形成缩醛类。但实验 的事实证明,醛糖只能和一分子醇形成一 个稳定的化合物。例如,葡萄糖在甲醇溶液内受氯化氢的作用,生成含有一个甲基的化合物,称为 甲基葡萄糖苷。糖苷的生成是不能用葡萄糖的开链结构来说明的。 (2)糖的变旋现象。某些旋光性化合物溶液的旋光度会逐渐改变而达到恒定,这种旋光度会改 变的现象叫做变旋 现象(mulamerism )。例如,将葡萄糖在不同条件下精制可得到 a -型及B -型两 种异构体,前者的比旋光度是+ 112°,后者是+ 18.7 °,把两者分别配成水溶液, 放置一定时间后, 比旋光度都各有改变,前者降低,后者升高,最后都变为+ 52.7 °。这种变旋现象也无法用葡萄糖 的开链结构来说明。 以上事实说明只用开链结构形式来代表葡萄糖结构, 是不足以表达它的理化性质和结构关系的。 自1893年制得a -和B -甲基葡萄糖苷后,就证明糖类还可以环状结构的形式存在。因为经实 验证明,醛糖只能和一分子醇形成一个稳定的化合物,是由于醛糖中的羟基可先与它自己分子中的 醛基生成一个半缩醛,然后再与一分子甲醇失水而生成缩醛,叫甲基葡萄糖苷。 甲基葡萄糖苷没有还原性,也无变旋现象,对碱性溶液较稳定,在稀酸作用下能水解变回原来 的葡萄糖。这些实验事实都说明甲基葡萄糖苷具有环状的结构。至于环的大小,根据近代 x 射线的 测定证明,在结晶的状态中是由六个原子构成的环。甲基葡萄糖苷的 C-1也是手性碳原子,它应有 a -和3-两种立体异构体,构型可用普通的氧环式表示如下: /0弛 ECH 缩醛 R —CHO

高中化学专题4第2单元配合物的形成和应用第1课时配合物的形成与空间构型教案苏教版选修3

第1课时配合物的形成与空间构型 [学习目标定位] 1.了解配合物的概念,能从微观角度理解配合物的组成及形成条件。2.能利用轨道杂化理论判断及解释配合物的空间构型。 一、配合物的形成 1.按表中实验操作步骤完成实验,并填写下表: (1)写出上述反应的离子方程式。 答案Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4, Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O (2)[Cu(NH3)4]2+(配离子)的形成:氨分子中氮原子的孤电子对进入Cu2+的空轨道,Cu2+与NH3分子中的氮原子通过共用氮原子提供的孤电子对形成配位键。配离子[Cu(NH3)4]2+可表示为下

图所示结构。 2.配位化合物:由提供孤电子对的配位体与接受孤电子对的中心原子以配位键结合形成的化合物,简称配合物。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH等均为配合物。 3.配合物[Cu(NH3)4]SO4的组成如下图所示: (1)中心原子是提供空轨道接受孤电子对的金属离子(或原子)。中心原子一般都是带正电荷的阳离子,过渡金属离子最常见的有Fe3+、Ag+、Cu2+、Zn2+等。 (2)配位体是提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。配位体中直接同中心原子配位的原子叫做配位原子。配位原子必须是含有孤电子对的原子,如NH3中的N原子,H2O分子中的O原子等。 (3)配位数是直接与中心原子形成的配位键的数目。如[Fe(CN)6]4-中Fe2+的配位数为6。 (4)内界和外界:配合物分为内界和外界,其中配离子称为内界,与内界发生电性匹配的阳离子或阴离子称为外界。

结构的几何构造分析概念

结构的几何构造分析概念 1-1 1、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。 2、自由度:描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。 3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。 4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种: 5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。使体系减少一个独立运动参数的装置称为一个约束。例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。

