文档库 最新最全的文档下载
当前位置:文档库 › 对虾营养与饲料

对虾营养与饲料

对虾营养与饲料
对虾营养与饲料

Chapter 7

Nutrition and Feeding of Litopenaeus vannamei in

Intensive Culture Systems

by

Peter Van Wyk

Elements of a good feeding program

Feeding is one of the most critical aspects of shrimp husbandry. A good feeding program is necessary for shrimp to grow at their maximum potential. Feed represents one of the most significant operating expenses for most semi-intensive and intensive aquaculture operations. Often feed costs represent the single highest operating expense (50%) for an aquaculture enterprise. A well-managed feeding program insures that the feed is utilized efficiently.

There are many things that a producer must do to guarantee a successful feeding program:

1)Feed a high quality diet that is formulated to meet the nutritional

requirements of the shrimp and is manufactured from high quality, digestible

ingredients;

2)Use only prepared feeds that are attractive, palatable and appropriate in size

for the shrimp;

3)Maintain feed quality by utilizing proper feed storage and handling

procedures;

4)Present the feed in quantities and frequencies that are appropriate for the

number and size of the shrimp in the population being fed;

5)Distribute the feed evenly over the culture area to ensure that all the shrimp

have equal access to the feed.

6)Make timely adjustments to the feeding regime based on water quality and

the shrimp appetite.

Nutritional Requirements

The nutrients required by cultured species can be broadly classified as proteins, carbohydrates, lipids, vitamins and minerals. The optimum levels of these nutrients vary from one species to the next.

Protein Requirements

Protein makes up 65 to 70% of the dry weight of a shrimp, and is a major component of muscle. Protein in shrimp diet is the source of amino acids, which serve as building blocks for the shrimp’s own proteins. There are 20 different amino acids, but only 10 of these are considered to be essential in the diet. The rest can be synthesized by the shrimp from the

10 essential amino acids. Strictly speaking, shrimp do not have a minimum protein requirement. Rather, they have minimum requirements for each of the ten essential amino acids (Table 7-1).

Table 7-1: Recommended amino acid levels in commercial shrimp feeds, on an as-fed

basis (after Akiyama and Tan, 1991).

Percent of Feed

Amino Acid Percent of Protein (%) 36% Protein 38% Protein 40% Protein 45% Protein

Arginine 5.8 2.09 2.20 2.32 2.61 Histidine 2.1 0.76 0.80 0.84 0.95 Isoleucine 3.5 1.26 1.33 1.40 1.58 Leucine 5.4 1.94 2.05 2.16 2.43 Lysine 5.3 1.91 2.01 2.12 2.39 Methionine 2.4 0.86 0.91 0.96 1.08 Phenylalanine 4.0 1.44 1.52 1.60 1.80 Threonine 3.6 1.30 1.37 1.44 1.62 Tryptophan 0.8 0.29 0.30 0.32 0.36 Valine 4.0 1.44 1.52 1.60 1.80

The amino acid requirements for shrimp have not been well defined because shrimp do not efficiently utilize crystalline amino acids from the purified diets used to study amino acid requirements. As a general rule, however, the amino acid requirements of a species closely mirror the amino acid composition of their muscle tissue (Lim and Persyn, 1989). The amino acid composition of shrimp feeds is largely based on the amino acid composition of shrimp muscle (Akiyama, et al., 1991). Feed formulators mix and match different sources of protein, each with different amino acid profiles, so that the diet meets the minimum requirement for all 10 essential amino acids. The formulator must also take into account the digestibility of each of the feed ingredients and the availability of the amino acids. Fishmeal is generally considered to be the highest quality protein source because the amino acid composition of fishmeal closely matches that of shrimp. For commercial growout diets, krill and Artemia meal are better than fishmeal, but they are more expensive. However, they are used in larval and maturation diets.

Most commercial shrimp feeds formulated for intensive culture systems contain between 35 and 50% protein. If the level of protein in the feed is too low, growth rates will be reduced. Severe protein deficiencies may actually lead to weight loss if the proteins in shrimp muscle tissue are used to maintain other vital functions. Excess protein in the diet may also inhibit growth (Lim and Persyn, 1989). The excess protein will be metabolized by the shrimp as a source of energy, and nitrogen will be excreted as ammonia. Protein requirements are fairly high for postlarvae and small juveniles, but decline as the shrimp grow larger. Table 7-2 gives the recommended protein levels for different sizes of shrimp in high-intensity culture systems.

