文档库 最新最全的文档下载
当前位置:文档库 › The chemistry of the NONO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated

The chemistry of the NONO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated

The chemistry of the NONO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated
The chemistry of the NONO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated

Journal of Catalysis256(2008)

312–322

Contents lists available at ScienceDirect

Journal of Catalysis

https://www.wendangku.net/doc/a010365537.html,/locate/jcat

The chemistry of the NO/NO2–NH3“fast”SCR reaction over Fe-ZSM5investigated by transient reaction analysis

Antonio Grossale a,Isabella Nova a,Enrico Tronconi a,?,Daniel Chatterjee b,Michel Weibel b

a Dipartimento di Energia,Laboratorio di Catalisi e Processi Catalitici,Politecnico di Milano,Piazza Leonardo da Vinci32,I-20133Milano,Italy

b Daimler AG,Abteilung GR/VPE,D-70546Stuttgart,Germany

a r t i c l e i n f o a

b s t r a

c t

Article history:

Received10March2008 Revised22March2008 Accepted27March2008 Available online2May2008

Keywords:

Urea SCR

Fast SCR

Ammonium nitrate

Zeolite catalysts

Diesel exhaust after treatment We present a systematic study of the chemical steps in the NO/NO2–NH3fast SCR reaction2NH3+ NO+NO2→2N2+3H2O over a commercial Fe-ZSM5catalyst.The study is based on transient reaction experiments at realistic conditions for removal of NO x from mobile diesel exhausts.Its goal is to assess and critically evaluate the current ideas on the SCR mechanism,and also to establish to what extent the mechanistic pathways demonstrated for V-based catalysts also apply to Fe-promoted zeolites.Results show that the fast SCR reaction proceeds at low temperature via a global sequence involving NH4NO3or related surface species as intermediates,

2NO2+2NH3→N2+NH4NO3+H2O,

NO+NH4NO3→NO2+N2+2H2O.

Such a sequential scheme is the same as that proposed previously for the fast SCR chemistry over V-based catalysts and other zeolite catalysts and thus is considered a general mechanism.It explains all of the available observations for stoichiometry(e.g.,optimum NO/NO2unit molar ratio),selectivity(e.g., N2O from NH4NO3decomposition),and kinetics(e.g.,rate of fast SCR=rate of nitrate reduction by NO). We further show that the redox reaction between NO and nitrates is the rate-controlling step and is inhibited by ammonia.Remarkably,the same strongly enhanced deNO x activity observed in the fast SCR reaction also was observed in the absence of gaseous NO2but in the presence of surface nitrates.We accordingly propose a general summary of the fast SCR chemistry over V-based and zeolite catalysts that emphasizes the key role of surface nitrates.

?2008Elsevier Inc.All rights reserved.

1.Introduction

In addition to the well-known“standard”SCR reaction,

2NH3+2NO+1

2

O2→2N2+3H2O,(1)

the so-called“fast”SCR reaction,

2NH3+NO+NO2→2N2+3H2O,(2) plays a critical role at180–300?C in boosting the denitri?cation (deNO x)activity of new generation urea-SCR converters for diesel vehicles integrated with an upstream preoxidation catalyst that partially oxidizes NO to NO2[1].

Koebel and co-workers[1–4]?rst extensively investigated the fast SCR reaction over V2O5–WO3/TiO2SCR catalysts.To explain the higher rate of the fast SCR reaction,they proposed a redox

*Corresponding author.Fax:+390223993318.

E-mail address:enrico.tronconi@polimi.it(E.Tronconi).mechanism in close analogy with that of the standard SCR re-action,but with NO2serving as a more e?cient oxidizing agent for the vanadium sites than oxygen[3].Furthermore,for the NO–NO2/NH3reacting system,they also reported the occurrence at low temperatures of two side reactions not observed in the presence of NO–NH3only—namely the formation of ammonium nitrate,

2NH3+2NO2→NH4NO3+N2+H2O,(3)

and the decomposition of ammonium nitrate by NO,described ac-cording to the following stoichiometry[4]:

NH4NO3?NH3+HNO3,(4) 2HNO3+NO→3NO2+H2O.(5)

However,reactions(3)–(5)were considered to be side reactions occurring in parallel to fast SCR(1),not participating in its mech-anism[4].

In our work aimed at developing a chemically consistent sim-ulation model of SCR converters for automotive applications[5], we have addressed mechanistic aspects of the fast SCR chemistry

0021-9517/$–see front matter?2008Elsevier Inc.All rights reserved. doi:10.1016/j.jcat.2008.03.027

A.Grossale et al./Journal of Catalysis256(2008)312–322313

over commercial vanadium-based catalysts by means of transient reaction analysis[6–10].Our data have shown that the fast SCR chemistry proceeds over V2O5–WO3/TiO2SCR catalysts at low tem-perature via a sequential scheme,which can be summarized as comprising two global reactions—ammonium nitrate formation[re-action(3)]and the following reaction between ammonium nitrate and NO—formally involving NH4NO3as an intermediate:

NH4NO3+NO→NO2+N2+2H2O.(6) In fact,the sum of(3)and(6)yields the stoichiometry of the fast SCR reaction(2).Notably,reactions(3)and(6)are similar to those already reported by Koebel and co-workers,but here they are not just side reactions,but are intimately related to the fast SCR chem-istry.

The mechanism of the?rst step in the fast SCR sequential scheme—ammonium nitrate formation[reaction(3)]—was clari?ed by Koebel’s group[1–4]and implies NO2dimerization(7),dispro-portion(8),and successive reactions between nitrous and nitric acid and NH3(9),(10),with rapid decomposition of ammonium nitrite to nitrogen:

2NO2?N2O4,(7) N2O4+H2O?HONO+HNO3,(8) NH3+HONO?NH+4+NO?2?[NH4NO2]→N2+2H2O,(9) NH3+HNO3?NH+4+NO?3?NH4NO3.(10)

Concerning the second step in the fast SCR sequential scheme—reaction(6)between NO and ammonium nitrate—we have demon-strated by dedicated transient experiments a mechanism based on: ammonium nitrate decomposition(10reverse),successive oxida-tion of NO to NO2by nitric acid,which is thus reduced to nitrous acid(11),and reaction of the latter with NH3to form N2via am-monium nitrite decomposition(9)[6–10]:

NH4NO3?NH3+HNO3,(4)=(10reverse) HNO3+NO?NO2+HONO,(11) NH3+HONO→N2+2H2O.(9) We further observed that the rate-limiting step(6)does not proceed over V-free WO3/TiO2and thus is catalyzed by V2O5.The same results had been previously reported for reaction(5)[4].Ac-cording to a redox interpretation of the fast SCR chemistry over V-based catalysts,the key global reaction(6)actually is associ-ated with a redox cycle involving the more effective reoxidation of reduced V-sites by surface nitrates[8,9];the fast SCR activity of NO/NO2–NH3is similar to the activity of NH3+NO in the absence

of gaseous NO2but in the presence of either NH4NO3[6,7,10]or nitrates prestored onto the vanadium catalyst surface[8,9].This rules out the possibility that the fast SCR reaction(2)can proceed in parallel or consecutively to the nitrate decomposition by NO[re-action(6)].

There is now a trend in the automobile industry to replace vanadium-based SCR catalysts with zeolite-based systems to ex-pand the operating temperature window and address the problems associated with high-temperature deactivation of the anatase–rutile TiO2transition.Zeolites are the new class of automotive SCR catalysts.Various zeolites have been proposed for this purpose,in-cluding ZSM-5,mordenite,beta,ferrierite,and Y-zeolite[11].In the most active systems,zeolites generally are promoted by transition metals,such as iron,copper,and silver.These catalysts reportedly are associated with good deNO x activity in the standard and espe-cially the fast SCR reactions[11–17].

Concerning the mechanistic features of fast SCR over zeolites, Weitz et al.[18]proposed a fast SCR pathway over a BaNa–Y ze-olite similar to that discussed above for V2O5–WO3/TiO2catalysts,based on spectroscopic evidence and on steady-state reaction data. In addition,other authors have reported NO2disproportion[19–21] and ammonium nitrate formation[16,22]over promoted and un-promoted zeolites.Based on the analysis of their own data and of literature data,Kr?cher et al.[23]recently proposed a com-mon SCR reaction scheme for transition–metal zeolites and for vanadium-based catalysts that is in close agreement both with the chemistry over a V2O5–WO3/TiO2catalyst reported in our previous work[6,7]and with the scheme proposed for the BaNa–Y zeo-lite[18].

Herein we present a dedicated investigation of the elemen-tary steps of the fast SCR reaction at low temperature over the same commercial Fe-ZSM5catalyst used in a previous SCR reac-tivity study[26].Our goal is to assess and critically evaluate the current ideas on the SCR mechanism,and speci?cally to estab-lish in a conclusive manner to what extent the same mechanistic pathways demonstrated for V-based catalysts also apply to Fe-promoted zeolite catalysts under fully representative conditions for automotive applications.For this purpose,we take the same ex-perimental approach(transient reaction experiments)used in our previous mechanistic investigation over V2O5–WO3/TiO2,in order to establish a direct link to the results for V-based catalysts.

2.Experimental

The commercial catalyst used in this work was originally sup-plied by Daimler in the form of a cordierite honeycomb mono-lith(400cpsi—6.5mils)washcoated with Fe-ZSM5.For testing, the catalyst was crushed and sieved to140–200mesh,to avoid mass transfer limitations.Samples(160mg of catalyst powder or 80mg of catalyst powder diluted with80mg of quartz pow-der)were loaded into a?ow-microreactor consisting of a quartz tube(6mm i.d.)placed in an electric furnace.The reaction tem-perature was monitored and controlled by a K-type thermocouple immersed in the catalyst bed.Mass-?ow controllers(Brooks In-struments)were used to dose He,Ar,NH3,NO,NO2,and O2in the gaseous feed stream,while water vapor was added via a saturator operated at controlled temperature.All of the lines before and af-ter the reactor were heated to200?C to prevent H2O condensation and NH4NO3deposition.The species concentrations in the outlet stream were continuously monitored by a quadrupole mass spec-trometer(Balzer QMS200)and a UV analyzer(ABB-LIMAS11HV) in parallel.He was used as carrier gas to enable evaluation of N balances at steady state.More experimental details are available elsewhere[5,7,8,26].

Before the experiments,the catalyst was conditioned with a temperature ramp of10?C/min up to600?C in2%O2v/v,then held at600?C for1h.Transient runs consisted of step-response experiments at150–170–190?C(transient response method[TRM]) and in temperature-programmed reaction(TPR)runs.In a typical TRM run,the reactor was kept at constant temperature under a ?ow of He+1%H2O,and step changes(e.g.,0→1000→0ppm or0→500→0ppm)of feed NH3or NO or NO2concentra-tions were imposed.TRM tests were carried out over diluted cat-alyst beds at72or140cm3/min(STP),corresponding to GHSV= 8600–23,000h?1if referred to a monolith catalyst.At the end, a temperature ramp(10?C/min,T end=550?C)was run to clean up the catalyst surface.In the TPR runs,a stream containing NH3

(1000ppm)and NO x(1000ppm,with NO/NO x=1or0.5)with O2(0or2%v/v)and H2O(1%v/v)in He was fed to the reactor initially at150?C,and then the reactor temperature was linearly increased up to550?C at a heating rate of20?C/min.Because the purpose of this work was to address the chemistry of the fast SCR reaction(2),many runs were performed in the absence of O2so as to eliminate contributions of the standard SCR reaction(1).

314 A.Grossale et al./Journal of Catalysis 256(2008)

312–322

Fig.1.Formation of ammonium nitrate over the Fe-ZSM5catalyst.W cat =0.080g,?ow rate =140cm 3/min (STP).Feed =1%H 2O,2%O 2,1000ppm NH 3and 1000ppm NO 2+He.T =180?C.