6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。 7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。 2-2平面杆件体系的计算自由度 1、体系是由部件(刚片或结点)加上约束组成的。 2、刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。 3、复铰:连接两个以上刚片的铰结点。连接n个刚片的铰相当于(n-1)个单铰。 4、单链杆:连接两个铰结点的链杆。 5、连接两个以上铰结点的链杆。 连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。 6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。 W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。 7、自由度与几何体系构造特点: 静定结构的受力分析

配合物结构习题解答

解:错 第10章(03368)所有金属离子的氨配合物在水中都能稳定存在。.() 解:错 第10章(03369)价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 解:错 第10章(03370)所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。.() 解:错 第10章(03371)内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。.() 解:错 第10章(03372)内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。.() 解:错 第10章(03373)不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。.() 解:对 第10章(03374)[Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨 道杂化方式不同。() 解:对 第10章(03375)[Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 解:错 第10章(03376)K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 解:对 第10章(03377)Fe2+的六配位配合物都是反磁性的。.() 解:错 第10章(03378)在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配 离子的空间构型也不同。() 解:错 第10章(03379)已知E(Cu2+/Cu)=,E([Cu(NH3)4]2+/Cu)=,则E([Cu(CN)4]2-/Cu)<。 () 解:对 第10章(03384)Ni2+的四面体构型的配合物,必定是顺磁性的。() 解:对 第10章(03380)已知E(Ag+/Ag)=,E([Ag(NH3)2]+/Ag)=,则E([Ag(CN)2]-/Ag)>。( ) 解:错 第10章(03381)按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配

Gaussian中分子的几何构型.

Gaussian中分子的几何构型 分子的几何构型 ************************************ 分子的几何构型(Molecular Geometry) ************************************ 分子的平衡构型(molecular equilibrium geometry)是分子电子能量和核间排斥能 量最小时分子的核排列。 分子势能 一个含有N个原子核的非线性分子的几何构型可以用3N-6个独立的核坐标决定,分子 的电子能量,U(q1,q2,…,q3N-6)是这些坐标的函数。 U = Ee +VNN 注意到3个平移和3个转动自由度(线性分子的转动自由度为2)对U是没有贡献的,因 此对一个双原子分子,U的表达式中仅仅保护一个变量,即两个核之间的距离,U?。 对一个多原子分子,U是每两个原子核之间距离的函数,是分子势能面(potential energy surface, PES)的一部分。对某一特定的分子核排列下U的计算被成为单点 (single-point)计算,因为这一计算仅仅涉及到分子PES上的一个点。 一个大分子可能在其PES上有多个极小点,对应于不同的平衡构象和鞍点。 分子构象(molecular conformation)可以通过指定围绕单键的二面角的指得到。在 能量极小点处的分子构象称为构型(conformer)。 几何构型优化 从初始几何构型出发寻找U的极小值的过程称几何构型优化(geometry optimization) 或者能量极小化(energy minimization)。极小化的算法同时计算U和U梯度。 在一个局部最小点,U的3N-6个偏微分都是0。PES上▽U = 0的点称为稳定点(statio nary point)或者判据点(critical point),它可以是极小点,极大点或者鞍点。 除了▽U之外,一些最小化方法使用到U的二阶偏微分,从而生成Hessian矩阵,又称为 力常数(force constant)矩阵,因为d^2U/Qi^2 = fi为力常数。 如果一个稳定点是电子能量面上的一个极小点,其力常数矩阵的所有特征值都是正值 。然而,若一个稳定点是过渡态(transition state, TS),其中一个特征值是负值。 Newton-Rapson Newton-Rapson方法是一种非常有效的寻找多变量函数的局部极小点的算法,它将函 数用Taylor展开到二次项,包括函数的一次和二次微分,并以此作为函数的近似。 Quasi-Newton-Rapson 计算自洽场(self consistent field, SCF)能量的二阶微分是非常耗时的,因此在 优化时经常使用一种修正的方法,即quasi-Newton(或quasi-Newton-Rapson)方法。 这种方法在每一步优化中通过计算梯度对Hessian值进行初始估算。 优化方法 为了优化几何构型,要先对平衡构型做一个估算,通常使用键长和键角的经验值。此外,我们还要选择

