文档库 最新最全的文档下载
当前位置:文档库 › 钢筋混凝土桥梁地震易损性分析研究综述

钢筋混凝土桥梁地震易损性分析研究综述

钢筋混凝土桥梁地震易损性分析研究综述
钢筋混凝土桥梁地震易损性分析研究综述

网壳结构的概率地震易损性分析

网壳结构的概率地震易损性分析 网壳结构作为大跨度空间网格结构的主要结构形式之一,被广泛应用于综合文体中心、大型交通枢纽车站及航站楼、集群式工业厂房等基础设施。我国地震灾害严重,量大面广的网壳结构面临着严重的地震威胁。 大跨度空间结构一旦发生破坏或倒塌,将造成严重的人员伤亡、经济损失或社会影响。我国现行抗震设计规范采用多级设计的思想,即“小震不坏、中震可修、大震不倒”,其实质是性能化设计的雏形,但该设计思想不能考虑到中小地震时结构或非结构构件的破坏程度及由此导致的经济损失,远远不能满足社会和公众对结构抗震性能的需求。 本文以基于性能的多水准化抗震设计及地震风险评估为研究背景,对典型的大跨度空间网格结构——单层球面网壳和单层柱面网壳进行地震易损性分析,一方面可为网壳结构的多水准性能化设计奠定理论基础,另一方面则为地震灾害损失的快速预测与评估及地震巨灾保险制度的实施提供技术支持。具体来说,本文的研究工作如下:(1)以平均模态应变能系数作为振型贡献指标,将其值大于0.01的振型定义为网壳结构线弹性地震响应的主导振型。 以20条真实地震动记录作为输入,分别考虑4种地震动输入情况:仅X向、仅Y向、仅Z向和三向地震动同时输入,对单层球面网壳和单层柱面网壳的主导振型进行识别。在此基础上,采用振型分解反应谱法和CQC振型组合方法计算网壳结构仅考虑主导振型、前30阶及前250阶振型三种情况的地震效应组合值,并将其与时程分析结果进行对比,以验证该识别方法的可行性。 (2)基于网壳结构的主导振型,提出了可同时考虑更多结构自振特性和地震动频谱成分的地震动强度参数Sa,dom

(T1d,T2d,...,Tid,...TNd,(ζ))(简记为Sa,dom),该地震动强度参数表示为结构各主导振型对应地震动加速度反应谱值的几何加权 平均数,其中各阶主导振型的平均模态应变能系数作为相应的权值。选取了11 个常见的地震动强度参数,从与网壳结构非线性地震响应的相关性、有效性、充分性等方面与本文提出的地震动强度参数进行综合对比,并对Sa,dom 的地震危 险可计算性进行了讨论。 (3)确定了网壳结构地震易损性分析中历史地震动记录的选取原则及合理输入数目,并从太平洋地震工程研究中心“下一代衰减模型”强震数据库中选取了 40条远场地震动记录来考虑易损性分析中的地震动不确定性。总结了网壳结构有限元建模中13个随机参数的概率分布模型,并通过单参数敏感性分析获得 了表征13个随机参数敏感性大小的“龙卷风图”。 在此基础上,采用Sobol’法和拉丁超立方抽样方法对5个主要的随机参数 进行了全局敏感性分析,获得了 5个参数各自对结构响应的贡献率。(4)从结构滞回耗能的角度出发,提出了基于地震能量需求的结构损伤指标DIE,该指标定 义为地震能量需求与结构耗能能力的比值,其中地震能量需求即为结构在地震过程中的总滞回耗能,可通过对结构的加速度响应时程进行连续小波变换等效获得。 以高效的拉丁超立方抽样方法对5个主要的结构随机参数进行抽样,以40 条远场地震动作为输入,对18个不同矢跨比及屋面质量的单层球面网壳和单层 柱面网壳的720个随机样本进行动力荷载域全过程分析,对分析结果进行统计, 基于损伤指标DIE建立了不同网壳结构的概率地震需求模型、概率抗震能力模型和概率倒塌能力模型,并获得了网壳结构不同性能水准的地震易损性曲线。(5)

桥梁的耐久性问题(文献综述+开题报告)

嘉兴学院毕业论文(设计)文献综述 题目: 专业班级:学生姓名:学号 一、前言部分(说明写作目的,介绍有关概念、综述范围,扼要说明有关主题或争论焦点)桥梁的耐久性问题应该说此问题是近20年来逐渐被人们所重视。我国桥梁结构要略晚于建筑结构领域对此问题的研究。在世界范围内,对混凝土耐久性的重视始于上世纪70 年代末。清华大学陈肇元院士曾撰文指出:“建筑物的耐久性是建筑物及其构件在给定的期限内并在各种作用下维持其功能的能力,而建筑物及其构件的使用寿命则是在其建造完工或生产制成以后,仅在一般的维护条件下,其所有性能均能满足原定要求的期限。”英国学者也提出:“耐久性预测不可能是一门精确的科学,建筑物的预测寿命只能是个估计。”国内外专家近年来十分关注桥梁结构在设计基准期内,是否满足预定的功能要求作为桥梁可靠性评价的重要指标。如美国的北卡罗来那和明尼苏达等州,将桥梁剩余寿命作为评价桥梁的重要因素。研究成果表明,耐久性的研究和评价对桥梁结构寿命的延长和防止重大事故的发生将会产生巨大的经济效益和社会效益。总体说来,桥梁耐久性是对未来的预测。国际标准ISO2394:1998《结构可靠性总原则》中明确:“结构设计的目的是尽量减小结构或结构构件的失效概率,保证其可靠度……。结构与结构构件的耐久性是指其在工作寿命期内,在适当的维护条件下在其所处环境中保持正常工作的能力。”并提出要注意一些相关因素的影响,如结构预期用途、要求的性能、环境条件、材料性能、结构体系、构件形状、结构细部构造、工艺质量和控制水平、专门的防护措施以及在设计工作寿命期的维护等。