Additional NO 2adsorption runs were performed to study the formation of surface nitrates and NH 4NO 3over undiluted crushed monolith samples at 120cm 3/min (STP).A few ?nal runs with step changes in the NH 3feed were devoted to study the fast SCR dynamics over Fe-ZSM5at 200?C using a higher feed ?ow rate (240cm 3/min STP)in the presence of O 2(2%),to extend the study to conditions closer to automotive applications.3.Results and discussion 3.1.NH 4NO 3formation

Fig.1shows a transient run at 180?C addressing the forma-tion of ammonium nitrate over Fe-ZSM5.After the catalyst was saturated with NH 3(1000ppm),at time t =0s NO 2(1000ppm)was added stepwise to the feed stream.At steady state,the data indicate equal conversions of NO 2and NH 3( NO 2= NH 3=750ppm),the formation of N 2(380ppm),of N 2O (20ppm),and a lack of about 700ppm in the overall N balance (total atomic N =1300ppm).These results agree with the stoichiometry of re-action (3)and correspond to the formation of about 350ppm of NH 4NO 3,which,of course,cannot be detected by our analyzers.In previous work [6,7,10],we found similar behavior (except for N 2O formation)over a V 2O 5–WO 3/TiO 2catalyst and also documented that part of the NH 4NO 3was decomposed to HNO 3+NH 3and es-caped undetected from the reactor,later condensing in cold spots along the downstream lines.

As discussed above,in the case of V-based catalysts and BaNa–Y zeolites,the formation of ammonium nitrate has been attributed in the past to NO 2dimerization and disproportion [reactions (7)and (8)],coupled with the formation and decomposition of ammo-nium nitrite [reaction (9)]and the reaction between nitric acid and ammonia [reaction (10)].We addressed the question as to whether the same mechanism also applies to Fe-ZSM5by means of two NO 2adsorption experiments conducted at 150?C in the absence and presence of preadsorbed NH 3(Figs.2A and 2B ).Both runs con-sist of a step addition of NO 2only (1000ppm at t =0s)to a feed stream containing 1%H 2O,2%O 2,and He ?owing over either a clean Fe-ZSM5catalyst or a catalyst sample previously exposed to NH 3at 150?C.

Fig.2A shows storage of NO 2onto the catalyst up to saturation in the absence of preadsorbed ammonia,accompanied by evolution of NO.The data,reported previously [26],are consistent with 3NO 2+H 2O ?NO +2HNO 3.

(12)

Note that the molar ratio NO/ NO 2is approximately equal to 1/3during the entire adsorption transient.The overall reaction (12)actually describes the chemisorption of NO 2in the form of ni-trates and results from the combination of the NO 2dimerization and disproportion reactions [reactions (7)and (8)]and the oxida-tion of nitrite species by NO 2[reaction (11reverse )].Accordingly,the results of Fig.2A agree with the proposed chemistry and with IR studies documenting the formation of nitrates on zeolite cata-lysts on exposure to NO 2[18,24,25].Kr?cher and co-workers also demonstrated reaction (12)in relation to NO 2adsorption onto Fe-ZSM5[22]and Cu-ZSM5[21].

When the same NO 2storage experiment was run in the pres-ence of ammonia preadsorbed on the catalyst,however,evolution of N 2instead of NO was observed,as shown in Fig.2B.Remark-ably,the N 2concentration detected during the initial stage of the reaction amounted to about 500ppm versus a total conversion of the 1000ppm of NO 2in the feed.This corresponds to the overall stoichiometry of ammonium nitrate formation from NO 2and ad-sorbed ammonia [reaction (3)],according to steps (7)–(10),which involve disproportion of NO 2[reactions (7)and (8)],as shown in Fig.2A,but in this case followed by reaction of nitrites with NH 3rather than with NO 2and leading to N 2via ammonium nitrite de-composition [reaction (9)].As a further con?rmation,we note that the total amount of N 2evolved during the experiment in Fig.2B (≈0.2mmol /g)was close to the amount of preadsorbed ammo-nia (≈0.18mmol /g),as would be expected from (9).A TPD run at the end of the NO 2storage phase demonstrated no N 2O evolu-tion,thus con?rming that no NH 4NO 3was left on the catalyst.On the other hand,the NO 2evolution from nitrate decomposition was similar to that observed during the corresponding ?nal TPD part of the run shown in Fig.2A.

Comparing the chemistry involved in NO 2adsorption onto Fe-ZSM5in the absence and in the presence of adsorbed ammo-nia reveals that at 150?C surface nitrites (or nitrous acid)react more readily with NH 3according to the ammonium nitrite forma-tion/decomposition reaction (9)rather than with NO 2according to the reverse of (11),the reaction observed in the absence of am-

A.Grossale et al./Journal of Catalysis256(2008)312–322

315

Fig.2.Effect of preadsorbed NH3on NO2storage on Fe-ZSM5.W cat=0.160g,?ow rate=120cm3/min(STP).Feed=1%H2O,2%O2,NO2=1000ppm+He.T=150?C. A=clean catalyst.B=catalyst with preadsorbed NH3.

monia.This reaction is indeed very fast;complete oxidation of nitrous acid by NO2occurs already at150?C,as indicated by the stoichiometry observed during NO2adsorption on the clean cata-lyst(see Fig.2A and related discussion).Other data(not reported) show the same behavior already at50?C.Thus,the preferential re-action of nitrites with ammonia,even if their oxidation by NO2 is so facile,merits some consideration.Our data also indicate that ammonia reacts preferentially with surface nitrites,thus forming N2,rather than with nitrates to form NH4NO3.

3.2.Reactivity of NH4NO3with NO

To investigate the reactivity of NH4NO3with nitric oxide over Fe-ZSM5,ammonium nitrate was generated in situ(i.e.,on the cat-alyst itself).As shown in Fig.3,1000ppm of NO2along with H2O (1%v/v)and O2(0%v/v)were initially fed to the microreactor at 170?C;subsequently,1000ppm of NH3was added to the feed to form and build up ammonium nitrate on the catalyst surface ac-cording to reaction(3).At the end of the?rst build-up stage,only NO2was removed from the feed stream while NH3was retained, to limit decomposition of ammonium nitrate to NH3+HNO3,thus preserving a signi?cant fraction of the ammonium nitrate formed

on the catalyst.In the?nal stage of the run,1000ppm of NO was added to the NH3-containing feed stream,still without oxygen.The same experimental procedure has been used previously to study the reactivity of NH4NO3with nitric oxide over V2O5–WO3/TiO2 [6,7].

Fig.3shows the temporal evolutions of the outlet concen-trations of NH3,NO,NO2,N2,and N2O during the NH4NO3 buildup and reactivity run over Fe-ZSM5.During the?rst stage (t<7600s),when NH3and NO2were co-fed to the reactor, a roughly equimolar consumption of both species was observed ( NO2=830ppm; NH3=820ppm),along with formation of 430ppm of N2,15ppm of N2O,and a lack of760ppm in the N balance(total atomic N=1240ppm).Such results are clearly in line with the formation of ammonium nitrate[reaction(1)], as discussed in the previous section,and point to the forma-tion/deposition of NH4NO3salt onto the catalyst surface.A small fraction of such ammonium nitrate was decomposed to N2O.The formation of NH4NO3salt on V2O5–WO3/TiO2under similar con-ditions has been documented by IR analysis of a catalyst sample unloaded from the reactor[10].

After the NO2feed was shut off,the ammonia concentration level returned to its feed value,and the concentrations of all the other species dropped to zero.This indicates that no reaction oc-curred between ammonia and ammonium nitrate at this temper-ature[6,7,10].At t=9600s,NO(1000ppm)was added to NH3 in the feed,which resulted in a long transient(prolonged un-til t≈13,000s),associated with the conversion of NO and NH3 and the formation of N2and NO2.The conversion ratio of NO and NH3was1:1during the entire transient period except the initial 600s,when a higher NO consumption along with formation of a few ppm of NO2were seen.The evolution of nitrogen mirrored the consumption of NO and NH3but exceeded it signi?cantly(e.g., NO=90ppm, NH3=100ppm,N2=130ppm).

The reactivity observed when NH3and NO were co-fed to the Fe-ZSM-5catalyst cannot be explained by the standard SCR re-action(1),which exhibits a different stoichiometry and requires the participation of O2.Rather,it is attributed to the reaction(6) between NO and the ammonium nitrate deposited onto the cat-alyst during the previous stage of the experiment.Under similar operating conditions,we observed the same behavior over a V2O5–WO3/TiO2catalyst;we explain this as due to the following reac-tion:

NH3+NO+

1

2

NH4NO3→

3

2

N2+

5

2

H2O.(13)

In view of the1:1consumption ratio between NO and NH3,along with the formation of about3/2ppm of N2for each ppm of con-verted NO observed over Fe-ZSM5,reaction(13)also explains the results shown in Fig.3.Notably,reaction(13)is simply the sum of reaction(6)between NO and ammonium nitrate,forming NO2, and reaction(3)between such NO2and NH3,which rapidly re-forms part of the converted ammonium nitrate.

Additional runs to explore the temperature dependence of the reactivity of NH4NO3with NO were performed at150and190?C (Figs.4A and4B).At both temperatures,the Fe-ZSM5catalyst was active in the formation of ammonium nitrate[reaction(3)],con-?rming the expected stoichiometry within experimental error.An increase in the associated NO2and NH3conversions was observed with decreasing temperature,indicating that NH4NO3formation is favored by low temperatures,in agreement with the litera-ture[1,18].As for the reaction between ammonium nitrate and NO+NH3,no conversion was apparent at150?C(Fig.4A),whereas considerable reactivity was detected at190?C(Fig.4B).In fact,in

316 A.Grossale et al./Journal of Catalysis 256(2008)

312–322

Fig.3.Buildup of ammonium nitrate and its reactivity with NO over Fe-ZSM5.W cat =0.080g,?ow rate =72cm 3/min (STP).Feed =1%H 2O,0%O 2,NH 3=0–1000ppm,NO =0–1000ppm,NO 2=0–1000ppm +He.T =170?C.

the latter case,an initial evolution of 450ppm of N 2was found,which is in fair agreement with reaction (13)( NO =320ppm)but far greater than the 130ppm of N 2observed in the run at 170?C (Fig.3).

Based on the aforementioned ?ndings,it seems legitimate to conclude that a similar reactivity between NO and ammonium nitrate applies over the present Fe-ZSM5catalyst,as has been reported previously for V 2O 5–WO 3/TiO 2catalysts and a BaNa–Y zeolite [6,7,18,23].The results shown in Fig.3and the related in-terpretation also agree with the IR data of Busca et al.[25],who studied the interaction of NO and NO/NO 2with NH 3preadsorbed onto H-ZSM5and found that NO 2reacted readily at room temper-ature with adsorbed ammonium ions,forming nitrates and N 2,as expected from reaction (3),whereas in the presence of NO +NO 2,the catalyst was completely depleted of adsorbed ammonia and of nitrates at 373K,consistent with the reduction of nitrates by NO [reaction (11)]and the resulting overall reaction (2).Furthermore,the present data demonstrate a strong temperature dependence of reaction (6)between NO and NH 4NO 3.3.3.Role of NH 4NO 3in the fast SCR reaction

After demonstrating the reactivity of NH 4NO 3with NO over Fe-ZSM5,we proceeded to study the relationship of such a reaction with the NO/NO 2–NH 3(fast SCR)reacting system.In analogy with our previous studies on a V-based catalyst [6,7],the study relied on TRM runs involving a ?rst stage in which NH 3,NO,and NO 2(1000:500:500ppm)were co-fed to the Fe-ZSM5catalyst along with H 2O (1%v/v)but with no O 2,followed by a second stage after stepwise removal of NO 2from the feed stream.

Fig.5displays the dynamics of the NH 3,NO,NO 2,N 2,and N 2O outlet concentrations observed during one of such runs at 170?C.At t >3000s,when NO and NO 2were added to NH 3in the feed,a reaction transient associated with conversion of both NH 3and NO x and with the formation of N 2and of a few ppm of N 2O be-came apparent.At steady state,the NH 3consumption was around 440ppm,close to the NO x conversion of 460ppm.It should be noted,however,that the NO 2conversion was much greater than the NO conversion ( NO =40ppm, NO 2=420ppm);therefore,the fast SCR reaction (2)by itself cannot explain the observed be-havior,because it would result in equimolar conversions of NO and NO 2.In view of the low temperature (170?C)and of the higher NO 2conversion,it is then reasonable to propose that also reac-tion (3)(i.e.,formation of ammonium nitrate)also was proceeding along with the fast SCR reaction (2).The formation of NH 4NO 3is in fact corroborated by a lack in the atomic nitrogen balance at steady state;furthermore,it is compatible with the observed N 2concentrations,as we brie?y discuss in what follows.