四化学键理论与分子几何构型

四、化学键理论与分子几何构型 1. (1) ,(I)的稳定性大于(Ⅱ)。 (2) C O O O N O C O O O N O O (I) O C O O N O O C O O O N O O (II) O N O O C O O O N O O C O O (III) O N O O C O N O O C O O (IV) 第(III)式最稳定。 (3) Cu + + NO 2–+ 2H + Cu 2+ + NO + H 2O (4) 若压强降到原来的2/3,则说明3 mol NO 变成2 mol 气态物质: 3NO NO 2 + N 2O ,又由于2NO 2N 2O 4,所以最后的气体总压还要略小于原压的2/3。 2. N N N N N N N N N (IV) (V) (II)、(V)不稳定,舍去,(I)比(III)、(IV)稳定。 N (a)N (b)N (c) N (d)N (e) N (a)—N (b)的键级为5/2~3, N (b)—N (c)的键级为1~3/2, N (c)—N (d)的键级为1~3/2,N (d)—N (e)的键级为5/2~3。 N 5+有极强的氧化性。应在液态HF 中制备N 5+。 3. ArCl + OF + NO + PS + SCl + 键级: 1 2 3 3 2 ArCl +键级最小,最不稳定;虽然NO +与PS +的键级都是3,但NO +是2p —2p 轨道重叠的π键,而PS +是3p —3p 轨道重叠的π键。前者重叠程度大,E π大,所以NO +比PS +稳定,即NO +离子最稳定。 4. (1) B 3N 3H 6 N H H H H H N B N B B H H H H H H N B B H N B N O N O O O N O O (I)(II) N N N N N N N N N N (I) (II) N N N N N (III)

几何结构之折叠、旋转(讲义及答案).

几何结构之折叠、旋转(讲义) ?知识点睛 1.折叠(轴对称)的思考层次 (1)全等变换:对应边相等、对应角相等. (2)对应点与对称轴:对称轴所在直线是对应点连线的垂直平分线.(对应点所连线段被对称轴垂直平分,对称轴上的点到对应点的距离相等) (3)常见组合搭配 ①矩形背景下的折叠常出现等腰三角形; ②两次折叠往往会出现特殊角:45°,60°,90°等. (4)应用,作图(构造) 核心是确定对称轴和对应点,一般先确定对应点和对称轴,然后再补全图形. 特征举例: ①折痕运动但过定点,则折叠后的对应点在圆上; ②对应点确定,折痕为对应点连线的垂直平分线. 2.旋转思考层次 (1)全等变换:对应边相等、对应角相等. (2)对应点与旋转中心 旋转会出现等线段共端点(对应点到旋转中心的距离相等); 对应点与旋转中心的连线所夹的角等于旋转角; 对应点所连线段的垂直平分线都经过旋转中心;

旋转会产生圆(圆弧). (3)常见组合搭配 旋转会出现相似的等腰三角形; 旋转60°会出现等边三角形;旋转90°会出现等腰直角三角形; 相似三角形对应点重合时会出现旋转放缩模型. (4)应用,作图(构造) 当题目(背景)中出现等线段共端点时,会考虑补全旋转构 造全等.(常见背景有正方形、等边三角形、等腰三角形)注:读题标注时,往往要弄清楚旋转三要素; 旋转方向不确定需要分类讨论; 常将图形的旋转转化为点、线段的旋转进行操作.(有时 只需保留研究目标即可)

?精讲精练 1.小明用不同的方式来折叠一个边长为8 的正方形纸片ABCD, 折痕MN 分别与边AD,BC 交于点M,N,沿MN 将四边形ABNM 折叠,点A,B 的对应点分别为点A′,B′.他得到了以下结论:①如图1,当点B′落在DC 的中点处时,BN=5. ②如图2,当点B′落在CD 上时,延长NB′交AD 的延长线于 点E,△NEM 为等腰三角形.③如图2,当点B′落在CD 上时,连接BB′,此时BB′=MN,BB′⊥MN.④如图3,先将正方形沿MN 对折,使AB 与DC 重合,再将AB 沿过点A 的直线折叠,使点B′落在MN 上,则∠MAB′=60°.其中正确结论的序号是. 图1 图2 图 3 2.如图,在△ABC 中,∠ACB=90°,点D,E 分别在AC,BC 上,且∠CDE=∠B,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC=8,AB=10,则CD 的长为.