Table 7-2: Recommended protein levels for different sizes of shrimp in high-intensity culture systems.

Shrimp Size (g) Recommended Feed Protein Level

0.002 – 0.25 50 %

0.25 – 1.0 45%

1.0 – 3.0 40%

>3.0 35%

Lipids

Lipids, or fats, are a group of organic compounds that include free fatty acids, phospholipids, triglycerides, oils, waxes and sterols. Lipids function as an important energy source for shrimp. In addition to their value as an energy source, lipids serve as a source for essential fatty acids. Fatty acids are chain-like organic molecules with many repeating units. Each “link” in the chain contains a carbon atom. Fatty acids differ in chain length and in the degree of saturation (number of double bonds and hydrogen atoms). A highly unsaturated fatty acid will have many double bonds, and few hydrogen atoms. These fatty acids appear to be important in the structure of cellular membranes. Four fatty acids are considered essential fatty acids in shrimp, because they are required in the diet and cannot be synthesized from other compounds. The essential fatty acids are: linoleic acid (18:2n6), linolenic (18:3n3), eicosapentaenoic acid (20:5n3), and decosahexaenoic acid (22:6n3) (Kanazawa an Teshima, 1981). Table 7-3 gives the recommended levels essential fatty acids in shrimp diets.

Table 7-3: Recommended fatty acid levels in commercial shrimp feeds (after Akiyama, et al. 1991)

Fatty Acid Percent of Feed

Linoleic Acid (18:2n6) 0.4

Linolenic Acid (18:3n3) 0.3

Eicosapentaenoic Acid (20:5n3) 0.4

Decosahexaenoic Acid (22:6n3) 0.4

Phospholipids are compounds consisting of glycerol, fatty acids and phosphoric acid. They are important components of cell membranes and play an important role in lipid metabolism. Sterols are required by crustaceans as a precursor for maturation and molting. Lipids are often added to fish diets in the form of fish oil, soybean and sometimes squid oil. Table 7-4 gives the recommended lipid levels in shrimp diets for high-intensity culture

systems as a function of shrimp size. The recommended total lipid level in the diet decreases with increasing shrimp size.

Table 7.4: Recommended lipid levels for shrimp diets used in intensive culture.

Shrimp Size (g) Lipid Level (%)

0.002 – 0.2 15 %

0.2 – 1.0 9 %

1.0 – 3.0 7.5 %

%

>3.0 6.5

Carbohydrates

Carbohydrates serve as an inexpensive energy source in shrimp diets. Starches, sugars and fiber are the main forms of carbohydrates. Organisms differ in their ability to use carbohydrates as an energy source. Carnivores, whose diets contain high levels of protein, tend to use protein as an energy source and often are unable to metabolize carbohydrates effectively. Omnivorous and herbivorous fish and shrimp utilize carbohydrates effectively. While no absolute carbohydrate requirement has been found for shrimp, carbohydrates in the diet can have a “protein sparing” effect for species that are able to utilize carbohydrates efficiently. That is, if carbohydrates are present in sufficient quantity in the diet, the protein requirement is reduced.

Vitamins

Vitamins are organic compounds that are required in the diet in relatively small quantities for normal growth and development. Vitamins are classified as either water soluble or fat soluble. The B-complex vitamins are water soluble and are required in relatively small quantities. These vitamins function primarily as coenzymes in various metabolic processes. Three water-soluble vitamins are required in larger quantities and have functions other than coenzymes. These are Vitamin C, inositol, and choline. Vitamin C and choline are often added separately, as these vitamins are required in relatively large quantities. The fat-soluble vitamins are Vitamins A, D, E and K. Fish and shrimp diets usually are fortified with a vitamin premix that contains all of the 16 essential vitamins.