We consider the NO consumption ( NO =40ppm)to rep-resent the extent of the fast SCR reaction (2),whereas the ex-tent of reaction (3)is obtained by subtracting the amount of NO converted by the fast SCR reaction from the total NO 2conver-sion:( NO 2Amm =420?40=380ppm).Accordingly,the total N 2formed by reactions (2)and (3)should amount to 80+190=270ppm,which is close enough to the 280ppm of nitrogen ac-tually detected at steady state.Furthermore,the observed lack of 320ppm in the atomic N balance is compatible with the ex-pected formation of approximately 180ppm of NH 4NO 3due to reaction (3),after subtracting 10ppm of N 2O from the NH 4NO 3decomposition.Based on these ?ndings,we therefore propose that both reactions (2)and (3)occurred during the ?rst stage of the transient run in Fig.5,with the formation and deposition of am-monium nitrate on Fe-ZSM5.Again,the same behavior had been reported previously under similar conditions over V 2O 5–WO 3/TiO 2and zeolite catalysts [4,6,7,10,21,26].

We now examine the second stage of the TRM run in Fig.5.When NO 2was removed from the feed stream at t ≈13,000s,a discontinuity in the outlet concentration traces of all species but NO became apparent.In fact,the ammonia concentration rose to about 960ppm,the NO 2trace dropped rapidly to zero,the N 2concentration decreased to about 60ppm (mirroring the NH 3evolution),and the NO outlet concentration remained unaltered at 460ppm.For pseudo steady-state conditions,such data imply similar consumption of NO and NH 3(about 40ppm)and a simul-taneous formation of 60ppm of N 2,demonstrating a stoichiometry similar to that reported earlier for the reaction between NO and NH 4NO 3[reaction (6)].In other words,during this second stage of the experiment,NO was reacting with the ammonium nitrate de-posited onto the catalyst for the duration of the ?rst stage.The resulting transient lasted about 6000s and in fact ended after de-pletion of all of the previously accumulated ammonium nitrate.

We now analyze in more detail the chemistry before and after NO 2was removed from the feed.We have shown that the conver-sion of NO was due to the fast SCR reaction (2)when NH 3,NO,and

A.Grossale et al./Journal of Catalysis256(2008)312–322

317

Fig.4.Effect of temperature on the buildup of ammonium nitrate and its reactivity with NO over Fe-ZSM5.W cat=0.080g,?ow rate=72cm3/min(STP).Feed=1%H2O, 0%O2,NH3=0–1000ppm,NO=0–1000ppm,NO2=0–1000ppm+He.T=150?C(A),190?C(B).

NO2were co-fed to the Fe-ZSM5catalyst.In contrast,in the sub-sequent stage,in the absence of NO2,NO consumption was due to reaction(6)between NO and ammonium nitrate.But despite the occurrence of two formally different reactions,the experimental concentration trace of NO shown in Fig.5demonstrates no discon-tinuity between the two stages on the stepwise removal of NO2 from the feed stream.However,recalling that in the presence of NH3,NO,and NO2(?rst stage in Fig.5),the formation of ammo-nium nitrate[reaction(3)]was already active along with the fast SCR reaction(2),this apparent contradiction can be explained by considering that during the?rst stage of the run,NO consumption occurred not directly at the expense of gaseous NO2[i.e.,according to reaction(2)],but rather via reaction of NO with NH4NO3[i.e., according to reaction(6)],with ammonium nitrate in turn formed from NO2and NH3according to reaction(3).This obviously ex-plains the absence of any discontinuity of the NO trace between the two parts of the experiment shown in Fig.5and points to a sequential scheme for the fast SCR chemistry in which ammonium nitrate(or a related surface species)plays the role of the key in-

termediate and reaction(6)between NO and ammonium nitrate is

the rate-determining step at these low temperatures.In particular,

we emphasize that the data shown in Fig.5demonstrate the occur-

rence of the fast SCR in the absence of gaseous NO2and rule out

signi?cant contributions to deNO x activity from a direct gas-phase

reaction between NO and NO2[16].These conclusions regarding

the fast SCR chemistry over Fe-ZSM5are in close agreement with

our previous?ndings for a V2O5–WO3/TiO2catalyst[6,7].

We further investigated the role of reaction(6)between

NH4NO3and NO in the fast SCR chemistry over the Fe-zeolite at

other temperatures,150and190?C;the results are shown in Fig.6. At the end of the?rst stage of the TRM run at150?C(Fig.6A),we observed no conversion of NO and equimolar conversions of NH3

and NO2( NH3=410ppm, NO2=405ppm),resulting in the evolution of200ppm of N2and a lack of400ppm in the N bal-

ance.These data indicate the occurrence of reaction(3)(formation

of ammonium nitrate)only,whereas the absence of NO conver-

318 A.Grossale et al./Journal of Catalysis 256(2008)

312–322

https://www.wendangku.net/doc/a010365537.html,parison between activity of fast SCR and activity of NO +NH 4NO 3over Fe-ZSM5.W cat =0.080g,?ow rate =72cm 3/min (STP).Feed =1%H 2O,0%O 2,NH 3=0–1000ppm,NO =0–500ppm,NO 2=0–500ppm +He.T =170?C.

sion is explained by the adverse effect of low temperature on the reactivity between NO and NH 4NO 3,as discussed previously (see Fig.4A).In fact,no reactivity of NO was detected during the sub-sequent transient phase after NO 2was removed from the feed.

In contrast,the ?rst stage of the TRM run at 190?C (Fig.6B)re-sulted in high equimolar conversions of NH 3and NO x (about 95%)associated with higher consumption of NO 2compared with NO ( NO 2=500ppm, NO =445ppm),formation of 915ppm of N 2,and a lack of about 40ppm in the atomic N balance.Within the limits of experimental error,such data are again consistent with the simultaneous occurrence of ammonium nitrate formation (3)and the fast SCR reaction (2),although with a much greater con-tribution of the latter than occurred at 170?C.This ?nding is ex-plained by the strong promoting effect of temperature on the key reaction (6)between NO and NH 4NO 3documented in Figs.3and 4.

The subsequent TRM stage,run at 190?C after NO 2removal,demonstrated signi?cant conversion of NO and NH 3,but only dur-ing an initial short transient phase.This ?nding is linked to the high fast SCR activity and the low NH 4NO 3production observed during the preceding stage in the presence of NH 3,NO,and NO 2.Accordingly,at 190?C,the system was unable to build up a sub-stantial amount of ammonium nitrate on the catalyst for its sub-sequent reaction with NO in the absence of NO 2,thus con?rming the importance of NH 4NO 3in the NO–NO 2/NH 3chemistry at low temperatures.

3.4.NH 3inhibition of NO reactivity with nitrates

Additional interesting information can be extracted from the ?nal part of the TRM run at 150?C.As shown in Fig.6A,imme-diately after the NH 3feed was shut off (t >24,000s),a peak of deNO x activity involving conversion of NO,formation of N 2,and evolution of NO 2appeared.The transient exhibited two dis-tinct phases.In the ?rst phase,NO conversion was associated with equimolar formation of N 2and NO 2,consistent with reaction (6)between NO and the residual ammonium nitrate on the catalyst surface,

NH 4NO 3+NO →N 2+NO 2+2H 2O.

(6)

In the second phase,however,the outlet concentration of N 2was greater than that of NO 2.This can be explained by a further re-action of NO 2from reaction (6)with NH 3still adsorbed onto the

catalyst according to reaction (3).Thus,the behavior observed at the time of ammonia shutoff is consistent with the overall fast SCR chemistry proposed over Fe-ZSM5,but apparently contradicts the temperature threshold of 150?C observed for the onset of re-action (6)between NH 4NO 3and NO.A possible reason for this ?nding is that reaction (6)actually may occur between NO and ni-tric acid (or surface nitrates)[see reaction (11)]formed by NH 4NO 3decomposition according to reaction (10reverse),and then would be inhibited by NH 3.Reducing the gaseous ammonia concentra-tion would shift the equilibrium of NH 4NO 3decomposition toward higher HNO 3concentrations,thereby promoting the reactivity with NO.A similar effect was observed at different temperatures as well.The formation of surface nitrates and their role in the formation of ammonium nitrate were already demonstrated in this work by the NO 2adsorption experiments (see Fig.2).Ammonia inhibition of reaction (6)over V 2O 5–WO 3/TiO 2also has been proposed [6,7].3.5.TPR experiments

More information con?rming the central role of nitrates in the fast SCR reactivity is provided in Fig.7,which compares the tem-perature dependence of NO conversion measured during four dif-ferent NO +NH 3TPR experiments with equal space velocities and heating rates (20K /min).In the experiment re?ected in curve A,the feed included NO +NH 3(1000ppm each)+H 2O (1%v/v),but no oxygen.As expected,the observed temporal evolution of the outlet concentrations,indicating the onset of deNO x activity only above 300?C,is in agreement with the so-called “slow”SCR reac-tion [4],that is,the poorly active deNO x reaction between NO and NH 3in the absence of oxygen,3NO +2NH 3→

52

N 2+3H 2O .

(14)

Repeating the same temperature ramp experiment but with 2%O 2v/v in the feed (curve B)revealed greater deNO x activity,due to the standard SCR reaction (1)instead of reaction (14).Curve C shows the even much higher deNO x activity resulting from running the same temperature ramp with a feed containing 1000ppm of NH 3and 500ppm each of NO and NO 2.Of course,curve C is represen-tative of the NO conversion in the fast SCR reaction (2).During the fourth and ?nal TPR experiment,associated with curve D,a feed containing NO +NH 3(1000ppm each)+H 2O (1%v/v),but no

A.Grossale et al./Journal of Catalysis256(2008)312–322

319

https://www.wendangku.net/doc/a010365537.html,parison between activity of fast SCR and activity of NO+NH4NO3over Fe-ZSM5:effect of temperature.W cat=0.080g,?ow rate=72cm3/min(STP).Feed=1% H2O,0%O2,NH3=0–1000ppm,NO=0–500ppm,NO2=0–500ppm+He.T=150?C(A),190?C(B).

oxygen or NO2,was passed over a catalyst sample preexposed to 1000ppm of NO2+1%H2O at60?C.Fig.7shows that during the initial part of this temperature ramp,up to about200?C,the evo-lution of the NO conversion matched that seen for the fast SCR TPR run.As the experiment proceeded,NO conversion dropped sharply, reaching close to zero,before eventually approaching the behavior observed for the slow SCR reaction(curve A).

Recalling the data on the buildup of nitrates on the Fe-ZSM5 catalyst on NO2adsorption(see Fig.2),a likely explanation of the similarity between the initial parts of curves C(fast SCR) and D(NO+NH3over catalyst pretreated with NO2)in Fig.7is that in both cases,NO and ammonia in the feed were reacting with surface nitrates,either formed directly via NO2disproportion (curve C)or formed previously and stored on the catalyst during its pretreatment with NO2(curve D).Notably,once again in this experiment,the deNO x activity in the absence of gaseous NO2but the presence of surface nitrates was virtually identical to that as-sociated with the fast SCR reaction up to about200?C.The drop in NO conversion shown by curve D at temperatures above200?C can be attributed to the depletion of surface nitrates.In fact,in another similar experiment(not reported),in which the catalyst was pretreated with NO2at150?C rather than at60?C,an earlier drop of the NO conversion occurred,due to the reduced amount of nitrates stored at the higher temperature.Eventually,the match between curves D and A at temperatures above300?C con?rms the absence of any residual oxidizing agents in the?nal part of the temperature ramp experiment over the NO2-pretreated sam-ple.

Based on the data presented and discussed so far,the reac-tivity of NO/NO2–NH3over Fe-ZSM5at low temperatures appears to be totally consistent with earlier?ndings over vanadium-based catalysts[6,7,23]as well as with the mechanistic proposals for

320 A.Grossale et al./Journal of Catalysis 256(2008)

312–322

Fig.7.Temperature-programmed reaction experiments over Fe-ZSM5.W cat =0.080g,?ow rate =72cm 3/min (STP).Curve A (slow SCR):Feed =1%H 2O,0%O 2,NH 3=1000ppm,NO =1000ppm +He.Curve B (standard SCR):Feed =1%H 2O,2%O 2,NH 3=1000ppm,NO =1000ppm +He.Curve C (fast SCR):Feed =1%H 2O,0%O 2,NH 3=1000ppm,NO =500ppm,NO 2=500ppm +He.Curve D:Feed =1%H 2O,0%O 2,NH 3=1000ppm,NO =1000ppm +He over catalyst pretreated with NO 2(1000ppm)+H 2O (1%)at 60?