化学键理论与分子几何构型例题

170℃ 四、化学键理论与分子几何构型 1. NO 的生物活性已引起科学家高度重视,它与O 2- 反应,生成A 。在生理pH 条件下, A 的t 1/2= 1~2秒。 (1) 写出A 的可能的Lewis 结构式,标出形式电荷。判断它们的稳定性。 (2) A 与水中的CO 2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示 出形式电荷,判断其稳定性。 (3) 含Cu +的酶可把NO 2- 转化为NO ,写出此反应方程式。 (4) 在固定器皿中,把NO 压缩到100atm ,发现气体压强迅速降至略小于原压强的 2/3,写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。 2. 试画出N 5+离子的Lewis 所有可能结构式,标出形式电荷,讨论各自稳定性,写出各 氮原子之间的键级。你认为N 5+的性质如何?它应在什么溶剂中制得。 3. 在地球的电离层中,可能存在下列离子:ArCl +、OF +、NO +、PS +、SCl +。请你预测 哪一种离子最稳定?哪一种离子最不稳定?说明理由。 4. 硼与氮形成类似苯的化合物,俗称无机苯。它是无色液体,具有芳香性。 (1) 写出其分子式,画出其结构式并标出形式电荷。 (2) 写出无机苯与HCl 发生加成反应的方程式 (3) 无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式, 并以此判断取代物可能的结构式。 (4) 硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具 有导电性。 (5) 画出Ca 2(B 5O 9)Cl·2H 2O 中聚硼阴离子单元的结构示意图,指明阴离子单元的电 荷与硼的哪种结构式有关。 5. 用VSEPR 理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。 (1)IF 3 (2)ClO 3- (3)AsCl 3(CF 3)2 (4)SnCl 2 (5)TeCl 4 (6)GaF 63 - 6. 试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子 (1) 画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n ) (2) 估计分子中碳—氧键的键长变化规律 7. 近期报导了用二聚三甲基铝[Al(CH 3)3]2 (A)和2, 6—二异丙基苯胺(B)为原料,通过 两步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH 4 第二步:□C □D + □CH 4(□中填入适当系数)请回答下列问题: (1) 分别写出两步反应配平的化学方程式(A 、B 、C 、D 要用结构简式表示 (2) 写出D 的结构式 (3) 设在第一步反应中,A 与过量B 完全反应,产物中的甲烷又全部挥发,对反应后

分子的几何构型和分子的极性及其强化练习

分子的几何构型和分子的极性 一、杂化轨道理论 1、概念:同一原子中能量接近的不同轨道,在成键过程中,为了发挥更高的 成键效能,可 以重新组合,进行杂化,成为一组能量相同的新轨道。 2、意义:杂化轨道理论证明了共价键的饱和性和方向性,主要用于解释分子 的空间几何构型。 3、类型: 杂化类型杂化轨道数轨道夹角空间构型实例 sp杂化 2 180 直线形HCN、BeCl2、C2H2、CO2 sp2杂化 3 120 平面三角形BF3、CO32-、C2H4、HCHO sp3杂化 4 109°28' 正四面体CH4、CCl4、SO42-、PO43- 4、说明:NH3也采用sp3杂化,但成键后,存在一个孤电子对,对周围的键 产生排斥,使键角不等于109°28',而为107°;H2O也采用sp3杂化,但成键后,存在2个孤电子对,对周围的键产生排斥,使键角不等于109°28',而为104.5°;因为存在2个孤电子对,对周围的键产生排斥加大,因而键角比NH3的更小。CH3Cl也采用sp3杂化,但成键后,不存在孤电子对,键角依旧为 109°28',但因为C—H键长小于C—Cl键长,分子不再是正四面体,而是四面体。 二、价电子互斥理论