The vitamin requirements for marine shrimp are affected by many different factors, including shrimp size, age, growth rates and environmental factors (Akiyama, et al., 1991). Young juvenile shrimp may require 50% higher vitamin levels in their diets than adult shrimp. Shrimp cultured in intensive culture systems typically require much higher vitamin concentrations than are required by shrimp grown at low densities. Vitamin deficiencies frequently result in symptoms, such as physical deformities, blindness, erratic swimming behavior, lethargy and poor growth. The physical symptoms displayed differ, depending on which vitamin is deficient in the diet. Vitamin C deficiency is associated with “Black

Death” disease, characterized by melanized lesions of subcuticular tissues. Typically, feed manufacturers overfortify shrimp diets with vitamins. This is done for several reasons. Detailed information about shrimp vitamin requirements is lacking. Overfortification is cheap insurance against crop losses due vitamin deficiencies. In addition, many vitamins are unstable compounds that are easily destroyed during manufacture and feed storage. Vitamin C, in particular, has a very short half-life at room temperature. Stable forms of Vitamin C, such as Stay-C, have a much longer shelf life than the non-stabilized form of Vitamin C. Because shrimp are slow feeders, the feed may sit in the water for several hours before it is consumed. Significant quantities of water-soluble vitamins may leach into the surrounding water before the feed is eaten.

Minerals

Minerals are inorganic elements required for various metabolic processes. Minerals required in large quantities are called major minerals. These include calcium, phosphorus, magnesium, sodium, potassium, chloride and sulfur. Calcium is required for exoskeleton formation, muscle contraction and osmoregulation. Shrimp are able to absorb calcium directly from the water, and shrimp living in seawater do not need calcium supplements in the diet (Davis, 1991). However, diets for shrimp cultured in near-freshwater systems should contain up to 2.5% calcium. Higher levels of calcium should be avoided because in high concentrations calcium appears to interfere with the bioavailability of phosphorus (Davis, 1990). Phosphorus is required for exoskeleton formation and is an essential component of phospholipids, nucleic acids, ATP, and many metabolic intermediates and coenzymes. Davis (1990) demonstrated that the phosphorus requirement for Litopenaeus vannamei was dependent upon the calcium content of the diet, and that in the absence of calcium, 0.34% phosphorus was sufficient for normal growth and development. Shrimp diets often contain up to 1% dietary phosphorus. Unlike calcium, phosphorus is not absorbed in significant quantities from the water and must be supplied in the feed (Davis, 1991). Calcium and phosphorus are often added to the diet in the form of dicalcium phosphate.

Some minerals are required in minute quantities and are called trace minerals. Trace minerals include iron, iodine, manganese, copper, cobalt, zinc, selenium, molybdenum, fluorine, aluminum, nickel, vanadium, silicon, tin and chromium. The trace minerals are generally added to the diet in a mineral premix. Sometimes vitamins and minerals are combined into a single vitamin-mineral premix.

Shrimp Feeds

Formulated Diets

There is a saying: “Man cannot live on bread alone.” The same is true of shrimp. A diet consisting of a single feed ingredient is not likely to be able to provide all of the nutrients required for normal growth and development. This is why aquaculturists usually feed their

animals a formulated diet. Formulated diets are mixtures of different feed ingredients mixed in set proportions to provide the desired quantities of nutrients. A wide variety of different feed ingredients are used in commercial shrimp feed formulations. Common ingredients used in commercial shrimp feeds include soybean meal, fish meal, squid meal, shrimp head meal (cooked), wheat flour, wheat middlings, lecithin, cholesterol, starch, dicalcium phosphate, vitamin and mineral mixes, and binders.

Formulated diets may be either supplemental or complete. Feeds that are applied to supplement natural food sources are called supplemental diets. Shrimp grown in ponds at very low densities may be able to survive and grow without any supplemental feed input to the pond. Under these conditions, naturally occurring plants and animals serve as the food source for the culture species. At higher densities, natural productivity is insufficient to support the nutritional requirements of the culture species, so prepared feeds must be included to supplement the nutrition obtained from natural food sources. Supplemental diets rarely meet the nutritional needs of the culture species, but are adequate when natural foods are available. Where natural foods are not available, such as in tank-based culture systems and high-density pond culture systems, nutritionally complete diets must be provided. Complete diets contain all of the essential nutrients in amounts sufficient for normal growth and development of the cultured organism. It is also necessary that these nutrients must be available in a form that is digestible. Complete diets typically have higher protein, vitamin, and mineral levels than supplemental diets.