二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)技术方面 在技术方面,只是凭经验修桥,曾使19世纪80~90年代的许多铁路桥发生 重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故明显大为减少。 二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。 桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。 桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。 材料方面 在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。 设计方面 在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。 在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。 施工方面 在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控

工程结构地震易损性与经济损失评估研究现状.doc

工程结构地震易损性与经济损失评估研究 现状- 摘要:回顾了地震观测记录研究的发展历程,对采用基于震害调查的经验判断法和基于有限元的理论计算法分析结构地震易损性进行了系统的概括和总结,综述了目前各国开展直接和间接地震经济损失评估技术方法;针对地震风险观测记录、间接经济损失评估、结构精细化易损性模型、地震动输入、地震附加费率厘定等尚待进一步深入探讨的问题,给出了未来开展地震危险性分析和地震经济损失评估研究的意见和建议。 关键词:工程结构;地震易损性;直接经济损失;间接经济损失;评估 中图分类号:TU352.1 文献标志码:A 0 引言 结构地震易损性与震害经济损失分析是地震安全评定的重要内容之一,既从宏观的角度描述了地震动强度与结构破坏损伤程度之间的关系,又从微观角度在概率意义上定量刻画工程结构的抗震能力储备。基于地震易损性分析,人们可以很好地掌握建筑结构的抗震性能,同时也能够了解地震烈度、场地、震级等地震动输入参数与结构损伤水平之间的关系,进而对建筑结构的灾害损失进行预测评估。地震经济损失评估源于美国地震保险业的发展,最早由Freeman等于1932年开展了相关方面的研究工作。地震经济损失评估是工程结构危险性分析的重要组成部分,也是政府制定地震保险政策与费用厘定的依据和基础。随着结构分析与设计手段的完善和建筑材料的不断更新,工程结构的抗震性能

也在逐步提高,虽有效减小了地震造成的人员伤亡损失,但其引起的社会经济损失绝对值却在不断增加,合理的地震经济损失评估对于现代经济社会的抗震救灾与震害保险越发重要。因此,对工程结构开展地震易损性与经济损失评估研究,对于制定国家防震减灾措施。提高结构抗震能力等级,降低震害损失等具有重要的研究意义和价值。 1 地震观测记录与修正 自20世纪30年代在加州长滩记录第1条地震动加速度以来(图1[1]),研究人员在该领域开展了大量研究工作,目前美国、日本以及中国等地震多发国家已经建立了相当丰富的地震动数据库。地震动观测记录研究大致经历了模拟地震记录和数字地震记录与修正这2个阶段[2]。 20世纪30年代到70年代中期为模拟地震记录阶段。1947年Housner[3]基于模拟强震仪记录的洛杉矶地震加速度序列,通过对其进行2次积分得到地震位移时程,并与位移仪得到的位移记录比较后认为加速度积分计算结果的可信度较高。然而1955年Hershberger[4]经过分析对Housner的研究成果提出了质疑。1961年,Berg等[5]指出积分计算方法在精度方面无法得到有效保证,但其结果可作为工程结构分析参考之用。20世纪60年代末到70年代初,研究人员开始对模拟地震仪获取数据的精确性开展研究,探讨了传感器位置、记录纸变形以及数据反馈时效等因素对积分后位移的影响[6-7],发现模拟强震仪存在丢头现象,记录长周期地震动的能力不强等弊端,进而提出了通过过滤长周期信号获取地震记录的标准强震动加速度记录基线校正方法[8-10]。 20世纪70年代末,美国和日本相继研制成功了数字强震仪,

桥梁抗震文献综述

桥梁抗震研究 摘要:文章从研究桥梁震害的角度出发, 通过分析桥梁主要震害形式和震害原因,并阐述了现在常用的抗震设计方法,还提出了在桥梁抗震设计中应遵循的一些设计思想和设计原则,从而提出了新的技术。 关键词: 桥梁震害;抗震设计;抗震措施;设计原则; 桥梁是生命线工程的重要组成部分,是交通运输的枢纽工程,在抗震救灾中处于极其重要的地位。因此,如何提高桥梁的抗震能力,使桥梁在地震时能起到安全疏散、避难的作用,地震后确保抗震救灾重建家园的交通需要,是桥梁工程中的重要研究课题。桥梁同其他建筑物一样,如果不进行正确的抗震设计,在地震时将产生严重的破坏。目前,在桥梁抗震研究方面处于领先水平的是美国和日本。二十多年来他们做了许多开创性的工作,例如桥梁全桥模型的多台振动台模拟地震试验,桥梁上下部结构相互作用力学模型,非线性地震反应分析方法等,并将所取得的成果应用于工程实际,制定出桥梁的抗震设计规范。此外,新西兰在研究利用延性抗震和减震隔建支座方面也做出了突出的成绩,并投入了工程实用。虽然我国开展桥梁结构抗震研究工作比较晚,直到1976年唐山地震后才得以重视,但由于桥梁研究工作者的艰苦努力,十多年来所取得的科研成果还是相当丰富的。先后进行了梁桥、拱桥、斜拉桥、曲桥的抗展研究和振动台模拟地震模型试验,研究水平从线性范围发展到非线性阶段;从确定性方法发展到可靠性理论方法,从确定桥梁的动力特性发展到实际情况。 一.桥梁主要的震害形式 1.上部结构震害 桥梁上部结构震害按照产生原因的不同, 可以分为结构震害、碰撞震害和位移震害。其中最常见的是移位, 最严重的是落梁。桥梁结构震害在历次严重的地震中都比较少见。桥梁碰撞震害包括: 桥面伸缩缝位置混凝土裂缝及压碎变形, 混凝土伸缩缝位置护栏混凝土撞损, (如汶川地震中磨家互通式跨线桥) T梁横隔板开裂(观音岩大桥)及少数梁端及部分桥台损伤等震害。