C.

Fig.8.Fast SCR:TRM run over Fe-ZSM5.W cat =0.100g,?ow rate =240cm 3/min (STP).Feed =1%H 2O,2%O 2,NH 3=0–1000ppm,NO =0–500ppm,NO 2=0–500ppm +He.T =200?C.

BaNa–Y [18],all of which depend on the reactivity between NO and ammonium nitrate or surface nitrates in the fast SCR chem-istry.Our ?ndings further demonstrate the similarity of the rate of the fast SCR reaction and the rate of nitrate reduction by NO,which had not been reported previously on zeolite catalysts.3.6.Fast SCR dynamics under NH 3pulsed feed

We analyzed the dynamic behavior of the NO/NO 2–NH 3re-acting system over Fe-ZSM5under a stepwise feed of ammonia at low temperature at conditions closer to those prevailing in real automotive SCR converters—namely in the presence of oxygen and at higher space velocities.Fig.8shows the temporal evo-lution of the outlet species concentrations during a TRM run at

200?C with 1000ppm of NH 3added to a feed stream contain-ing 500ppm of NO and 500ppm of NO 2with O 2(2%)and H 2O (1%).The data identify a ?rst transient phase with high deNO x ac-tivity that was,however,progressively reduced until steady state was reached,along with a ?nal phase after NH 3shutoff,again as-sociated with high deNO x activity,which was rapidly exhausted.Fig.8shows a simultaneous conversion of both NO and NO 2at steady state at the end of the ?rst phase,with NO 2consumption higher by about 100ppm,formation of N 2in amounts equal to 3/2of the NO consumption added to half of the NO 2consump-tion,and a lack of 100ppm in the N balance.Such behavior can be well explained by the chemistry discussed in the previous sec-tions,invoking ammonium nitrate formation [reaction (3)]and the consecutive reaction (6)between NO and NH 4NO 3.

A.Grossale et al./Journal of Catalysis 256(2008)312–322321

Somewhat different behavior can be observed in the second phase of the run shown in Fig.8.After stepwise removal of NH 3from the feed,a peak in NO conversion appeared,accompanied by evolution of N 2and of NO 2,which temporarily exceeded their feed concentrations of 500ppm.In analogy to the discussion of the ?nal stage in Fig.6A,such dynamics can be attributed to the reaction of NO with ammonium nitrate and to the inhibiting effect of ammonia.In fact,removing NH 3from the gas phase promoted reaction (6)between NO and NH 4NO 3still present on the cata-lyst,thereby releasing NO 2and N 2until the surface species was depleted.

More TRM runs at higher temperatures (225–300?C)(not re-ported)demonstrated higher activity,approaching total conversion of NO x .The reaction dynamics observed during the ?rst stage of the TRM runs,after the addition of NH 3to the feed stream,were qualitatively similar to the run shown in Fig.8,but transients were faster due to the higher deNO x activity.In contrast,the ?nal tran-sient phase after the removal of NH 3from the feed became shorter with increasing temperature,and eventually disappeared.This is consistent with the reduced storage of surface species (adsorbed NH 3and nitrates)at higher temperatures.

3.7.Rephrasing the reactions in terms of surface species

Throughout this paper,all of the reactions involved in the NO–NO 2/NH 3chemistry have been expressed conventionally in terms of molecular species.But,as is apparent from the data presented so far,the actual catalytic mechanism likely involves related sur-face adspecies,as discussed,for example,in the analysis of the data given in Figs.6and 7.Accordingly,HONO and HNO 3in the reaction steps should be replaced with nitrite and nitrate species,respectively.

Fig.9shows a schematic summary of the fast SCR chemistry in terms of surface species.The related basic reaction steps are given in Table 1,along with data on the decomposition of the overall reactions observed in this work.Thus,for example,the reaction sequence yielding the fast SCR reaction (2)can be rephrased in terms of the elementary steps in Table 1as

2NH 3+H 2O ?2NH +4+O

2?,R42NO 2+O 2??NO ?2+NO ?

3,R1+R2

NO ?3+NO ?NO 2+NO ?2,R72NH +4+2NO ?2→2N 2+4H 2O.

2*R5

4.Conclusion

Our ?ndings demonstrate conclusively that the chemistry pro-posed for the fast SCR reaction at low temperatures over V 2O 5–

WO 3/TiO 2[6,7,10,23]and over zeolite systems [13,18,22]is able to interpret the steady-state and dynamic features of the NO/NO 2–NH 3system over commercial Fe-ZSM5catalysts,as well under conditions representative of diesel exhaust after treatment,as pro-posed previously [23].Accordingly,the role of NO 2in the fast SCR reactivity is to form surface nitrites and nitrates via dimerization and disproportionation/heterolytic chemisorption,the role of NO is to reduce nitrates to nitrites,and the role of NH 3is to enable rapid and selective decomposition of nitrites to nitrogen via formation of unstable ammonium nitrite.It was pointed out previously that this chemistry can explain the optimal 1:1molar ratio of NO and NO 2in the fast SCR reaction [6,13,15].It also can explain the full range of selectivity resulting from varying the NO 2/NO x feed ra-tio [13,24,26];incomplete reduction of nitrates by NO (the critical step R7in Table 1)is responsible for the undesired formation of NH 4NO 3at very low temperatures and of N 2O at low to interme-diate temperatures.

Although the general SCR chemistry emerging from the present work essentially con?rms existing concepts,here for the ?rst time it has been evaluated over zeolite systems on a step-by-step basis by means of transient reaction analysis.Thanks to this powerful technique,additional novel results have been obtained over Fe-ZSM5:

1.The reduction of nitrates by NO (or,conversely,the oxida-tion of NO by nitrates)is the rate-limiting step in the fast SCR chemistry at low temperature;the reverse reaction (i.e.,oxidation of nitrites by NO 2)is very fast even at very low tem-

perature.

Fig.9.Proposed reaction scheme for NO/NO 2–NH 3SCR at low temperature.

Table 1

The fast SCR chemistry

Basic reaction steps in NO/NO 2–NH 3SCR chemistry over V-based and zeolite catalysts Involving NO 2only 2NO 2?N 2O 4

R1

see (7)N 2O 4+O 2??NO ?2+NO ?

3

R2see (8)

NO 2+NO ?2?NO +NO ?

3

R3see (11reverse)

In the presence of NH 3

2NH 3+H 2O ?2NH +4+O

2?R4NH 3adsorption NH +4+NO ?

2?[NH 4NO 2]→N 2+2H 2O

R5see (9)NH +4+NO ?

3?NH 4NO 3

R6

see (10)

In the presence of NO

NO +NO ?3?NO 2+NO ?

2

R7see (11)

Global reactions observed in this work,and their relationship with the basic reactions above 3NO 2+O 2??NO +2NO ?3

(12)=R1+R2+R32NO 2+2NH 3→NH 4NO 3+N 2+H 2O (3)=R1+R2+R4+R5NO +NH 4NO 3→NO 2+N 2+2H 2O

(6)=R6reverse +R7+R5

NO +NH 3+12NH 4NO 3→32N 2+52H 2

O (13)=(6)+12

?

(3)2NH 3+NO +NO 2→2N 2+3H 2O

(2)=R4+R1+R2+R7+2*R5

322 A.Grossale et al./Journal of Catalysis256(2008)312–322

2.Ammonia inhibits such a redox step,likely by blocking the

surface nitrates;high NH3concentrations have a detrimental effect on fast SCR kinetics at low temperature[26].

3.The same enhanced fast SCR deNO x activity also is seen in the

absence of gaseous NO2,provided that the catalyst has been saturated with nitrates.This important result is not obvious from the previous SCR literature.

In summary,our work emphasizes the key role of surface ni-trates in the fast SCR chemistry.Their reactivity with NO is critical to explaining the strongly enhanced deNO x activity and governs the fast SCR kinetics at low temperature,whereas their buildup and depletion controls the SCR dynamics in parallel to ammonia adsorption–desorption.Identifying the elementary steps of fast SCR reactions over the Fe-ZSM5catalyst is an important step in deriv-ing chemically consistent kinetic schemes,as well as a key stage in the development of new catalytic systems and integrated af-tertreatment technologies.

Acknowledgments

The authors thank one of the reviewers for critical suggestions that helped improve the quality of the paper.

References

[1]G.Madia,M.Koebel,M.Elsener,A.Wokaun,Ind.Eng.Chem.Res.41(2002)

3512.

[2]M.Koebel,M.Elsener,G.Madia,Ind.Eng.Chem.Res.40(2001)52.

[3]M.Koebel,G.Madia,F.Raimondi,A.Wokaun,J.Catal.209(2002)159.

[4]M.Koebel,G.Madia,M.Elsener,Catal.Today73(2002)239.

[5]C.Ciardelli,I.Nova,E.Tronconi,D.Chatterjee,T.Burkhardt,M.Weibel,Chem.

Eng.Sci.62(2007)5001,and references therein.

[6]C.Ciardelli,I.Nova,E.Tronconi,D.Chatterjee,B.Bandl-Konrad,https://www.wendangku.net/doc/a010365537.html,-

mun.(2004)2718.

[7]I.Nova, C.Ciardelli, E.Tronconi, D.Chatterjee, B.Blandl-Konrad,Catal.To-

day114(2006)3.

[8]E.Tronconi,I.Nova,C.Ciardelli,D.Chatterjee,M.Weibel,J.Catal.245(2007)1.

[9]I.Nova, C.Ciardelli, E.Tronconi, D.Chatterjee,M.Weibel,Top.Catal.42–43

(2007)43.

[10]C.Ciardelli,I.Nova,E.Tronconi,B.Bandl-Konrad,D.Chatterjee,M.Weibel,B.

Krutzsch,Appl.Catal.B:Environ.70(2007)80.

[11]K.Rahkamaa-Tolonen,T.Maunula,M.Lomma,M.Huuhtanen,R.Keiski,Catal.

Today100(2005)217.

[12]M.Schwidder,M.S.Kumar,K.Klementiev,M.M.Pohl,A.Brückner,W.Grünert,

J.Catal.231(2005)314.

[13]O.Kr?cher,M.Devadas,M.Elsener,A.Wokaun,N.S?ger,M.Pfeifer,Y.Demel,

L.Mussmann,App.Catal.B:Environ.66(2006)208.

[14]M.Wallin,C.J.Karlsson,M.Skoglundh,A.Palmqvist,J.Catal.218(2003)354.

[15]M.Li,Y.Yeom,E.Weitz,W.M.H.Sachtler,J.Catal.235(2005)201.

[16]H.Sj?vall,L.Olsson, E.Fridell,R.J.Blint,Appl.Catal.B:Environ.64(2006)

180.

[17]G.Delahay, D.Valade, A.Guzma-Vargas, B.Coq,Appl.Catal.B:Environ.55

(2005)149.

[18]Y.H.Yeom,J.Henao,M.J.Li,W.M.H.Sachtler, E.Weitz,J.Catal.231(2005)

181.

[19]G.Li,C.A.Jones,V.H.Grassian,https://www.wendangku.net/doc/a010365537.html,rsen,J.Catal.234(2004)401.

[20]M.S.Kumar,M.Schwidder,W.Grünert,U.Bentrup,A.Brückner,J.Catal.239

(2006)173.

[21]J.Despres,M.Koebel,O.Kr?cher,M.Elsener,A.Wokaun,Microporous Meso-

porous Mater.58(2003)175.

[22]M.Devadas,O.Kr?cher,M.Elsener,A.Wokaun,N.S?ger,M.Pfeifer,Y.Demel,

L.Mussmann,Appl.Catal.B:Environ.67(2006)187.

[23]O.Kr?cher,in:Proceedings of Congress MinNO x—Minimization of NO x Emis-

sions through Exhaust Aftertreatment,Berlin,February1–2,2007,Paper H030-02-286-7.