The majority of commercial shrimp feeds available today are considered to be supplemental feeds. Shrimp nutrition is very complex, and the current state of knowledge about shrimp nutritional requirements is incomplete. While some very good shrimp diets are available commercially, it is doubtful whether any of these can be considered a true complete feed. Growth rates of tank-reared shrimp that rely on prepared diets for 100% of their nutritional needs do not match the growth rates that are frequently observed in productive pond environments. However, the shrimp maintained on these diets develop normally and are generally healthy.

Feed Processing

Shrimp are benthic feeders, so

shrimp feeds must be processed into

a sinking pellet. Most shrimp feeds

are manufactured either using a

steam pelleting process or an

extrusion process.

Steam pelleting uses a combination

of moisture, heat and pressure to

form finely ground feed ingredients

into a dense, tightly bound pellet

Figure 7-1: Pelleted Shrimp Feed

(Figure 7-1). The feed ingredients are finely ground and mixed together in the proper proportions. Moisture is added and the ingredients are thoroughly blended into a pasty mash. The mash is fed into a pelleting mill that uses an auger to compress the mash. Steam is introduced into the pelleting chamber, which causes the starch in the feed mixture to gelatinize and helps bind the ingredients together. Binders are often used to complement the binding provided by gelatinized starch. The feed mixture is then forced through holes in a die plate located at the end of the chamber. The diameter of the pellet is determined by the diameter of the holes in the die plate.

Extruded feeds are formed using a similar process, but much higher temperature and pressure is generated within the barrel of the extruder. This results in more complete gelatinization of the starches contained in the feed ingredients, so additional binders are not required. Extruded feeds often are less dense than steam pelleted feeds because rapid release of the steam from the feed pellets after they pass through the die plate causes the pellets to expand. The extrusion process is often used to create floating pellets, which are popular for feeding fish. The extrusion process is typically carried out at a slightly lower temperature using formulations with less starch to obtain a sinking pellet.

Pellet Stability

Good water stability is important in the preparation of shrimp feeds, regardless of pelleting process,. Shrimp are slow feeders and a pellet may sit in the water up to four or five hours before it is eaten. To evaluate the feed stability in water, place several pellets in a beaker of water. The pellets should remain largely intact for up to four hours. Periodic gentle swirling of the water in the beaker can help simulate the effects of water movement on pellet stability. Feeds with poor water stability are not efficiently utilized by the shrimp and will foul the water.

Pellet Diameter

The required diameter of the feed pellets varies depending on shrimp size. Postlarvae and young juveniles are too small to eat a formed pellet. Feeds for these shrimp are made by grinding a pelleted feed and passing the ground feed through a series of sieves to obtain feed particles of a uniform diameter. Because pellet integrity is not as critical an issue for ground diets, postlarval and juvenile feeds are frequently manufactured using a cold pelleting process. Cold pelleting is less destructive to the vitamins in the feed. Shrimp that weigh less than one gram are typically fed ground feeds. Larger shrimp are able to eat pelleted diets. Table 7-5 lists recommended particle or pellet sizes for shrimp of different sizes.

Table 7-5: Recommended pellet diameters for shrimp of different sizes.

Shrimp Size (g) Pellet Diameter

0.002 – 0.02 400 – 600 μm

0.02 – 0.08 600 – 850 μm

0.08 – 0.25 850 – 1200 μm

0.25 – 1.0 1200 – 1800 μm

1.0 –

2.5 3/32” pellet (2.4 mm)

>2.5 1/8” pellet (3.2 mm)

When making the transition from one pellet size to the next, it is a good idea to feed a mixture of the two sizes of pellets for 5-7 days to allow the shrimp time to get used to the larger pellet size before discontinuing the smaller pellets.

Feed Application

Feeding Rates

It is critical that feed be applied in the correct amounts and at the correct times throughout the culture period. Feed rates must be constantly adjusted to account for shrimp growth, mortality and appetite. If the feeding rate is too low, the shrimp will not grow well, and overall production will suffer. Underfeeding may also result in cannibalism, especially at high densities. Overfeeding also causes problems. Besides being wasteful, uneaten feed can contribute to deterioration of water quality in the culture system. The organic material in the feed becomes a substrate for heterotrophic bacteria, which metabolize the protein in the feed and give off ammonia. Elevated ammonia levels in the water suppress shrimp growth and increase the shrimp’s susceptibility to disease. The oxygen demand of these bacteria can lead to low dissolved oxygen levels in the system, inhibiting shrimp growth. Some heterotrophic bacteria release substances into the water, which can cause the shrimp to be off-flavor. Overfeeding causes overall feed conversion values to increase, since some of the leftover feed, and inefficient assimilation of the feed that is consumed.