地震属性分析技术综述

【全文】地震属性分析技术综述 [摘要] 地震属性是从地震资料中提取的隐藏有用信息,因而地震属性分析技术近几年在油气勘探开发中得到了广泛的应用与研究。本文对地震属性分析技术的发展状况进行了归纳、总结,简单阐述了地震属性分析技术的在不同时期所用到的基本原理和方法。特别对新地震属性进行了具体介绍。最后对该技术进一步的研究工作进行了总结和展望。 摘要:在勘探和开发周期的各个阶段,地震资料在复杂油藏系统的解释过程中,扮演着至关重要的角色。然而,缺少一种有效地将地质知识应用于地震解释中的上具。随着一系列属性新技术的出现,对地震属性进行充分研究,就给地质家提供了快速地从三维地震数据中获得地质信息的能力。尤其在用常规解释手段难以识别日的储层的情况下,属性分析技术更是给地质上作人员指出了新的方向。 [关键词] 地震属性储层预测叠前数据叠后数据 关键词:储层;波形分析;地震属性 1.引言 地震属性是指叠前或叠后的地震数据经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征的特殊度量值。地震属性的发展大致从20世纪60年代的直接烃类检测和亮点、暗点、平点技术开始,经历了70年代的瞬时属性(主要是振幅属性)和复数道分析,90年代的多维属性(特别是相干体属性)分析,21世纪的地震相分析等阶段[1一SJ。随着地震属性分析技术的发展与研究,该技术已广泛应用于储层预测、油气藏动态监测、油气藏特征描述等领域,并取得了很好的效果。总之,地震属性分析技术可以从地震资料中提取隐藏其中的多种有用信息,这为油气勘探与开发提供了丰富宝贵的资料,也为解决复杂地质体评价提供了实用的分析手段。因此,对该技术进行深人调查研究具有很强的现实意义。 地震属性是指从地震数据中导出的关于儿何学、运动学、动力学及统计特性的特殊度量值。它可包括时问属性、振幅属性、频率属性和吸收衰减属性,不同的属性可指示不同的地质现象。地震属性分析则是从地震资料中提取其中的有用信息,并结合钻井资料,从不同角度分析各种地震信息在纵向和横向上的变化,以揭示出原始地震剖面中不易被发现的地质异常现象及含油气情况。 地震属性分析技术的研究已由线、面信息扩展到三维体信息,从分类提取扰化发展为一项系统的应用技术。随着地震技术的日趋成熟,地震属性技术近儿年也发展迅速,其中有多属性联合解释技术、波形分析技术、吸收滤波技术等。应用地震属性分析技术去完善勘探生产中的油藏描述工作,已经成为油藏地球物理的核心内容。利用地震属性分析技术预测岩性和有利储集体,描述油藏特征及孔隙度变化,寻找难以发现的隐蔽油区,以至于监测流体运动和进行其它综合研究,一直是石油工作人员追求的目标。 1波形分析技术的研究与应用 通常的层段属性只是表示了某儿个地震信号的物理参数(振幅、相位、频率等),但它们没有一个能够单独描述地震信号的异常,而地震信号的任何物理参数的变化总是对应着反映地震道形状的变化,所以,研究和分析地震资料中代表各种属性总体特征的地震道形状(波形),应该能有非常不错的效果[,]。 1. 1波形分析技术的原理及处理过程

【桥梁】工程文献综述模板

摘要:本文从桥梁工程的定义出发,对桥梁工程做了基本的定界,接着介绍了桥梁的基本组成、桥梁的分类以及特点,随后,阐述了桥梁学科的历史发展以及规律,正是因为在历史的发展中我们不断总结和反思,才更好的推动了桥梁工程突飞猛进的发展。从历史过过渡到当下,进而引出了当下的一些桥梁学科的前沿问题,为后面对桥梁工程未来的展望奠定了基础。最后,对桥梁工程未来的发展方向做出了分析。 关键词:组成;分类;历史,前沿;未来 引言:本篇文献综述的论述主题是桥梁工程,紧紧围绕桥梁工程来展开本文。桥梁工程指桥梁勘测、设计、施工、养护和检定等的工作过程,以及研究这一过程的科学和工程技术,它是土木工程中属于结构工程的的一个分支。桥梁工程学的发展主要取决于交通运输对它的需要。我们在生活中桥梁处处可见,由此可看出桥梁在生产生活中的重要性,通过历史发展我们也可以了解到桥梁在文化,经济,军事每一个方面都有着重大的影响,桥梁随着时间的推移在不断的改变,但却历久弥新。随着科学技术的发展,经济,社会,文化水平的提高,桥梁建筑的需求越来越高。经过几十年的努力,我国的桥梁工程无论在建设规模上,还是在科技水平上,都取得令世界瞩目的成就。现代建筑的价值源于创新精神,桥梁工程也不例外。作为一名工科学子,我们要克服因循守旧,不思进取的风气,敢于质疑传统,在结构形式、施工方法、设计理念和设计方法上创新,对更高科技、更高质量、更环保的工程技术的追求步履不停。