[24]M.Devadas,O.Kr?cher,M.Elsener,A.Wokaun,G.Mitrikas,N.S?ger,M.Pfeifer,

Y.Demel,L.Mussmann,Catal.Today119(2007)137.

[25]V.Sanchez-Escribano,T.Montanari,G.Busca,Appl.Catal.B:Environ.58(2005)

19.

[26]A.Grossale,I.Nova, E.Tronconi,Catal.Today(2007),doi:10.1016/j.cattod.

2007.10.117.

火灾自动报警系统工程施工组织方案

专业资料 自动火灾报警系统施工方案 (一)配管及管内穿线工程 1、总则认真消化、熟悉图纸,所有配管工程必须以设计图纸为 依据,严格按图施工,不得随意改变管材质、设计走向主连 接位置。如必须改变位置和走向,除在图上标示清楚外,同 时办理有关变更手续。 2、暗配管需沿最近路线敷设,尽量减少弯头数。埋入墙和地面 混凝土中的管个壁离结构表面的净距不应小于30 mm,进 入落地式电柜的管线应排列整齐,高度一致,管口应高出基 础面不小于50mm。 3、所有穿线钢管均采用冷弯法,弯曲半径暗配管不得小于其外 径的10倍,明配管不得小于管外径的6倍。管材弯曲处严 禁有折皱、凹凸、裂缝等现象,管子弯扁度不得大于管径的 10%。 4、管路长度超过一定距离时,管路中间应加装过路接线盒或把 管径放大一级: 管子长度每超过45m,无弯曲时; 管子长度每超过30m,有一个弯曲时; 管子长度每超过20m,有二个弯曲时; 管子长度每超过12m,有三个弯曲时。 5、加装接线盒的位置奕便于穿线与检修维护,不宜在潮湿有腐 蚀性介质场所加装接线盒。管子入盒时,盒外侧应套锁母,

内侧应装护口,在吊顶内敷设时,盒的内外侧均应套锁母。 6、管内或线槽的穿线,应在穿线前应将管、槽内的积水及杂物 清除干净。 7、不同系统、不同电压等级、不同电流类别的线路,不应穿在 同一管内或线槽的同一孔内。导线在管、槽内,不应有接头 或扭结。导线的接头应在接线盒内焊接或用端子连接。敷设 在地下室等潮湿或多尘场所管路的管口和管子连接处,均应 作密封处理。 (二)线槽安装 1、在吊顶内敷设的各类管路和线槽需采用单独的卡具 吊装或支持物固定,不要依附在吊顶支架上。 2、线槽的直线段应每隔1.0~1.5m设置吊顶或支点。 在下列部位也设置支、吊点:线槽接头处;距接线盒 0.2m处;线槽走向改变或转弯处。 3、吊装线槽的吊杆直径不小于6mm。 4、管线径过建筑物的变形缝(包括沉降、伸缩缝、抗 震缝)处,应采取补偿措施。导线跨越变形缝的两侧应 固定,并留有适当余量。 5、火灾自动报警系统导线敷设后,应对每路导线用 500兆欧表测量绝缘电阻,其对地绝缘电阻值不小于 20兆欧。 (三)火灾自动触发装置

火灾自动报警系统的组成

1火灾自动报警系统的组成? 答案:火灾自动报警系统是由触发器件、火灾报警装置、火灾警报装置以及具有其它辅助功能的装置组成的火灾报警系统。它能够在火灾初期,将燃烧产生的烟雾、热量和光辐射等物理量,通过感温、感烟和感光等火灾探测器变成电信号,传输到火灾报警控制器,并同时显示出火灾发生的部位,记录火灾发生的时间。 2火灾自动报警系统的基本形式? 答案:根据现行国家标准《火灾自动报警系统设计规范》规定,火灾自动报系统的基本形式有三种,即:区域报警系统、集中报警系统和控制中心报警系统。 3什么是火灾报警装置和火灾警报装置? 答案:①在火灾自动报警系统中,用以接收、显示和传递火灾报警信号,并能发出控制信号和具有其它辅助功能的控制指示设备称为火灾报警装置。 ②在火灾自动报警系统中,用以发出区别于环境声、光的火灾警报信号的装置称为火灾警报装置。它以声、光音响方式向报警区域发出火灾警报信号,以警示人们采取安全疏散、灭火救灾措施。4火灾自动报警设备一般常见故障有哪些? 答案: (1)主电源故障。 (2)备用电源故障。 (3)探测回路故障。

(4)误报火警。 5消防监控员定期检查主要工作有哪些? 答案: ①每日查报警控制器的功能,并填写系统运行和控制器日检登记表。 ②每季度应检测和试验报警系统的下列功能,并填写季检表。 ③每年对火灾自动报警系统的功能,应作下列检查和试验,并填写年检表。 ④探测器投入运行二年后,应每隔三年全部清洗一遍,并作响应阈值及其它必要的功能试验,合格的方可继续使用,不合格的严禁重新安装使用。 6消防系统的分类? 答案: ①水消防系统 ②气体消防系统 ③泡沫灭火系统 7火灾自动报警系统的误报的种类? 答案: 误报分为危险性误报和安全性误报两种,所谓危险性误报是指火灾发生时生产大量的烟、温而不能使系统发生报警信号者,又称不报。所谓安全性误报是指无火灾的情况下报警,又称虚报。 8火灾自动报警系统减少误报的方法? 答案:

浅析城市轨道交通消防系统

浅析城市轨道交通消防系统 摘要:本文主要围绕着城市轨道交通消防系统展开论述,分析了当前城市轨道交通消防系统建设的现状和建设的必要性,并提出了城市轨道交通消防系统构建的要点。 关键词:城市;轨道交通;消防系统 一、前言 城市轨道交通系统的快速发展给城市发展带来了新的生机,也给城市居民的生活带来了巨大的便利。但是,城市轨道交通的运行也存在一定的危险性,特别是面临着火灾等重大事故的风险,所以,构建城市轨道交通消防系统非常有必要。 二、我国城市轨道交通建设现状 截至2010年底,已有36座城市向国家主管部门上报城市轨道交通建设规划,其中,北京、上海、广州、深圳、天津、重庆、南京、杭州、成都、武汉、哈尔滨、长春、沈阳、西安、苏州、宁波、无锡、郑州、长沙、福州、大连、东莞、昆明、南昌、青岛、合肥、南宁、贵州28座城市轨道交通近期建设规划得到政府批准,共规划线路90多条,总里程约2700km,总投资超过10720亿元。 得到批准的城市轨道交通项目建设期将集中在2015年前后,且第一轮规划批复城市如北京、上海、广州、深圳、天津、南京等规划期基本都在2010—2012年,批复的轨道交通线已经建设完成,正在开始进行第二轮或建设规划修编工作。“十二五”期间,社会经济将得到平稳、快速增长,是城市化进程继续加快、产业结构深入调整的重要时期,也是城市轨道交通产业结构调整、产业升级的关键时期。因此,未来10年仍是城市轨道交通的大发展时期。 三、城市轨道交通地下车站火灾的特点 1、人的心理恐慌程度大,行动混乱程度高。车站出入口少,通道狭窄,疏散距离长,人员多,易发生挤踩事故,情况要比在地面建筑物中严重得多。 2、浓烟积聚不散,给人员逃生和火灾扑救带来很大障碍。地下车站内部封闭的环境使物质不易充分燃烧,火灾发生时可燃物的发烟量很大,烟雾的控制和排除都比较复杂。特别是机械通风系统发生故障时,很难依靠自然通风补救。 3、温度上升快,峰值高。发生火灾以后,大量的热量积聚,无法散去,空间温度很快升高,火势猛烈阶段温度可达到1000℃以上。高温有时会造成气流方向的变化,对逃生人员影响很大,而且会对车站结构造成很大破坏。 4、人员疏散难度大。人员从地下车站内到地面开阔空间的疏散有一个垂直上行的过程,比下行要耗费体力,从而影响疏散速度。同时,自下而上的疏散路

楼宇自动化技术与工程

1、集散控制系统的主要结构与特点:DCS特点是现场由控制站进行分散控制实时数据通过 电缆传输送达控制室的操作站,实现集中监控管理,分散控制,将控制功能、负荷和危险分散化。 2、集散控制系统的特点:分级递阶控制; 分散控制;自治和协调性;友好性;适应性、 灵活性、可扩充性;开放系统;可靠性和安全性; 3、楼宇自动化系统包括那些分系统:楼宇环境设备自动化系统(如空调自动化系统、热源 自动化系统、给水排水自动化系统)供配电自动化系统;照明自动化系统;消防自动化系统;安全防范自动化系统;交通运输系统自动化系统。 4、GB50314-2006《智能建筑设计标准》:以建筑物为平台,兼备信息设施系统、信息化应 用系统、建筑设备管理系统、公共安全管理系统等,集结构系统、服务、管理及其优化组合为一体,向人们提供安全、高效、便捷、节能、环保、健康的建筑环境。 5、建筑智能化系统由哪些部分组成:BAS 大楼自动化系统;OAS 办公自动化系统;CAS 通 信自动化系统;GCS 综合布线系统; BMS 建筑物管理系统; 6、BAS 通常包括设备控制与管理自动化(BA)、安全自动化(SA)、消防自动化(FA)也有 时把安全自动化(SA)和消防自动化(FA)和设备控制与管理自动化(BA)并列,形成所谓的“5A”系统。 7、GCS 是在智能建筑中构筑信息通道的设施;GCS可以以各种速率9600b/s到1000Mb/s,传送话音、图像、数据信息;OA 、CA、BA及SA的信号从理论上都可由GCS沟通;GCS是智能建筑的神经系统。 8、供配电设备监控系统的构成: 采用集散系统结构可分为3层,现场I/O,控制层和管理层. 9、安全防范电技术形同组成:1.电视监控系统CCTV,2.防盗报警系统,3.出入孔控制系 统,4.电子巡更系统,5.可视对讲系统,6,.停车管理系统。 10、智能楼宇对安保系统的要求:1.防范:不论是对财务、人身或重要数据和情报等的安全 保护,都应把防范放在首位。安保系统使罪犯不可能计入或在企图犯罪时就能察觉,从而采取措施。2.报警:当发现安全遭到破坏时,系统应能在安保中心和有关地方发出特定的声光报警,并把报警信号通过网络传到有关安保部门。3.监视记录:在发生报警的同时,系统应能迅速地把出事地点的现场录像和声音传到安保中心进行监视,并实时记录下来。4.自检和防破坏功能,布撤防功能。 11、智能楼宇安保系统的功能:1.图像监控功能:①图像监控②影像验证③图像识别系统 2.探测报警功能:①内部防卫探测②周界防卫探测③报警点监控 3.联动控制功能:① 图像控制②门禁控制③车辆出入控制④专用电梯出入控制⑤报警响应联动控制 4.自动化辅助功能:①内部通信②有线广播③巡更管理④员工考勤。 12、闭路电视监控系统基本配置:1.对智能楼宇主要出入口,主要公共场所、通道、电梯及 重点部位和场所安装摄像机,通过摄像、传输、显示监视、图像记录、控制,对重要部位和重点区域的图像进行长时间录像,2.确定摄像机布局和数量,选定敷线路由和安保控制室地点、面积,完成系统图设计,提出拟选用的主要设备和器材型号、性能、数量与产地,3.使用系统主机—视频矩阵切换器,确保其输入,输出容量应有狂战余地,根据需要可设置安保分控中心键盘,系统主机可对输入的图像进行任意变成,自动或手动切换,在画面上应有摄像机型号、部位/地址和时间、日期显示。4.组网与联动,5.集中管理和集中监控,6.实时控制、同步切换、电梯层楼叠加显示、双工多画面视频处理及图像长时间录像等功能。 13、门禁系统的辨识装置:锁,电子锁;磁卡,IC智能卡和读卡机;指纹机;视网膜辨识 机;声音辨识机;掌纹辨识机;人脸辨识机。 14、小型矩阵控制器:通常是电视监控和防盗报警综合控制器,集视频矩阵、音频矩阵、报 警控制与操作面板为一体。具有视音频选录切换、时序切换、云台和镜头动作控制、布放和撤防等基本功能外,还具备音频同步切换,报警联动和多级网络控制借口等特殊功能。 15、中型矩阵控制器:是以大规模专用芯片矩阵电路组成的多通道,多用途中型切换器。通 常配置专用操作键盘,视音频可顺序编程分组切换输出端可带字符叠加和时钟显示通常采用标准机箱结构输出容量在16路至48路可实现定时补防报警联动及状态显示等功能有些系统还可以与多媒体电脑相连组成一个完整的微机控制图像监控系统16、主动红外探测器:光束遮断式探测器(又称主动红外探测器)原理是用肉眼看不到红外 光束张成的一道保护开关探测光束是否被遮断目前用得最多的是红外对射式有一个红外线发射器和一个接收器以相对方式布置组成一般较多被用于周期防护探测 17、被动式红外探测器:又称热干式红外探测器不需要附加红外辐射光源本身不向外界发 射任何能量而是探测器直接探测器来自移动目标的红外幅射人体辐射的红外线波长