There are many factors that affect the amount of feed the shrimp will eat. Feed consumption varies with feed type, shrimp size, water temperature, stocking density, weather, water quality and health. Shrimp culturists must take all of these factors into account in order to maximize the efficiency of the feeding program.

Temperature has an especially pronounced effect on feed consumption and growth. For L. vannamei, feed consumption is optimal when water temperatures are between 27°C and 31°C (81°F and 87°F). Feed consumption decreases both above and below these

temperatures. Feed consumption may be reduced by 50% when the water temperature drops to 24°C (72°F), and ceases altogether when water

temperature drops below 20°C (68°F).

Feed Tables

Feed tables have been

developed that give a

recommended feed rate,

expressed as percent of

bodyweight per day (%

BW/Day), for animals of

different sizes. As a general

rule, small animals are fed at a

higher percentage of their

bodyweight per day than are

large animals. This is because

small animals will generally

have a higher metabolic rate

than large animals. Table 7-6

shows a typical feed table for L.

vannamei cultured in high-

density tank systems.

To calculate the daily feed allowance for a population of shrimp, multiply the total biomass of the shrimp population by the recommended feed rate from the feed table:

Daily Feed Allowance = Total Biomass x % BW /Day 100 % (7.1)

The total biomass of the shrimp population is calculated by multiplying the estimated

number of shrimp in the population by the average weight of the shrimp:

Total Biomass = Total Number of Shrimp in the Population x Average Weight (7.2)

Accurate information about the average weight and total number of shrimp in the population is required to correctly calculate the daily feed allowance. The shrimp population should be sampled at least every other week to determine the average shrimp Table 7-6: Feed Table for High-Intensity Tank Production of Litopenaeus vannamei .

Average Shrimp Wt. (g) Feed Rate

(% BW/day) <.1 35 – 25 0.1 - 0.24 25 – 20 0.25 – 0.49 20 – 15 0.5 – 0.9 15 – 11 1.0 – 1.9 11 - 8 2.0 – 2.9 8 – 7 3.0 – 3.9 7 – 6 4.0 – 4.9 6 – 5.5 5.0 – 5.9 5.5 – 5.0 6.0 – 6.9 5.0 – 4.5 7.0 – 7.9 4.5 – 4.25 8.0 – 8.9 4.25 – 4.0 9.0 – 9.9 4.0 – 3.75 10.0 – 10.9 3.75 – 3.5 11.0 – 11.9 3.5 – 3.0 12.0 – 12.9 3.25 – 3.0 13.0 – 13.9 3.0 – 2.75 14.0 – 14.9 2.75 – 2.5 15.0 – 15.9 2.5 – 2.3 16.0 – 16.9 2.3 – 2.1 17.0 – 17.9 2.1 – 2. 18.0 – 18.9 2.0 – 1.9 19.0 – 19.9

1.9 – 1.8 20.0 – 20.9 1.8 – 1.7

weight. A minimum sample size of at least 30 shrimp should be used to calculate the average weight of the population. If there is large variation in size within the population, the sample size should be increased to 60 shrimp per sample. Best results are obtained by weighing each shrimp in the sample individually after blotting off excess water with a paper towel.

Estimation of the total number of shrimp in the population is more difficult. The number of shrimp in the population at any given time is equal to the number of shrimp stocked multiplied by the fraction of shrimp still surviving at that time:

No. shrimp at time t =Number of shrimp stocked x Fraction surviving to time t (7.3)

Survival rates are very difficult to estimate. In tank culture systems, dead shrimp can often be removed from the tank and counted. Although observed mortality is very helpful in estimating survival in a tank, population estimates based on observed mortality rates are nearly always overestimates of the true number of shrimp. This is because it is very difficult to account for all of the mortality, especially for very small shrimp. Some of the shrimp may be consumed by other shrimp, while other mortalities may simply escape notice. Standardized survival curves based on historical average survival rates are often used to estimate shrimp numbers in a population. Survival curves may be linear (assuming a constant mortality rate), or may have varying slopes over different portions of the growout cycle. Often curves are constructed to reflect heavier mortality rates during the nursery phase than in subsequent phases of the growout. Even if standard survival curves are used to estimate the population of a culture tank, adjustments will be necessary in cases where survival is unusually high or low.