1、概念:分子或离子的几何构型主要决定于与中心原子相关的价电子对之间 的排斥作用。价电子对数由成键电子对数和孤电子对数组成。价电子对的排斥作用 孤电子对与孤电子对的排斥,有成键电子对和孤电子对的排斥,还有成键电子对与 成键电子对的排斥,孤对电子间的排斥被认为大于孤对电子和成键电子对之间的排 斥,后者又大于成键电子对之间的排斥。分子会尽力避免这些排斥来保持稳定。当 排斥不能避免时,整个分子倾向于形成排斥最弱的结构(与理想形状有最小差异的 方式)。分子更倾向于最弱的成键电子对与成键电子对的排斥。配体较多的分子中,电子对间甚至无法保持90°的夹角,因此它们的电子对更倾向于分布在多个 平面上。 2、意义:用于预测和分析分子或离子的空间构型。 3、模型:计算中心原子的价电子对数= 注:氧族元素作配位原子认为不提供电子,σ键数为“0”. 孤电子对数=中心原子的价电子对数-σ键数 价电子对成键对数孤电子对杂化类型电子对构型几何构型实例 2 2 0 sp 直线形直线形CO2 3 3 0 sp2 三角形三角形BF3 3 2 1 sp3 三角形V形SO2 4 4 0 sp3 四面体正四面体CH4 4 3 1 sp3 四面体三角锥NH3 4 2 2 sp3 四面体V形H2O 5 5 0 三角双锥三角双锥PCl5 6 6 0 八面体正八面体SF6

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法 电子对数目成键电子对 数目孤电子对数 目 分子的空间 构型 实例 2 2 0 直线型二氧化碳 3 3 0 三角形三氟化硼 2 1 V型二溴化锌4 4 0 四面体甲烷 3 1 三角锥氨气 2 2 V型水 5 5 0 三角双锥五氯化磷 4 1 变形四面体四氟化硫 3 2 T型三氟化溴 2 3 直线型二氟化氙6 6 0 八面体六氟化硫 5 1 四角锥五氟化碘 4 2 正方形四氟化氙以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配

位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断 V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断 V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断

己醛糖和己酮糖的环状结构

单糖的结构→ 己醛糖和己酮糖的环状结构 经研究证明,单糖不仅以开链结构存在,还可以环状结构形式存在。因为虽然大多数单糖的特性可用开链结构来说明,但当深入一步探讨单糖的性质时,又会发现新的矛盾。下面列举的两个事实,是不能用开链结构来说明的。 (1)糖苷的生成。按照醛类的化学性质,一般的醛溶于无水甲醇中,通入干燥氯化氢,加热反应,得到半缩醛,然后再变成缩醛,需消耗两分子甲醇: 醛糖含有醛基,理应和两分子醇形成缩醛类。但实验的事实证明,醛糖只能和一分子醇形成一个稳定的化合物。例如,葡萄糖在甲醇溶液内受氯化氢的作用,生成含有一个甲基的化合物,称为甲基葡萄糖苷。糖苷的生成是不能用葡萄糖的开链结构来说明的。 (2)糖的变旋现象。某些旋光性化合物溶液的旋光度会逐渐改变而达到恒定,这种旋光度会改变的现象叫做变旋现象(mulamerism)。例如,将葡萄糖在不同条件下精制可得到α-型及β-型两种异构体,前者的比旋光度是+112°,后者是+18.7°,把两者分别配成水溶液,放置一定时间后,比旋光度都各有改变,前者降低,后者升高,最后都变为+52.7°。这种变旋现象也无法用葡萄糖的开链结构来说明。 以上事实说明只用开链结构形式来代表葡萄糖结构,是不足以表达它的理化性质和结构关系的。 自1893年制得α-和β-甲基葡萄糖苷后,就证明糖类还可以环状结构的形式存在。因为经实验证明,醛糖只能和一分子醇形成一个稳定的化合物,是由于醛糖中的羟基可先与它自己分子中的醛基生成一个半缩醛,然后再与一分子甲醇失水而生成缩醛,叫甲基葡萄糖苷。