火灾自动报警及消防联动控制系统设计说明

火灾自动报警及消防联动控制系统设计说明 1、系统构成: (1)火灾自动报警系统 (2)消防联动控制 (3)火灾应急广播系统 (4)消防直通对讲电话系统 (5)漏电火灾报警系统 (6)大空间智能型灭火装置集中控制系统(消防水炮控制系统) (7)智能消防应急疏散照明指示灯系统 2.系统概况: (1)本工程为一类防火建筑.火灾自动报警的保护等级按特级设置.设控制中心报警系统和消防联动控制系统。 (2).系统组成:火灾自动报警系统;消防联动控制系统;火灾应急广播系统;消防直通电话对讲系统;漏电火灾报警系统;大空间智能型灭火装置集中控制系统(消防水炮控制系统);智能消防应急疏散照明指示灯系统。 3.消防控制室: (1)本工程的消防控制室设置在一层西侧,负责本工程全部火灾报警及联动控制系统,设有直接通室外的出口. (2)消防控制室可联动所有与消防有关的设备。 (3)消防控制室的报警联动设备由火灾报警控制主机、联动控制台、CRT显示器、打印机、广播设备、消防直通对讲电话设备、电源设备等组成。 (4)消防控制室可接收感烟、感温、可燃气体等探测器的火灾报警信号及水流指示器、检修阀、压力报警阀、手动报警按钮、消火栓按钮以及消防水炮的动作信号。 (5)消防控制室可显示消防水池、消防水箱水位,显示消防水泵等的电源及运行情况。 4.火灾自动报警系统: (1)本工程采用消防控制室报警控制系统,火灾自动报警系统按四总线设计。 (2)探测器:柴油发电机房、厨房、车库等处设置感温探测器,直燃机房设防爆型可燃气体探测器,其他场所设置感烟探测器。 (3)探测器安装:探测器与灯具的水平净距应大于0.2m;至墙边、梁边或其他遮挡物

火灾自动报警系统的构成及工作原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 火灾自动报警系统的构成及工作原理 1系统构成 火灾自动报警控制系统一般采用总线制,二进制编码(也 有三进制编码和十进制编码)方式进行信息传送,一个完整的火灾自动报警控制系统能够完成从火灾探测既早期火灾报警到自动灭火的一系列过程。现今的火灾自动报警控制系统主要组成如图一所示: 火灾报警控制器是火灾自动报警系统中能够为火灾探测器供电,接收处理及传递探测点的故障、火警信号并发出声、 光报警信号,同时显示及记录火灾发生部位和时间的报警控制装置。 是整个火灾自动报警控制系统的核心,其具有的基 本功能主要有:

①能为火灾探测器和自身供电。 ②能接收来自火灾探测器的火灾报警信号,发出声、光报警信号。 ③能发出系统本身的故障信号和各种探测器的故障。 ④能检查火灾探测器的报警功能。 ⑤能准确提供火灾现场的位置和发生时间。 火灾报警控制器(联动型)一般采用全总线结构,每路总线由两根探测总线和两根控制电源线组成,可跨接各种探头和控制模块。火灾报警控制器根据相关标准可从不同角度进行以下分类: ⑴按用途可分为: ①区域火灾报警控制器:控制器直接连火灾探测点并处理报警信息。 ②集中火灾报警控制器:一般不与火灾探测器相连,而与区域火灾报警控制器相连,处理区域火灾报警控制器送来的报警信号,主要用于容量较大的火灾报警系统中。 ③通用火灾报警器:通过硬件或软件的配置,即可做区域机使用,直接连接火灾探测器,又可做集中机使用,连接区域报警控制器。 ⑵按信号处理方式可分为 ①有阀值开关量火灾报警控制器。其连接使用有阀值的开关量火灾 探测器、处理的探测信号为阶跃开关量信号,火灾报警取决于火灾

城市轨道交通火灾自动报警系统和消防灭火系统

城市轨道交通火灾自动报警系统和消防灭火系统 一、火灾自动报警系统 1、FAS的组成 FAS由火灾报警控制器、火灾探测器、手动报警按钮和声光报警器等组成。(1)火灾报警控制器 火灾报警控制器是FAS的核心组成部分。火灾报警控制器的主要功能有为火灾探测器提供稳定的工作电源,监视探测器及系统自身的工作状态,接受、转换和处理火灾探测器输出的报警信号,进行声光报警,指示报警的具体部位及时间,执行相应的辅助控制等任务。 (2)火灾探测器 火灾探测器是能对火灾参数(如烟雾、温度、火焰辐射和气体浓度等)进行响应,并自动产生火灾报警信号的器件。火灾探测器一般有感温火灾探测器、感烟火灾探测器、感光火灾探测器、可燃气体探测器和复合式火灾探测器五种基本类型。 (3)手动报警按钮 手动报警按钮是以手动方式生成火灾报警信号,启动火灾自动报警系统的器件。 (4)声光报警器 声光报警器是FAS中用以发出区别于环境声、光的火灾警报信号的装置,如警铃、警笛等。声光报警器以声、光音响方式向报警区域发出火灾警报信号,以警示人们采取安全疏散和灭火救灾措施。 2、FAS的功能 FAS由设置在控制中心的中央监控管理级、车站(车站与车辆段)监控管理级、现场控制级,以及相关网络和通信接口等环节组成。FAS的功能可分为中央级、车站级和现场级三个层次功能。 (1)中央级功能 中央级功能主要是实现城市轨道交通全线各车站、区间隧道、控制中心大楼、车辆段和主变电所等下属所有区域范围内火灾的监视、报警、控制及其他系统的消防联动,在火灾发生时承担全线灭火指挥任务。

(2)车站级功能 车站级功能主要是实现车站及相邻半个区间隧道范围内火灾的监视、报警、控制,以及其他系统的消防联动。车站级火灾报警控制器随时监控和接收各探测点的报警信号,可发出声光报警信号,并能自动或手动执行对有关消防设施的联动控制。模拟图形显示终端按照车站建筑平面分级、分区显示本站消防系统的详细信息,并能够实时打印、输出各种有关数据报告。闭路电视监控系统在车站站台、站厅等公共场所安装全方位的监视器,实时收集站内的视频信息,并反映到值班室的监控器上,由值班人员进行监控和处理。 (3)现场级功能 现场级功能主要是指火灾监控与报警设备的具体功能,如火灾探测器用于对站内设备用房、站厅、站台乘客公共区等进行火灾自动探测;手动报警器安装于站内乘客公共区、设备用房区域及地铁车厢内,以方便现场人员及时通报火灾。另外,为便于紧急报警,在站内乘客公共区及设备用房区域设置的消火栓箱上,以及区间隧道和站内轨道外侧所设的消火栓箱上,配置有紧急电话插孔。 3、FAS的主要设备。FAS的三级功能分别配有相应的设备,以实现其功能。(1)中央级设备 中央级设备位于OCC内,包括两台用于监控全线FAS的图形控制计算机和一台火灾报警控制主机。图形控制计算机根据不同级别的登录密码,分为主图形控制计算机和备用图形控制计算机。FAS中央级设备接收并储存全线消防设备的主要运行状态,接收全线车站、车辆段、主变电所等的火灾报警信息并显示报警部位。(2)车站级设备 车站级设备主要由FAS火灾报警控制盘、图形监视计算机和FAS联动控制盘组成。这些设备都集中设在车站控制室内,用于监视车站消防设备的运行状态,接收车站火灾报警信号,并显示报警区域,优先接收控制中心发出的消防救灾指令和安全疏散命令。通过车站火灾报警控制盘上的RS485数据接口或消防联动控制盘上的手动控制按钮,向环境与设备监控系统(building automatic system,BAS)发出模式指令并由该系统启动消防联动设备。 (3)现场级设备。现场级设备主要包括火灾探测器和手动报警按钮等。

消防火灾自动报警系统资料整理

附录四—A 火灾自动报警系统 施工安装 质 量 记 录

目录 序 资料名称编号页数号 1火灾自动报警系统质量保证资料核查表A-1 2技术交底记录3 3施工组织设计(方案)5 4开工报告6 5设备材料相关证件汇总表7 6设备开箱检查记录8 7材料检查记录9 8火灾自动报警系统配管、配线安装检查记录A-2 9火灾自动报警系统电缆敷设检查记录A-3 10消防配电线路敷设检查记录10 11火灾自动报警系统接地电阻测试记录A-4 12火灾自动报警系统绝缘电阻测试记录A-5 13火灾自动报警系统配管配线隐蔽验收记录A-6 14火灾自动报警系统电缆敷设隐蔽验收记录A-7 15火灾自动报警系统报警控制器安装检查记录A-8 16火灾自动报警系统联动控制器安装检查记录A-9 17火灾自动报警系统探测器安装检查记录A-10 18火灾自动报警系统手动报警按钮安装检查记录A-11

19火灾自动报警系统警报装置安装检查记录A-12 20火灾自动报警系统探测、报警点全点试验记录A-13 21火灾自动报警系统联动控制点全点试验记录A-14 22火灾自动报警系统调试报告A-15 23火灾自动报警系统自检报告A-16 24火灾自动报警系统试运行记录A-17 序 资料名称编号页数号 25竣工报告12 26设备移交清单13

火灾自动报警系统质量保证资料核查表编号:工程名称建设单位 施工单位核查日期 类别项目份数核查情况 前期图纸会审、技术交底记录1交底完毕设计变更、技术核定单 施工组织设计(方案)1已编制开工报告1已编制 出厂检验设备(材料)相关证件汇总表1相关证件齐全设备(材料)检查记录1检查记录齐全 隐蔽验收记录配管配线隐蔽验收记录1记录齐全电缆敷设隐蔽验收记录1记录齐全消防配电线路隐蔽验收记录 安装检查试验记录各类安装检查记录1检查记录齐全各类测试、试验记录1记录齐全 调试报告1已调试 自检报告1已自检 运行记录1已填写 竣工报告1已填写 设备移交清单1已填写 其他 核查意见: 经检查,报警资料符合规范要求.

火灾自动报警系统的设计及其重要性

火灾自动报警系统的设计及其重要性 火灾自动报警系统探测火灾隐患,肩负安全防范重任,是智能建筑中建筑设备自动化系统(CBS)的重要组成部分。智能建筑中的火灾自动报警系统设计首先必须符合GB50116-98《火灾自动报警系统设计规范》的要求,同时也要适应智能建筑的特点,合理选配产品,做到安全适用、技术先进、经济合理。 火灾自动报警系统一般分三种形式设计:区域火灾自动报警系统,集中火灾自动报警系统和控制中心报警系统。就智能建筑的基本特点,控制中心报警系统是最适用的方式。 智能建筑中中火灾自动报警系统的设计要点是:根据被保护对象发生火灾时燃烧的特点确定火灾类型;根据所需防护面积部位;按照火灾探测器的总数和其他报警装置(如手报)数量确定火灾报警控制器的总容量;按划分的报警区域设置区域报警控制器;根据消防设备确定联动控制方式;按防火灭火要求确定报警和联动的逻辑关系;最后还要考虑火灾自动报警系统与智能建筑“3AS”(建设设备自动化系统、通信自动化系统、办公自动化系统)的适应性。 1 火灾探测器的设计选配 火灾探测器是火灾自动报警系统对象分为感烟火灾探测器、感温火灾探测器、感光火灾烟温复合式火灾探测器以及气体火灾探测器,按其测控范围又可分为点型火灾探测器和线型火灾探测器两大类。点型火灾探测器只能对警戒范围中某一点周围的温度、烟等参数进行控制,如点型离子感、点型紫光火焰火灾探测器、点型感温火灾探测器等,线型火灾探测

器则可以对警戒范围中某一线路周围烟雾、温度进行探测,如红外光束线型火灾探测器,激光线型火灾探测器,缆式线型感温火灾探测器等.