正文: 1.【1】桥梁的基本组成 桥梁的组成与桥梁的结构体系有关。常见的桥梁组一般由上部结构、下部结构两部分组成。在桥跨和墩台之间还设有支座,用于连接和传力。除此之外,还有路堤、挡墙、护坡、导流堤、检查设备、台阶扶梯以及导航装置等附属设施。 1.1上部结构 桥梁位于支座以上的部分称为上部结构,它包括桥跨(也叫承重结构)和桥面。桥跨是桥梁中直接承受桥上交通荷载并架空的结构部分;桥面是承重结构以上的各部分(指公路桥的行车道铺装,铁路桥的道砟,枕木,钢轨,排水防水系统,人行道,安全带,路缘石,栏杆,照明或电力装置,伸缩缝等)。 1.2下部结构 桥梁位于支座以下部分称为下部结构,也叫支承结构。它包括桥墩,桥台以及墩台的基础,基础位于墩台的最下部分,承受墩台传递的全部荷载(包括交通荷载和结构自重)并将其传递给地基的结构物。地基是承受由基础传递的荷载而产生变形的各个土层(包括岩层)。 1.3正桥与引桥 桥梁跨越主要障碍物(或通航河道)的结构称为正桥;连接正桥和路堤的桥梁区段称为引桥。正桥跨度大,基础深,是整个桥梁工程的重点;引桥一般跨度较小,基础较浅;在正桥和引桥的分界处,有时还会设置桥头建筑——桥头堡。 1.4跨度 跨度也叫跨径,是表现桥梁技术水平的重要指标,它表示桥梁的跨越能力。多跨桥梁的最大跨度称为主跨。桥跨结构两支座间的距离L1称为计算跨径,用于结构分析计算;设计洪水位线上两相邻墩台间的水平净距L0称为桥梁净跨径,各孔净跨径之和称为总跨径,它反映的是卡桥梁的泄洪能力。 1.5桥梁全长 《公路桥涵设计通用规范》( D60-2004)规定:有桥台的桥梁为两岸桥台侧墙或八字墙尾端间的距离;无桥台的桥梁为桥面系长度。 1. 6桥下净空高度 设计洪水位或设计通航水位与桥跨结构最下缘的高差H称为桥下净空高度,应大于通航或排水要求的最小数值。 1.7建筑高度 桥面到桥跨结构最下缘的高差h称为桥梁的建筑高度。其数值应小于在桥梁定线中所要求的容许建筑高度。 2.【2】桥梁的分类及特点 桥梁有许多分类方式,人们通常根据桥梁的结构形式、所用材料、所跨越的障碍以及其用途、跨径大小等对桥梁进行分类。 2.1根据桥梁单孔跨径大小和多跨总长的不同,桥梁可分为;小桥、中桥、大桥、特大桥。

常用地震属性的意义

常用地震属性的意义 地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。 1、属性体、属性剖面 这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应 、属性值),可以用于常规地震剖面的方式显示与使用,常空间位置,即(x、y、t 用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

2、沿层地震属性 这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。 常用地震属性的计算方法总结如下: (1)、均方根振幅(RMS Amplitude) 均方根振幅是将振幅平方的平均值开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