甲基葡萄糖苷没有还原性,也无变旋现象,对碱性溶液较稳定,在稀酸作用下能水解变回原来的葡萄糖。这些实验事实都说明甲基葡萄糖苷具有环状的结构。至于环的大小,根据近代χ射线的测定证明,在结晶的状态中是由六个原子构成的环。甲基葡萄糖苷的C-1也是手性碳原子,它应有α-和β-两种立体异构体,构型可用普通的氧环式表示如下: 这两种立体异构体都已得到,后来又发现α-葡萄糖苷可用麦芽糖酶水解,β-葡萄糖苷可用苦杏仁酶水解。用麦芽糖酶水解α-型的甲基葡萄糖苷后,得到甲醇和旋光度较高的α-D-葡萄糖;β-型的甲基葡萄糖苷被苦杏仁酶水解后,产生旋光度较小的β-D-葡萄糖。 从上述甲基葡萄糖苷有环状结构的事实推论,葡萄糖本身应有环状结构,也应有α-和β-两种立体异构体,在溶液中,这两种环状结构可以通过开链结构形成互变异构体的平衡混合物。因此,当有一种异构体(α-或β-)在溶液中时,由于它能通过开链结构逐渐变成另一种异构体,所以表现出变旋现象,达到平衡后比旋光度就不再改变。这可用下式表示: 药典规定,测定葡萄糖的旋光度时,加入一点稀氨溶液,

四、化学键理论与分子几何构型.

170℃四、化学键理论与分子几何构型 1.NO的生物活性已引起科学家高度重视,它与O2-反应,生成A。在生理pH条件下,A 的t1/2= 1~2秒。 (1)写出A的可能的Lewis结构式,标出形式电荷。判断它们的稳定性。 (2)A与水中的CO2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示出形 式电荷,判断其稳定性。 (3)含Cu+的酶可把NO2-转化为NO,写出此反应方程式。 (4)在固定器皿中,把NO压缩到100atm,发现气体压强迅速降至略小于原压强的2/3, 写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。 2.试画出N5+离子的Lewis所有可能结构式,标出形式电荷,讨论各自稳定性,写出各氮 原子之间的键级。你认为N5+的性质如何?它应在什么溶剂中制得。 3.在地球的电离层中,可能存在下列离子:ArCl+、OF+、NO+、PS+、SCl+。请你预测哪一 种离子最稳定?哪一种离子最不稳定?说明理由。 4.硼与氮形成类似苯的化合物,俗称无机苯。它是无色液体,具有芳香性。 (1)写出其分子式,画出其结构式并标出形式电荷。 (2)写出无机苯与HCl发生加成反应的方程式 (3)无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式,并 以此判断取代物可能的结构式。 (4)硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具有 导电性。 (5)画出Ca2(B5O9)Cl·2H2O中聚硼阴离子单元的结构示意图,指明阴离子单元的电荷 与硼的哪种结构式有关。 5.用VSEPR理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。 (1)IF3(2)ClO3-(3)AsCl3(CF3)2(4)SnCl2(5)TeCl4(6)GaF63- 6.试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子 (1)画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n ) (2)估计分子中碳—氧键的键长变化规律 7.近期报导了用二聚三甲基铝[Al(CH3)3]2(A)和2, 6—二异丙基苯胺(B)为原料,通过两 步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH4 第二步:□C □D + □CH4(□中填入适当系数) 请回答下列问题: (1)分别写出两步反应配平的化学方程式(A、B、C、D要用结构简式表示 (2)写出D的结构式 (3)设在第一步反应中,A与过量B完全反应,产物中的甲烷又全部挥发,对反应后的 混合物进行元素分析,得到其质量分数如下: C (碳):73.71% ,N (氮):6.34% 试求混合物中B和C的质量分数(%) (已知相对原子量:Al:26.98、C:12.01、N:14.01、H:1.01) 8.四氨合铜(II)离子在微酸性条件下,与二氧化硫反应生成一种沉淀物(A),该沉淀物中Cu:N:S(原子个数比)=1:1:1,结构分析证实:存在一种正四面体和一种三角锥型的分