智能建筑中应以感烟火灾探测器选用为主,个别不宜选用感烟火灾探测器的场所,应该选用感温火灾探测器。 1.2 探测区域探测器设置要点 标准规定:火灾探测区域一般以独立的房间划分探测区域内的每个房间内至少应设置一只探测器。在敞开或封闭的楼梯间、消防电梯前室、走道、坡道、管道井、闷顶、夹层等场所都应单独划分的探测区域,设置相应探测器、内部空间开阔且门口有灯光显示装置的大面积房间可划分一个的探测区域,但其最大面积不能超过1000m2。探测器的设置一般按保护面积确定,每只探测器保护面积和保护半径确定,要考虑房间高度、屋顶坡度、探测器自身灵敏度三个主要因素的影响,但在有梁的顶棚上设置探测器时必须考虑到梁突出顶棚影响 另外,在设置火灾探测器时,还要考虑智能建筑内部走道宽度、至端墙的距离、至墙壁梁边距离、空调通风口距离以及房间隔情况等的影响。 1.3 探测器总数确定 首先确定一个探测区域所需设置的探测器数量,其计算公式为: N=S÷KA 式中:N —探测器数量(只),取整数;

【智能楼宇自动化专业技术工作总结】智能楼宇自动化技术

【智能楼宇自动化专业技术工作总结】智能楼宇自动化技术智能楼宇自动化专业技术工作总结 回眸过去,在xxx公司智能楼宇自动化工程师工作岗位上,我始终秉承着“在岗一分钟,尽职六十秒”的态度努力做好楼宇自动化工程师岗位的工作,并时刻严格要求自己,摆正自己的工作位置和态度。在各级领导们的关心和同事们的支持帮助下,我在智能楼宇管理师工作岗位上积极进取、勤奋学习,认真圆满地完成今年的智能楼宇管理师所有工作任务,履行好xxx公司自动化工程师工作岗位职责,各方面表现优异,得到了领导和同事们的一致肯定。现将工作岗位上的学习、工作情况作简要总结如下:智能楼宇管理师 一、思想上严于律己,不断提高自身修养智能楼宇管理师 一年来,我始终坚持正确的价值观、人生观、世界观,并用以指导自己在岗位上学习、工作实践活动。虽然身处在自动化工程师工作岗位,但我时刻关注国际时事和中央的精神,不断提高对自己故土家园、民族和文化的归属感、认同感和尊严感、荣誉感。在工作岗位上认真贯彻执行中央的路线、方针、政策,尽职尽责,在岗位上作出对国家力所能及的贡献。智能楼宇管理师 二、工作上加强学习,不断提高工作效率智能楼宇管理师

时代在发展,社会在进步,信息技术日新月异。自动化工程师工作岗位相关工作也需要与时俱进,需要不断学习新知识、新技术、新方法,以提高岗位的服务水平和服务效率。特别是学习自动化工程师工作岗位相关法律知识和相关最新政策。唯有如此,才能提高工作岗位的业务水平和个人能力。定期学习岗位工作有关业务知识,并总结吸取前辈在工作岗位的工作经验,不断弥补和改进自身在工作岗位工作中的缺点和不足,从而使自己整体工作素质都得到较大的提高。智能楼宇管理师 智能楼宇管理师回顾过去在工作岗位工作的点点滴滴,无论在思想上,还是工作学习上我都取得了很大的进步,但也清醒地认识到自己在岗位相关工作中存在的不足之处。主要是在理论学习上远不够深入,尤其是将思想理论运用到自动化工程师工作岗位的实际工作中去的能力还比较欠缺。在以后的岗位工作中,我一定会扬长避短,克服不足、认真学习工作岗位相关知识、发奋工作、积极进取,把工作做的更好,为实现中国梦努力奋斗。宇 智能楼宇管理师展望未来,在以后的工作中希望能够再接再厉,要继续保持着良好的工作心态,不怕苦不怕累,多付出少抱怨,做好自动化工程师的本职工作。同时也需要再加强锻炼自身的工作水平和业务能力,在以后的工作中我将加强与同事多沟通,多探讨。要继续

火灾自动报警系统图集

第一章火灾自动报警系统 说明 典型火灾探测器的安装说明: 1.探测器至墙壁、梁边的水平距离不应小于0.5m。 2.探测器周围0.5m内不应有遮挡物。 3.探测器至空调送风口边的水平距离,不应小于1.5m;至多孔送风顶棚孔口的水平距离不应小于0.5m。 4.在宽度小于3m的内走道顶棚上设置探测器时,宜居中布置。感温探测器的安装间距,不应超过10m;感烟探测器的安装间距,不应超过15m。探测器距端墙的距离,不应大于安装间距的一半。 5.探测器宜水平安装,当必须倾斜安装时,倾斜角度不应大于45°。 6.探测器的底座应固定牢靠,其导线连接必须可靠压接或焊接。当采用焊接时,不得使用带腐蚀性的助焊剂。 7.探测器的“+”线应为红色,“-”应为蓝色,其余线应根据不同用途采用其他颜色区分。但同一工程中相同用途的导线颜色应一致。 8.探测器底座的外接导线,应留有不小于15em的余量,入端处应有明显标志。 9.探测器底座的穿线孔宜封堵,安装完毕后的探测器底座应采取保护措施。 10.探测器的确认灯,应面向便于人员观察的主要入口方向。 11.探测器在即将调试时方可安装,在安装前应妥善保管,并应采取防尘、防潮、防腐蚀措施。

安 装 说 明 探测器可采用专用接线盒,亦可采用标准接线盒安装必要时加调整板调整安装孔距。

安装说明 1.布线要求 (1)信号线Z l、Z2可选用截面≥1.0mm2的RVS型双绞铜芯线,DC24V电源线D1、D2应选用截面积≥2.5mm2的BV线。 (2)本探测报警器背面有两个挂孔,可直接装在墙面的安装钉上。探测报警器须安装在使用燃气没备的房间中,安装位置应选择易发生可燃气体泄漏的位置,并尽可能面向气体扩散的方向。探测报警器的安装高度根据介质(密度大小)的不同来确定,对于轻于空气的气体(城市人工煤气、天然气),可安装在距房顶110mm的墙壁上,比空气重的气体(如液化石油气),安装高度为距地面l00mm。探测报警器安装位置与燃气没备的水平距离应在4m以内。 2.线型火灾探测器和可燃气体探测器与有特殊安装要求的探测器,应符合现行有关国家标准的规定。 Z1、Z2:与火灾报警控制器无极性信号两总线连接的端子; K l、K2:AC220V、5A常开输出控制触点端子; V1、V2:有源DC5V脉冲输出控制触点端子; A1(D1 )、A2(D2):电源端子,联网使用接DC24V电源,独立使用接AC220V。

火灾自动报警系统组成工作原理和适用范围

火灾自动报警系统组成工作原理和适用范围 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

火灾自动报警系统组成、工作原理和适用范围火灾自动报警系统一般设置在工业与民用建筑内部和其他可对生命和财产造成危害的火灾危险场所,与自动灭火系统、防排烟系统以及防火分隔设施等其他消防设施一起构成完整的建筑消防系统。 一、火灾自动报警系统的组成 火灾自动报警系统由火灾探测报警系统、消防联动控制系统、可燃气体探测报警系统及电气火灾监控系统组成。火灾自动报警系统的组成如图3-9-1。 图3-9-1火灾自动报警系统组成示意图 (一)火灾探测报警系统 火灾探测报警系统由火灾报警控制器、触发器件和火灾警报装置等组成,它能及时、准确地探测被保护对象的初起火灾,并做出报警响应,从而使建筑物中的人员有足够的时间在火灾尚未发展蔓延到危害生命安全的程度时疏散至安全地带,是保障人员生命安全的最基本的建筑消防系统。 1.触发器件 在火灾自动报警系统中,自动或手动产生火灾报警信号的器件称为触发器件,主要包括火灾探测器和手动火灾报警按钮。火灾探测器是能对火灾参数(如烟、温度、火焰辐射、气体浓度等)响应,并自动产生火灾报

警信号的器件。手动火灾报警按钮是手动方式产生火灾报警信号、启动火灾自动报警系统的器件。 2.火灾报警装置 在火灾自动报警系统中,用以接收、显示和传递火灾报警信号,并能发出控制信号和具有其它辅助功能的控制指示设备称为火灾报警装置。火灾报警控制器就是其中最基本的一种。火灾报警控制器担负着为火灾探测器提供稳定的工作电源;监视探测器及系统自身的工作状态;接收、转换、处理火灾探测器输出的报警信号;进行声光报警;指示报警的具体部位及时间;同时执行相应辅助控制等诸多任务。 3.火灾警报装置 在火灾自动报警系统中,用以发出区别于环境声、光的火灾警报信号的装置称为火灾警报装置。它以声、光和音响等方式向报警区域发出火灾警报信号,以警示人们迅速采取安全疏散,以及进行灭火救灾措施。4.电源 火灾自动报警系统属于消防用电设备,其主电源应当采用消防电源,备用电源可采用蓄电池。系统电源除为火灾报警控制器供电外,还为与系统相关的消防控制设备等供电。 (二)消防联动控制系统 消防联动控制系统由消防联动控制器、消防控制室图形显示装置、消防电气控制装置(防火卷帘控制器、气体灭火控制器等)、消防电动装置、消防联动模块、消火栓按钮、消防应急广播设备、消防电话等设备和组件组成。在火灾发生时,联动控制器按设定的控制逻辑准确发出联

《楼宇自动化技术》教学大纲

《楼宇自动化技术》 课程教学大纲 课程代码: 学时:80 学分:6 适用专业:楼宇智能化工程技术专业。 先修课程:计算机应用基础、建筑制图与CAD、通信网络与综合布线、楼宇安防技术。 后续课程:楼宇自动化系统设计、毕业设计与顶岗实习等。 开课单位:楼宇自动化技术课程组 一、课程性质 本课程是楼宇智能化工程技术专业的专业主干课程,专业性强、实践性强。 二、课程教学目标 《楼宇自动化技术》作为楼宇智能化工程技术、电气工程、建筑水电等专业的重要专业技术课,着重培养学生分析、设计楼宇自动化设备监控系统软硬件的能力,安装、调试、使用、维护楼宇自动化技术系统的能力,诊断和排除传感器、控制器、执行器及中央控制室故障的能力。具体目标如下: 1.了解智能建筑基本概念、主要特征、主要内容、发展趋势。 2.了解智能建筑中的计算机控制系统的组成、分类。 3.系统掌握楼宇设备自动化系统的组成、功能、集成。 4.能运用Honeywell Excel 50控制器进行楼宇控制系统设计、调试。 5.熟练应用Honeywell Excel CARE软件包,生成楼宇设备工作原理图、控制策略、开关逻辑、时间程序等,并能进行系统调试。 6.培养学生的文字表达能力、语言表达能力和协作能力。 三、课程教学单元及学时安排