浅谈钢筋混凝土桥梁的耐久性

浅谈钢筋混凝土桥梁的耐久性 摘要:在进行桥梁结构设计初期,就需要结合桥梁所处地理位置、周围环境及 实际运行环境对桥梁结构的耐久性进行合理设计。对于建设施工过程中可能影响 桥梁耐久性的隐患因素采取合理的预防措施,力求在设计初期就能考虑到所有可 能出现的问题。并采取有效的预防措施,以提高钢筋混凝土桥梁的耐久性。 关键词:钢筋混凝土;桥梁;耐久性 1钢筋混凝土桥梁结构的耐久性分析及其重要性 随着科学技术的发展,钢筋、混凝土材料也得到了快速发展。钢筋混凝土结 构的建筑发展历史远低于木质结构和钢制结构的建筑。19世纪中期,随着钢筋和混凝土材料的发展,钢筋混凝土结构也迅速发展起来;到了19世纪下半叶,法 国设计建筑了第一座钢筋混凝土结构桥梁,随之越来越多的钢筋混凝土结构桥梁 逐渐问世,呈现在人们的视野范围内。据科学数据调研发现,截止到2007年底 世界上钢筋混凝土桥梁总数超过57万座,桥梁建设已慢慢演变为基础设施工程 建设的重要环节。由美国土木工程师学会2003年底发布的混凝土桥梁相关研究 报告可以发现,世界上有1/4的钢筋混凝土桥梁耐久性不达标,严重影响了桥梁 的后期运营寿命[1]。国内外相关工程研究人员对不同桥梁的耐久性进行比较分析 发现,桥梁结构的构件损坏均由桥梁耐久性差引起。通过对近些年钢筋混凝土桥 梁事故原因分析,钢筋腐蚀、结构机械磨损、桥梁冻融循环及混凝土碳化均是导 致桥梁事故的主要原因,而引起这些桥梁故障的最终因素是桥梁耐久性差。 2影响桥梁耐久性的因素分析 影响桥梁耐久性的因素十分复杂,不考虑洪水、地震、超载及船舶的撞击, 主要取决于以下三方面因素:一,混凝土材料、钢材的自身特性;若想保证桥梁 的耐久性好一些,首先,一定要保证混凝土材料以及钢材的质量是绝对高的,然 而就目前我国桥梁事业的施工现状来看,很多建设单位存在以次充好的现象,进 而导致材料的质量不是很高,严重影响了桥梁的耐久性;二,桥梁结构所处的环境;我们都知道,任何物体都符合热胀冷缩的原理,针对于桥梁也是一样,而在 桥梁发生热胀冷缩的过程中,桥梁的结构会发生改变,结构改变了,桥梁的耐久 性自然就会降低,尤其是在北方地区,北方的天气冬夏温差比较大,冬天问题特 别低,桥梁发生缩变,而夏天天气比较炎热,桥梁开始胀裂,这也是为什么桥面 很容易存在裂缝的原因;三,桥梁结构的使用条件与防护措施。部分地区由于建 筑行业比较发达,因此每天都会有大量的货车从桥梁上经过,长时间下来,桥梁 的耐力自然就会降低很多,加上部分地区针对于桥梁的保护缺乏一定的意识,进 而导致桥梁只被使用却不被保护的现象,久而久之,问题自然也就应运而生了。 3钢筋混凝土桥梁耐久性改善措施 3.1确保混凝土灌注的密实性 提升混凝土灌注的密实性是提升钢筋混凝土桥梁耐久性的重要措施之一,可 以从水灰比、骨料及振捣工艺三方面入手,如精确把控水灰比,认真检查骨料质 量以及严格按照规范进行混凝土振捣等,提升混凝土密实度。 3.2提升混凝土和钢筋间的黏附力 为保证混凝土各项性能指标满足施工需求,避免坍塌程度太大,需严格按照 设计规范进行钢筋布设,混凝土振捣要充分,尽可能降低混凝土和钢筋间的缝隙。 3.3保证碱一集料反应工艺满足建设需求 为保障碱一集料反应工艺满足工程设计需求,需从以下方面入手:当混凝土

桥梁的耐久性

《如何提高桥梁建筑的耐久性?》 一:耐久性与设计 1.1 从设计观念上更新 从全球范围看, 结构工程学科在向时间域、空间域和学科基础三个方面发展。1.2 按耐久性要求进行设计 耐久性的具体指标是指结构在正常设计、正常施工、正常使用、正常维修下的使用寿命, 所谓正常的设计, 一般指符合现行规范和标准的设计。新桥规规定了荷载或作用的标准及其组合原则和方法。与耐久性有关的计算裂缝宽度的荷载或作用的代表值一般是对大量观测数据按95 % 保证率确定的。 二:耐久性与施工 施工对混凝土桥梁结构耐久性的影响是非常重要的,施工必须满足设计要求和施工规范以及施工质量检验标准, 必须进行严格的质量控制。其施工中主要应做好以下几点: (1) 确保所采用的集料不使混凝土发生超过容许值的碱骨料反应。 (2) 限制混凝土中各组成材料的氯离子含量, 在侵蚀环境下预应力混凝土应低于0. 06 % 的水泥用量; 普通混凝土应低于0. 10 % 的水泥用量。 (3) 控制水灰比和水泥用量。在侵蚀环境下, 水泥用量及水灰比在大气区及海水水位变化区分别不低于360 kg/m3 和0. 5,在海水浪溅区分别不低于400kg/ m3 和0. 4,在海水水下区分别不低于300kg/ m3 和0. 5。 (4) 在环境恶劣部位采用高性能混凝土HPC有耐久性。 (5) 在施工过程中确保不发生泌水、离析现象。 (6) 对大体积混凝土采用分层浇筑等。 (7) 在混凝土养生过程中, 应加强养护等。 (8) 注意对钢筋保护层的施工, 确保钢筋保护层厚度。 (9) 应注意对预应力的施工, 确保管道压浆密度, 以防预应力材料锈蚀。 (10) 对加入阻锈剂、引气剂、减水剂等外加剂的混凝土 应充分拌匀, 以发挥外加剂的防腐作用。 三:更加重视结构耐久性及实用方法的研究 国内从上世纪90年代开始重视了对结构耐久性的研究,也取得了不少成果。这些研究大多是从材料和统计分析的角度进行的,对如何从结构和设计的角度及如何以设计和施工人员易于接受和操作的方式来改善桥梁耐久性却很少有人研究。一方面,耐久性研究需要宏观的定性描述和微观机理的定量分析,这是今后需要加强和深化的一项重要工作;另一方面,在有效借鉴和利用国外耐久性研究成果同时,要充分考虑我国不同地区的环境差异以及经济差异,有针对性地研究科学、可靠、实用的计算方法和操作规程。大量的病害实例也证明,除了施工和材料方面的原因,影响结构耐久性的决定性因素是来自构造上(也即设计上)的缺陷。国外的桥梁设计有鉴于耐久性不足导致的严重损失,近年来十分重视提高结构物的耐久性并将其作为重要的设计原则,统一考虑合理的结构布局和构造细节,强调使结构易于检查、维修,以保证桥梁的安全使用、尽可能地减少维修费用,取得了较好的综合经济效益。实际上,国内外的研究和实践都表明,结构耐久性对