配合物结构 习题解答

第10章习题解答第10章(03367)所有八面体构型的配合物比平面四方形的稳定性强。.() 解:错 第10章(03368)所有金属离子的氨配合物在水中都能稳定存在。.() 解:错 第10章(03369)价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 解:错 第10章(03370)所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。.() 解:错 第10章(03371)内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。.() 解:错 第10章(03372)内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。.() 解:错 第10章(03373)不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。.() 解:对 第10章(03374)[Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。() 解:对 第10章(03375)[Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 解:错 第10章(03376)K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 解:对 第10章(03377)Fe2+的六配位配合物都是反磁性的。.() 解:错 第10章(03378)在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配离子的空间构型也不同。() 解:错 第10章(03379)已知E(Cu2+/Cu)=,E([Cu(NH3)4]2+/Cu)=,则E([Cu(CN)4]2-/Cu)<。() 解:对 第10章(03384)Ni2+的四面体构型的配合物,必定是顺磁性的。() 解:对 第10章(03380)已知E(Ag+/Ag)=,E([Ag(NH3)2]+/Ag)=,则E([Ag(CN)2]-/Ag)>。() 解:错 第10章(03381)按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配合物,中心离子电荷数高时,才能形成内轨型配合物。.() 解:错 第10章(03382)以CN-为配体的配合物,往往较稳定。()

单糖组成成分检测及应用案例

单糖组成成分检测及应用案例--青岛科标生物实验室 单糖一般是含有3-6个碳原子的多羟基醛或多羟基酮。最简单的单糖是甘油醛和二羟基丙酮。单糖是构成各种糖分子的基本单位,天然存在的单糖一般都是D型。在糖通式中,单糖的n是从3-7的整数。单糖既可以环式结构形式存在,也可以开链形式存在。 结构 单糖的环状结构和链状结构 1.单糖的链状结构 确定链状结构的方法(葡萄糖): 2.单糖的环状结构 在溶液中,含有4个以上碳原子的单糖主要以环状结构。 单糖分子中的羟基能与醛基或酮基可逆缩合成环状的半缩醛(emiacetal)。环化后,羰基C 就成为一个手性C原子称为端异构性碳原子(anomeric carbon atom),环化后形成的两种非对映异构体称为端基异构体,或头异构体(anomer),分别称为α-型及β-型头异构体。 环状结构一般用Haworth结构式表示: 用Fischer投影式表示环状结构很不方便。Haworth结构式比Fischer投影式更能正确反映糖分子中的键角和键长度。转化方法: ①画一个五圆或六圆环 ②从氧原子右侧的端基碳(anomerio carbon)开始,画上半缩醛羟基,在Fischer投影式中右侧的居环下,左侧居环上。 葡萄糖的分子式为C6H12O6,分子中含五个羟基和一个醛基,是己醛糖。其中C-2,C-3,