It is important to note that feeding tables only provide a guide to the amount the shrimp will eat under optimal conditions of temperature, density, water quality, etc. Following these feed tables religiously will invariably lead to overfeeding when conditions are sub-optimal. As an example, following a low dissolved oxygen condition, feeding activity is typically depressed. If the feed rates recommended by the feed tables are followed, much of the feed will go uneaten. The uneaten feed may even exacerbate the dissolved oxygen problem. High ammonia levels will also suppress shrimp appetites, and overfeeding will contribute to even higher levels ammonia in the tank. The feed table should serve only as a guideline for determining the daily feed allowance.

Demand-based Feeding

Demand-based feeding is an alternative

to using a feed table. With this method,

the feed allowance is adjusted up or

down depending on the feeding activity

of the shrimp. At each feeding, the

technician estimates the amount of feed

that the shrimp can consume during the

time interval between feedings. If a

significant amount of feed remains

from the previous feeding, the amount

fed at the next feeding should be

reduced by at least 10 percent. If all of

the feed has been consumed between

feedings, the feed amount can be

increased by 10 percent. This approach

to feeding ensures that the feed rates

will be appropriate for the conditions in

the tank.

Figure 7-2: Weighing out shrimp feed

In clear water, it is easy to see how much of the feed is being eaten. However, if a dense algal bloom develops in a tank, it may be difficult to see uneaten feed on the bottom of the tank. One way to determine if the shrimp are eating all of the food is to place feed trays in the raceway. The trays can be lifted from the water to see if the feed has been eaten. Feeding Frequency

The number of feedings per day is determined by pellet stability and by the rate at which the feed is consumed, digested and metabolized by the shrimp. Dividing the daily feed ration into multiple feedings, spaced several hours apart, improves feed conversion ratios and growth rates. In addition, feeding only what the shrimp can consume in 3 or 4 hours reduces losses of nutrients due to leaching.

It is not clear whether or not there is any benefit derived from feeding the shrimp throughout the 24-hour period. While L. vannamei are active at night, they may not be actively feeding during this time period. Robertson et al. (1993) reported that L. vannamei receiving four feedings a day during daylight hours performed as well as, or better than, shrimp fed around the clock.

Small shrimp metabolize their food faster than large shrimp, and generally require more feedings per day. Postlarval shrimp require frequent feedings because they have very high metabolic rates, but are not able to store much feed in their guts. Ideally, postlarvae should be fed every 2-3 hours. Longer intervals between feedings may result in heavy losses due

to cannibalism. Automatic feeders, which dispense small amounts of feed at programmed intervals or on a continuous basis, can be used to make sure the shrimp are fed in a timely manner. As the shrimp grow the feeding frequency can be decreased. Four feedings spaced three hours apart during daylight hours works well for juveniles larger than 1 gram in size.

Feed Distribution

Feed may be distributed to shrimp either by hand or by automatic feeders (Figure 7-3). The feeding method used is a function of the culture system, requirements of the culture organism and the preferences of the aquaculturist.

Hand feeding is frequently practiced when feeding animals held in tanks or raceways, especially when the animals are small. Hand feeding allows the technician to modify the feed distribution in accordance with the feeding response. Hand feeding may be impractical when a large number of tanks must be fed because it is very time-consuming. Automatic feeders dispense a given

volume of feed on a timed basis.