高层结构易损性简述

结构易损性简述 余佳骏 (南京理工大学理学院,南京 210094) 摘要:与地震危险性分析的研究相比,承灾体的地震易损性分析,尤其是土木工程结构的地震易损性分析方面的研究还远没有成熟;另外,地震灾害的损失评估也受到了工程界与经济界学者的共同关注,目前这两个分支学科正处于蓬勃的发展过程中。本文对结构易损性的概念和分析方法进行了简单介绍,并系统地提出了框剪结构分析方法和其易损性曲线的形成。 关键词:易损性;地震风险分析;易损性曲线;框架结构 A Brief Introduction to Structural Vulnerability YU Jiajun (College of Science, NUST, Nanjing 210094) Abstract:Compared with the study of seismic hazard analysis, the seismic vulnerability analysis of hazard bearing bodies, especially the study of seismic vulnerability analysis for civil engineering structures are also far away from mature; In addition, the assessment of the loss of earthquake disaster has been a common concern of engineering and economic scholars, the two branch is in the process of developing the vigorous. In this paper, the concept and analysis method of structural vulnerability was introduced, and put forward the formation of frame shear wall structure analysis and its vulnerability curve. Keywords:Seismic vulnerability; risk analysis; fragility curve; frame structure 引言 地震是自然灾害中危害最大的灾种之一,地震预测预报是世界性难题,因此对地震灾害进行风险分析已成为目前主要的防灾和减灾措施。地震灾害的风险分析主要包括 3 个方面:地震危险性分析、地震易损性分析和地震灾害损失估计。其中,地震易损性分析是预测结构在不同等级的地震作用下发生各级破坏的概率。因此,对建筑物进行易损性分析一方面可以用于震前灾害预测,设计人员可以根据结构易损性的不同,有针对性地提高结构的抗震能力;另一方面可以用于震后损失评估,为估计地震损失提供依据,从而尽可能避免或减少人员伤亡,实现我国防震减灾的目标。 1 研究背景 灾害风险分析是指对灾害发生的可能性和造成的后果进行定性与定量的分析及评估,其目的是为风险区土地的合理利用与投资、灾害预防与管理、灾害保险制度的建立、城市与工程的防灾减灾以及灾期的快速评估和辅助决策提供科学依据[1-3]。 灾害风险分析主要包括致灾因子的危险性分析、承灾体的易损性分析和灾情损失评估三个方面的内容。致灾因子的危险性分析主要研究给定区域内发生各种强度灾害的概率;承灾体的易损性分析是研究承灾体易于受到致灾因子的破坏、伤害或损伤的可能性;灾情损失评估是在危险性分析和易损性分析的基础上,研究风险区内一定时段内可能发生的一系列不同强度灾害给风险区造成的可能后果和经济损失值[1-3]。 地震是自然灾害中危害最严重的灾害之一,由于地震预测预报是世界性难题,因此对地震灾

钢筋混凝土桥梁设计文献综述

钢筋混凝土桥梁设计综述 刘旭东 河北科技师范学院秦皇岛 066004 摘要: 桥梁工程是土木工程中属于结构工程的一个分支学科,它与房屋工程一样,也是用砖块、木、混凝土、钢精混凝土和各种金属材料建造的结构工程。它既是一种功能性的结构物,又是一座立体的造型艺术工程,也是具有时代特征的景观工程,具有一种凌空宏伟的魅力。而钢筋混凝土桥梁在桥梁工程中占有重要的位置,通过对钢筋混凝土桥梁设计对桥梁工程有了进一步的认识。 关键词: 钢筋混凝土;桥梁结构;设计 0 引言 桥梁是人类生活和生产活动中,为克服天然屏障而建造的建筑物,也是有史以来人类所建造的最古老、最壮观的土木工程之一,它的发展,不断体现着时代文明与发展的进步。发展交通运输事业,建立四通八达的现代交通网,则离不开桥梁工程建设。道路、铁路、桥梁建设的突飞猛进,对创造良好的投资环境,促进地域性的经济腾飞,起到关键作用。桥梁是一个国家或地区经济实力、科学技术、生产力发展等综合国力的体现,它往往是代表一个地区经济、历史、人文等等社会发展的标志性建筑,可以说是社会历史发展一座不朽的丰碑。 1我国桥梁发展趋势 1.1跨径不断增大 目前,钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。随着跨江跨海的需要,钢斜拉桥的跨径将突破1000m,钢悬索桥将超过3000m。至于混凝土桥,梁桥的最大跨径为270m,拱桥已达420m,斜拉桥为530m。 1.2桥型不断丰富 本世纪50~60年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。所有这一切,使桥梁技术得到空前的发展。