C-4和C-5是不同的手性碳原子,有16个(α4=16)具有旋光性的异构体,D-葡萄糖是其中之一。存在于自然界中的葡萄糖其费歇尔投影中,四个手性碳原子除C-3上的-OH在左边外,其它的手性碳原子上的-OH都在右边。 单糖构型的确定仍沿用D/L法。这种方法只考虑与羰基相距最远的一个手性碳的构型,此手性碳上的羟基在右边的D型,在左边的L型。自然界存在的单糖多属D型糖。 葡萄糖的环状结构和变旋现象 结晶葡萄糖有两种,一种是从乙醇中结晶出来的,熔点146℃。它的新配溶液的[α]D为+112°,此溶液在放置过程中,比旋光度逐渐下降,达到+52.17°以后维持不变;另一种是从吡啶中结晶出来的,熔点150℃,新配溶液的[α]D为+18.7°,此溶液在放置过程中,比旋光度逐渐上升,也达到+52.7°以后维持不变。糖在溶液中,比旋光度自行转变为定值的现象称为变旋现象。显然葡萄糖的开链结构不能解释此现象。 从葡萄糖的开链结构可见,它既具有醛基,也有醇羟基,因此在分子内部可以形成环状的半缩醛。 成环时,葡萄糖的羰基与C-5上的羟基经加成反应形成稳定的六元环。葡萄糖分子虽然具有醛基,但在反应性能上与一般的醛有许多差异,例如对NaHSO3的加成非常缓慢,其原因是在溶液中,葡萄糖几乎以环状的半缩醛结构存在的缘故。 成环后,使原来的羰基碳原子(C-1)变成了手性碳原子,C-1上新形成的半缩醛羟基在空间的排布方式有两种可能。半缩醛羟基与决定单糖构型的羟基(C-5上的羟基)在碳链同侧的叫做α型,在异侧的称为β型。α型和β型是非对映异构体。它们的不同点是C-1上的构型,因此又称为异头物(端基异构体)。它们的熔点和比旋光度都不同。 葡萄糖的变旋现象,就是由于开链结构与环状结构形成平衡体系过程中的比旋光度变化所引

分子的几何构型优化计算.doc

分子的几何构型优化计算(2) m ents (2) a n98) 1.优化目的: 对分子性质的研究是从优化而不是单点能计算开始。这是因为我们认为在自然情况下分子主要以能量最低的形式存在。只有能量最低的构型才能具有代表性,其性质才能代表所研究体系的性质。在建模过程中,我们无法保证所建立的模型有最低的能量,所以所有研究工作的起点都是构型优化,要将所建立的模型优化到一个能量的极小点上。只有找到合理的能够代表所研究体系的构型,才能保证其后所得到的研究结果有意义。 分子性质研究的一般模式: 2 高斯中所用到的一些术语的介绍 a n98的界面

2.1势能面 在不分解的前提下,分子可以有很多个可能的构型,每个构型都有一个能量值,所有这些可能的结构所对应的能量值的图形表示就是一个势能面,势能面描述的是分子结构和其能量之间的关系,以能量和坐标作图。根据分子中的原子数和相互作用形式,有可能是二维的,也有可能是多维的。势能面上的每一个点对应一个具有一个能量的结构。能量最低的点叫全局最小点,局域最小点是在势能面上某一区域内能量最小的点,一般对应着可能存在的异构体。鞍点是势能面上在一个方向有极大值而在其他方向上有极小值的点,通常对应的都是过渡态。优化的目的就是找到势能面上的最小点,因为这个点所对应的构型能量最低,是最稳定的。 2.2确定能量最小值 构型优化就是找体系的最小点或鞍点。能量的一阶导(也就是梯度,注意在数学中,一阶导表示着函数的变化趋势,一阶导为零就表明找到了极值点,这是确定最小值的数学基础)是零,这表明在这个点上的力也是零(因为梯度的负值是力)。我们把势能面上这样的点称为静态点(也就是上面所说的极小点)。所有成功的优化都会找到一个静态点,虽然有时找到的静态点并不是想要的静态点。 程序从输入的分子构型开始沿势能面进行优化计算,其目的是要找到一个梯度为零的点。计算过程中,程序根据上一个点的能量和梯度来确定下一步计算的方向和步幅。梯度其实就是我们所说的斜率,表示从当前点开始能量下降最快的方向。以这种方式,程序

相关文档