四、课程教学实施 本课程是楼宇智能化工程技术专业的一门专业技术课,按照高等职业技术教育的培养日标对

教学方式、方法和教材进行了全方位的改革试验。实施过程有如下特点: 1.增加专业课课堂教学的内容承载。不但有知识的传授,还有楼宇自动化系统设计训练;不但有专业内容的教学,还有基本素质(设计能力、协作能力和学习能力)的训练。 2.本课程以先进的建构主义学习理论为指导,采用“教、学、做相结合的引探教学法”。教师的任务是引导,不是灌输;学生的工作是对知识的探索和对技能的主动练习,不是死记结论。 3.课程内容的选材以培养学生的能力为中心,注意实用性、操作性、先进性和科学性。叙述方式注意照顾普高生与职高生的特点,从初学者的认识规律出发组织教材内容。 4.不但有每堂课的课程讲授的设计(微观设计),而且有全学期的整体安排(宏观设计)。实现全课程教学内容的双循环。 5.课内设计的任务是进行综合能力训练,不可以用单项的作业取代。学生要完整地完成楼宇自动化系统设计任务,以积累职业岗位上不可或缺的综合经验,锻炼本专业的综合能力。 6.每次课程不是从定义出发,而是以实际问题引入,以实例引导,以实例功能的改进为动力。从实践到经验再上升到理论。努力调动学生的学习积极性,千方百计提高学生的参与程度。课内外结合,讲、作、问、答、练、考、多线并进,使整个课程成为一个有机的整体。教学过程中,讲授、问答、练习、考核等内容多线并行、有条不紊地推进。 7. HONEYWELL Excel CARE软件包,是实现楼宇自动化的专用和重要软件,并且代表国际领先水平,需要教师和学生共同努力、探索,以便充分发挥其功能,为楼宇自动化服务。 五、课程教学实施条件 1.师资要求 ◆专任专业教师具备本专业或相近专业大学本科以上学历(含本科); ◆专任实训教师要具备楼宇智能化工程技术专业中级工以上的资格证书(含中级工)或工程师资格; ◆本专业专任专业教师“双师”资格(具备相关专业职业资格或企业经历); ◆专任专业教师应接受过职业教育教学方法论的培训,具有开发职业课程的能力。 2.实践教学条件 ◆为保证理论与实际操作密切结合,本课程要求一个实训室及一个多媒体、网络机房。 ◆实训课最好由二位教师上课,以便于对学生的操作进行个别指导。教师除掌握本专业的理论知识、操作技能外,还要具备良好的知识表达能力和对学生的引导能力。 ◆Honeywell Excel 50 DDC,楼宇设备系统(如给排水系统等)。 ◆Honeywell Excel CARE软件包,楼宇设备模拟对象,以便教师进行组态设计演示和学生进行项日设计和调试。 六、课程考核说明

火灾自动报警系统施工工艺标准

火灾自动报警系统施工工艺标准

火灾自动报警系统施工工艺标准 5.2.1材料准备 根据图纸设计及相关合同文件要求,准备相应材料,如感烟探测器、感温探测器、可燃气体探测器、火焰探测器、红外光束探测器、复合探测器、缆式探测器、手动报警按钮、消火栓按钮、输入模块、控制模块、切换模块、短路隔离器、搂层显示器、区域报警器、火灾报警控制器、报警专用电话、插孔、消防警铃、声光报警器、电线、电缆、桥架线槽、管材、接线端子箱等。 5.2.2技术准备 1.图纸设计应经当地消防部门审批,取得消防建审意见书。 2.施工前应进行由业主(甲方)组织的设计交底和由监理单位组织的图纸会审。 3.编制施工方案,并报上一级技术负责人审核批准。 4.火灾自动报警系统施工前,应具备系统图、设备布置平面图、接线图、安装图、消防设备联动逻辑说明等必要的技术文件。 5.按批准的施工方案进行技术交底,明确施工方法及质量标准。 5.2.3主要机具 1.操作工具:手电钻、冲击钻、梯子、对讲机、喷机、焊锡锅、电工专用工具等。 2.检测工具:万用表、卷尺、探测仪器实验器、水平尺、小线、先坠、兆欧表、接地电阻测试等。 5.2.4作业条件

1.线缆沟、槽、管、盒施工完毕,预埋管及预留孔符合设计要求。 2.已完成机房、弱电竖井的建筑施工。 3.设备机房的环境、电源及接地安装已完成,具备安装条件。 4. 设备、管道安装满足火灾自动报警及消防联动工程施工要求。 5.2.5施工组织及人员要求 专业技术人员应配置合理,劳动力已组织进场。专业技术人员和特殊工种必须持证上岗,操作工人应进行岗前培训。 5.3材料和质量控制要点 5.3.1一般规定 1.火灾自动报警及消防联动系统的设备应选用合格的产品,即有生产厂家的出厂合格证、国家消防电子产品质量监督检验中心的产品检验报告、安装使用说明书、“CCC”认证标识等。 2.对所有进场的材料设备进行开箱全面检查,所有随机的原始资料,自制设备的设计计算资料、图纸、测试记录、验收鉴定结论等应全部清点,整理归档。 3.消防主机应具有汉化图形显示及中文屏幕菜单等功能,并进行操作试验。 4.进口设备还应提供原产地证明的商检证明;配套提供的质量合格证明、检测报告及安装、使用、维护说明书等文件资料应为中文文体(或附中文译文),设备安装前,应根据使用说明书进行全部检查,方可使用。

(完整版)楼宇自控技术方案-江森自控

建筑设备管理系统 1.1系统概述 在提倡建设节约型社会的今天,本项目作为酒店项目,能源与设施的管理工作尤为重要,无论对自身运营还是社会效益都有着重大的意义。 在这样规模的建筑中,需要大量的机电设施协同运转才能为建筑物内的工作人员提供舒适的空间环境,这也是我们楼宇自控系统的建设目标。另外,为实现整个建筑设施管理的现代化,和最佳的节能需求,我方在设计楼宇自控系统时,充分考虑了全年不间断地运行需求、电磁环境的影响、山东地区气候等特点,以及系统兼容性等问题。系统工程的设计和实施,以长期的经营需求为主,充分满足遵循国内国外的相关规范与标准。 1.1.1BA系统的必要性 1)智能建筑能耗分析 2)系统功能 ■ 实现楼宇内各机电设备的自动控制-由于负载的变化,是随人员多少、设备开关、室外冷热程度及时段特性而异,人工管理无法适应如此及时、繁琐的调整,而自动控制系统可自动完成; ■ 降低大厦的运营成本、能源成本-降低大厦的运行费用,可节约电费30%左右; ■ 延长机电设备的使用寿命,提高大楼安全性-延长设备的使用寿命20%; ■ 控制大楼内空气温湿度,达到需要的、适宜的办公、餐饮、休闲环境; ■ 减少设备维护、维修费用及管理人员的开支。

1.1.2产品选择 我们本着确保系统整体的安全性和可靠性,并在一定时期内保持技术的先进性,认真的研读了各类图纸与文件的需求,并对该项目的建筑布局及形态进行了仔细的研究,最终选用了江森自控的系统架构。 1)江森自控 ■ 是一线产品,80~90%的项目都会选择一线品牌; ■ 产品稳定,调试风险小; ■ 产品寿命长; ■ 产品体系全,可以提供全套产品,没有兼容性风险; ■ 江森是世界上唯一一家同时生产暖通空调设备和楼宇自控设备的生产厂家,因此江森自控对新风机组及空调机组的控制原理和方法具有针对性,对于空调设备与楼宇自控设备的融合控制优于其他厂家,其控制理念和逻辑算法代表了世界最前沿的技术。 2)系统特点 ■ 先进性:全新的概念、全新的技术、全新的系统; ■ 开放性:开放式网络、开放式协议、开放式用户界面; ■ 兼容性:兼容多种通信标准及机电厂商设备; ■ 经济性:易于施工、安装、操作和维护; ■ 灵活性:易于扩展、升级、改造; ■ 可靠性:安全、稳定,并已在全球范围成功应用。 1.2设计原则 我们认为楼宇自动化系统的设计方面应该考虑以下原则: ■ 先进性 大楼内必须选用一流设备,在技术上适度超前,符合今后发展趋势,同时又要注意其针对性、实用性,充分发挥每一设备的功能和作用。因此,考虑系统设计方案时,我们建议重要的系统应采用当前国际上先进的主流技术产品。 系统采用分布式集散控制方式的两层网络结构,管理层建立在以太网络上,控制层则采用BACnet或LonWorks的总线技术,点对点通讯,并允许在线增减

火灾自动报警系统的施工方案

火灾自动报警系统施工方案包括七个方面:管路敷设,管内穿线,桥架敷线、安装,探测器、手动报警按钮安装,端子箱安装,模块的安装,系统接地装置安装。 一、管路敷设 1、按施工图放线。 2、火灾自动报警系统的传输线路均采用穿金属管、可挠(金属)电气导管、B1级以上的刚性塑料管或封闭式线槽保护方式布线。 3、消防控制、通信和警报线路采用暗敷设时,用金属管、可挠(金属)电气导管、B1级以上的刚性塑料管保护,并敷设在不燃烧体的结构层内,保护层厚度不小于30mm。当采用明敷设时,应采用金属管、可挠(金属)电气导管或金属封闭线槽保护,矿物绝缘类不燃性电缆可直接明敷。 4、从接线盒处引到探测器底座盒、控制设备盒、扬声器箱的线路均加金属软管保护。 5、管路长度每超过30m,无弯曲时,在便于接线处装设接线盒。管路长度每超过20m,有一个弯曲时,在便于接线处装设接线盒。管路长度每超过10m,有两个弯曲时,在便于接线处装设接线盒。管路长度每超过8m,有三个弯曲时,

在便于接线处装设接线盒。 6、金属管子入盒,盒外侧套锁母,内侧装保护口;在吊顶内敷设时,盒的内外侧均套锁母。塑料管入盒应采取相应固定措施。 7、在敷设各类管路时,采用单独的卡具固定。 8、管路的直线段每隔1.0m-1.5m设置固定点。在管路接头处、距接线盒0.2m处、管路走向改变或转角处也需设置固定点。 9、消防控制设备的外接导线,采用金属软管作套管,其长度不大于2m,且采用管卡固定,其固定点间距不大于0.5m,金属软管与消防控制设备的接线盒(箱)采用锁母固定,并根据配管规定接地。工作接地线采用铜芯绝缘导线或电缆。 二、管内穿线 1、在管内或槽内穿线前,应将其内的杂物清除干净,管路清除干净后,向管内吹入少量滑石粉,以便穿线,并将管子端部装上护口,以防管口将导线绝缘

火灾自动报警与消防联动系统说明

火灾自动报警及消防联动系统说明 (以下各条中,凡打“√”者为本工程选用) 一、火灾自动报警系统概况(√) 1、原有火灾自动报警系统 原建筑已设有火灾自动报警系统,已通过消防审核,其中首层、二层局部现改造为百胜餐饮()必胜客大信餐厅使用。 原建筑火灾自动报警系统保护等级按一级设置,设计依据按GB50116-1998《火灾自动报警系统设计规》执行。 原有火灾自动报警系统包含火灾自动报警系统、消防联动控制系统、火灾应急广播系统、消防直通对讲系统等。 2、本工程火灾自动报警系统(不含应急照明设计) 首层、二层局部现改造为百胜餐饮()必胜客大信餐厅使用。原自动报警主系统未作变更,于平面只作局部的位置调整。 二、设计依据 本设计系依据:JGJ T16-2008《民用建筑电气设计规》(√),GB50016-2006《建筑设计防火规》(√),GB50045-95(2005年版)《高层民用建筑设计防火规》(),GB50116-2013《火灾自动报警系统设计规》(√),GB50067-97《汽车库、修车库、停车场设计防火规》(),GB50038-2005《人民防空地下室设计规》()等有关规以及建设单位和其他专业提供的有关资料。 三、系统组成 火灾自动报警系统(√),消防联动控制系统(√),火灾应急广播

系统(√),消防直通对讲系统(√); 四、消防控制室 1.具有消防联动功能的火灾自动报警系统的保护对象中应设置消 防控制室。(√) 2.本工程消防控制室设在首层,并设有直接通往室外的出口。(√) 3.本工程消防控制室的报警控制设备由火灾报警控制主机、联动控 制台、CRT显示器、打印机、应急广播设备、消防直通对讲设 备、电源设备等组成。(√) 4.消防控制室可接收感烟、感温、火焰、可燃气体等探测器的火灾 报警信号及水流指示器、检修间、压力报警阀、手动报警按钮、消火栓按钮的动作信号。(√) 5.消防控制室可显示消防水池、消防水箱水位,显示消防水泵的电 源及运行状况。(√); 6.消防控制室的联动控制器应能按设定的控制逻辑向各相关的受 控设备发出联动控制信号,并按收相关设备的联动反馈信号。 (√) 7.消防控制室的新增火灾自动报警设备应能与原有火灾自动报警 设备联网及兼容,且各受控设备接口的特性参数应与消防联动控 制器发出的联动控制信号相匹配。(√) 8.消防控制室应有相应的竣工图纸、各分系统控制逻辑关系说明、 设备使用说明书、系统操作规程、应急预案、值班制度、维护保 养制度及值班记录等文件资料。(√)

相关文档
相关文档 最新文档