(完整版)地震属性原理

地震属性原理 振幅统计类属性能反映流体的变化、岩性的变化、储层孔隙度的变化、河流三角洲砂体、某种类型的礁体、不整合面、地层调协效应和地层层序变化。反映反射波强弱。用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 1.均方根振幅(RMS Amplitude ) 均方根振幅是将振幅平方的平均值再开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 2.平均绝对值振幅(Average Absolute Amplitude ) 平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。 适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 3.最大波峰振幅(Maximum Peak Amplitude ) √

最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。 PAL画一个使这三个采样点适合曲线并且 沿这一曲线确定出最大值。 最大波峰振幅= 125 最大波峰振幅是分析时窗内的最大正振幅,最适合绘制层序内或沿着特定的反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是调谐效应而引起的。 适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 4.平均波峰振幅 (Average Peak Amplitude) 平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。 适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。 5.最大波谷振幅 (Maximum Trough Amplitude) 最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。

浅析土木工程结构地震易损性分析

浅析土木工程结构地震易损性分析 发表时间:2016-07-08T16:59:33.803Z 来源:《基层建设》2016年6期作者:韦恩裕 [导读] 土木工程结构的地震易损性分析是土木工程项目在结构损失分析中最重要的一部分。 摘要:土木工程结构的地震易损性分析是土木工程项目在结构损失分析中最重要的一部分,在结构损失分析中处于核心地位,是工程项目设计、优化的关键环节。因此,要结合土木工程结构地震易损性分析的研究进展与发展趋势采取既包含经验分析又包含理性分析的易损性分析方法,把两种分析方法结合起来,对结构的地震易损性进行全面的分析。 关键词:土木工程;结构;地震;易损;分析 1 土木工程地震易损性概念 所谓地震易损性,是说在强度不同的地震作用下,土木工程结构可能发生的破坏状态,以及这种情况发生的概率。它是从概率的层面对地震发生机率、强度和土木工程破坏程度之间的关系进行宏观的预测,成为土木工程施工单位和地震工程研究界研究的重点问题。最早提出地震工程和抗震设计的是美国,美国的太平洋地震工程研究中心提出了供统一分析的地震参数和破坏参数等地震破坏指标,使地震易损性分析的研究进入到一个新阶段。 2 地震易损性的国外研究概况 国外较早地开始了对土木工程结构的地震易损性进行研究。他们意识到地震会对土木工程项目以及人民的生命财产安全带来巨大的安全隐患。因此,国外的工业发达国家很早就开始了对地震易损性的研究,如美国的Ghiocel对美国东部的核电站进行结构分析,对工程的地震反应和易损性进行了分析与评定。Ozaki对日本的核反应堆所在的建筑也进行了结构分析,根据其核反应堆建筑的地震易损性指数,考虑了工程项目的非线性特征和结构变异特征。一位美籍华人黄洪谋也对地震易损性如何更好地运用到电力系统工程建设中去进行了分析与研究,并将其研究成果推广、应用到电力变电站等设备中去,对电力系统中的设备和建筑进行安全评定,以确保电力工程的安全性与可靠性。 此外,在软件的开发上,美国也率先推出了HAZUS软件,通过这种地震易损性分析软件,美国可以在对土木工程项目的研究成果的基础上,对地震给工程项目带来的破坏进行估计和预测,采用性能设计的方法根据软件所得出的数据进行能力谱绘制,计算地震所带来的连锁反应,以地震易损性曲线的方式来反映建筑物的抗震性。 人们在对地震易损性进行分析时,常常用两种易损性曲线来表示,即经验易损性曲线和理论易损性曲线,不同的研究者根据不同的研究方向和具体工程项目的建设情况来选择不同的易损性曲线。经验性曲线在这两种曲线当中是一种可信度较高的地震易损性曲线,因为它使用的数据来源于以往地震所造成的危害情况和具体的动参数,对这些实际的数据进行统计分析,以此来得出较为真实可信的数据指标。但经验性曲线也有其自身的局限,因为地震所造成的危害会因为客观环境的不同而有所不同,如在不同的地震环境、场地和工程结构中,地震所打来的危害都是不一样的。 3 地震易损性的国内研究概况 与国外的土木工程结构地震易损性的研究相比,我国在地震易损性研究方面起步较晚,主要是对土木工程结构的地震易损性进行经验性曲线分析。经验性分析的对象是一些群体性的房屋建筑,对这些群体性的房屋建筑进行震害预测。我国最早对土木工程项目的地震易损性进行研究的学者是尹之潜教授,尹教授在地震风险分析和震害预测方面都开展了大量的研究工作,取得了很大的研究成果。其研究结论是建立在大量真实的震害数据的基础上得出来的,并根据其实验数据分析了地震强度与土木工程结构破坏度之间的关系,对多种土木工程结构进行了系统的分析与研究,如砖砌体建筑、工厂的排架结构、混凝土结构,并分别根据这些结构的不同特点进行了有针对性的地震易损性分析,在地震危险性分析、地震易损性分析和震灾评估等方面都取得了重大的成就,得出了较为系统和完整了土木工程地质易损性研究结论与成果,起到了很好的震灾预测的实际效果。此外,尹教授还通过与国外专家者之间的相互学习、相互交流,并系统学习了美国斯坦福大学的地震易损性分析相关方面的课程,开发了对地震震灾进行系统预测的PDSM SM B-1地震易损性预测系统,大大加快了我国在地震易损性分析方面的研究进展。 此外,高小旺、张令心、钟益树等人也在地震易损性的研究领域内作出了重要的贡献,针对不同的土木工程结构进行有针对性的震灾预测,加快了我国在地震易损性方面的研究进展,在此不一一细述。 4 目前地震易损性研究方面的问题与发展趋势 4.1 地震易损性研究存在的问题针对目前国内外对地震易损性分析的研究现状,在地震易损性分析领域还存在着很多问题,如输入参数、破坏准则、分析类型、分析方法等方面都存在着很多问题。具体说来,在输入参数上分析地震易损性方面我国还没有取得相关的理论研究成果,并在易损性的分析上面过于依赖地震动输入,仅仅用一个物理量来描述地震易损性显然不可行,只能用多物理量来解决。在破坏准则方面,不同的破坏准则会带来不同的数据分析结果,通过不同的破坏准则计算出来的数据会有很大的差别,对于这种差别很大的情况人们显得无所适从。另外,在分析类型和分析方法方面我国的地震易损性分析也存在着很大的问题,目前的计算类型与计算方法在运用的过程中计算量过大,对计算机的要求很高,通过分析得出的结果在可信度方面也不能令人满意,这些都是我国在发展结构地震易损性分析方面的主要问题。 4.2 地震易损性研究的发展趋势 4.2.1 两种地震易损性分析法的发展方向目前国内外对于结构地震易损性的分析是基于经验分析法和理论分析法这两种方法的研究成果之上发展起来的。对于经验易损性分析方法,在分析的准确性与可靠性方面有其无可替代的重要作用,是目前土木工程结构地震易损性分析的重要方法。理论易损性分析方法可以通过比较相关的数值,对地震与土木工程破坏之间的关系进行分析和统计,进而对工程的抗震性进行评价。但这两种方法又都有其局限性,因此,优化目前的易损性分析方法是土木工程结构地震易损性研究的未来发展方向。 4.2.2 经验与理论相结合的易损性分析方法经验与理论结合的分析方法能够充分利用两种分析方法的优点,尽可能地将所有的地震破坏因素都考虑在内,并且采用理论分析与经验分析相结合的方式来分析工程的地震易损性,具有精确性和可靠性高的优点,并能够对收集

毕业设计桥梁文献综述样板

文献综述 一、前言 1、目的 通过文献的查阅,可以广泛了解和熟知桥梁的现状、发展和前沿,并为将要进行的大学四年最后一个教学环节----毕业设计开展收集和积累资料,以便更好地完成毕业设计任务。 2、桥梁的基本功能 桥梁是一种具有承载能力的架空建筑物,它的主要作用是供用铁路、公路、渠道、管线和人群等跨越江河、山谷或其他障碍,是交通线的主要组成部分。在市政建设中,桥梁和涵洞的造价约占道路总造价的10%~20%。由于桥梁修建的艰巨性,因此它往往是市政工程中的关键工程。 随着科学技术的进步,桥梁设计理论和建造技术的不断发展,人们建造了许多高大的立交桥、城市高架桥及跨越江、河和海湾(或海峡)的大桥,这些巨大的实体工程常常使人们产生美的感受,激发人们的自豪感,成为人们生活环境中使人印象深刻的标志性建筑物。因此,桥梁建筑也常作为一种空间艺术结构存在于社会中。 3、拟建桥梁的结构类型及其形式 本次设计桥位处的河宽仅为25~28m,桥长不长,且桥高不高,一般不适宜修建拱式桥、悬索桥和斜拉桥这一类桥型。本着“适用、安全、经济、美观”的设计原则,考虑到结构类型要便于施工安装并要兼顾本地区施工单位的设备能力及经验,故不再进行其它桥型比较,桥梁体系就选用简支梁体系。上部结构采用预制装配结构,以便上下部结构能平行作业,节省工期,节约造价;根据地质勘察报告,地基浅层无良好持力层,所以桥梁基础均考虑采用深基桩基础的型式,以深层的圆砾层作为桩基持力层。 二、国内外简支梁桥发展现状与趋势 1、简支梁桥构造与特点 主梁以孔为单元,两端设有支座,是静定结构,最大弯矩发生在跨中央,当 跨度为L、承受均布荷载为q时,其值为8/2 ql,支点弯矩为零,无助于跨中卸 载,一般适用于中、小跨度。若遇地基不均匀沉降时,上部结构内力不受影响;若一孔遭破坏,邻孔不受牵连。它可以分片(段)预先制造,分孔架设和修复。这种桥结构简单,制造运输和架设均甚简便,因此各国多做成标准设计,以便于构件生产工艺工业化、施工机械化,赢得工期,提高质量,并降低造价。 简支梁桥的支座,一端为固定支座,用以固定主梁位置,使桥端在平面内不得发生移动,但可竖向转动;另一端为活动支座,用以保证主梁在荷载、温度、混凝土收缩和徐变作用下能自由伸缩和转动,以免梁内产生额外附加内力。此外,公路桥在活动端的桥面处要求设置桥面伸缩缝,以保证行车平稳;铁路钢桥当温度跨度超过100米(位于无缝线路上为60米)时,应设钢轨伸缩调节器。 简支梁桥的缺点是邻孔两跨之间有异向转角,影响行车平顺。为此,现代公路桥和城市桥多采用桥面连续的简支梁桥来改善。此外,简支梁桥的桥墩上需设置两跨桥端的支座,体积增大,较连续梁桥和悬臂梁桥要多耗费一些材料,阻水

相关文档