Automatic feeders operate by a wide

variety of mechanisms. Automatic feeders

for larvae, fry, or small juveniles often

consist of a plate or belt onto which feed is

loaded (Figure 7-3). The plate or belt is

rotated in a manner that causes feed to fall

off into the water at a steady rate

throughout the day. Scatter feeders

distribute feed from a hopper suspended

over the water at timed intervals. Scatter

feeders have a plate at the bottom of the

hopper with vanes extending radially from

the center of the plate. At timed intervals,

feed is released from the hopper and the

plate spins around, casting feed in a 360°

arc around the feeder. Scatter feeders can

be modified for raceways to throw the feed

out in a single 45-degree direction. Large-

scale operations with multiple raceways

often use a conveyer system to load the

hoppers. These consist of tubes through

which feed is moved by a variety of

means. Some use pneumatic blowers to

move the feed, while others use augers or a

similar mechanism. Figure 7-3: Automatic Belt Feeder

Feed Conversion Ratios

An important measure of how well the feed is utilized by the animals in the culture system is the Feed Conversion Ratio or FCR. The Feed Conversion Ratio measures the number of pounds of feed required to produce a pound of shrimp. The following formula is used to calculate feed conversion:

Feed Conversion Ratio=Total Weight of Feed Applied

TotalWeightGained

(7.4)

The lower the FCR value, the more efficiently the feed is being utilized. Generally speaking, FCR values less than 2.0 are considered good. High FCR values may result from nutritionally deficient feeds, overfeeding, poor water quality or crowding. Whenever high FCR values are obtained, it is important to take a critical look at the feeding program and production process to try to identify the causes.

Feed Storage

Feed storage is an important and often neglected aspect of the feed management program. Aquaculture feeds are highly perishable. Inadequate storing and handling of feed can lead to nutrient losses, rancidity, mold growth and rodent infestations.

Many of the vitamins in the feed are unstable at high temperatures and significant losses will occur if the feed is stored at high temperatures or exposed to ultraviolet light. Vitamin C (ascorbic acid) is particularly prone to degradation. At room temperatures, ascorbic acid has a half-life of less than a month. Two-month old feed will have a small fraction of the amount of ascorbic acid that was originally added to the feed. Stabilized Vitamin C (Stay C) is much more stable, but still is degraded over time.

Feeds that are high in lipids often will become rancid when stored in warm, oxidative environments. Rancid feeds are unpalatable to the shrimp and are deficient in Vitamin E. Reduced growth rates are commonly seen in shrimp receiving rancid feeds. Rancid feeds have a very distinctive odor. The technicians should be sure to smell a handful of feed from each feed sack that is opened before using the feed to determine if the feed has gone rancid.

Molds will often develop on feeds that are stored in humid or moist environments. Molds produce toxins that can be very damaging to the shrimp. Molds of certain species in the genus Aspergillus produce aflatoxins, which can cause severe liver damage to the shrimp. Given the correct environment, molds grow quickly on the feed. Feed does not have to be old to be moldy. Occasionally feed will already have mold growing on it when it arrives from the feed mill. This can happen when the feed is placed into the feed bag while it is still hot, or if the feed not been dried sufficiently. When hot feed cools, moisture condenses on the feed. The dark, humid environment inside the feed sac is a perfect incubator for

mold growth. When receiving feed, inspect a few bags to make sure that the no mold is present. If mold is detected, the shipment should be rejected. Before using the feed from any feed bag, inspect the feed for mold. If even a small amount of feed in a bag appears to be moldy, discard the entire bag. Significant quantities of mold toxins will be present throughout the bag.

Unless the feed is stored in a sealed room with narrow clearances around the door jam, the feed will soon be infested with rodents. Besides eating the feed, rodents will urinate and defecate in the feed sacks, ruining the feed.

To avoid the kinds of problems described above, feed should be stored in a dry, cool, rodent-resistant storage shed. If possible the feed storage room should be air-conditioned. The air conditioner will help maintain a low humidity, as well as a cool storage environment. A “first-in, first-out” inventory management strategy should be employed to make sure that feed gets used before its expiration date. Ideally, feed should be used within one month of purchase. If storage conditions are ideal, feed can be used for up to three months, although the quality of the older feed will not match that of feed less than one month old.

Sources of Shrimp Feeds

The following is a list of U.S. shrimp feed manufacturers:

Bonney, Laramore, and Hopkins, Inc. 5600 Highway U.S. 1 North

Ft. Pierce, FL 34946

Tel: (561) 971-2925

Burris Mill and Feed , Inc.

1012 Pearl Street

Franklinton, LA 70438

Tel. (504) 839-3400

Fax: (504) 839-3404

Cargill Nutrena Feeds

801 South Poplar Street

Florence, AL 35630

Tel. (205) 764-1331

Ralston Purina International Checkerboard Square –11T

St. Louis, MO 63164

Tel. (314) 982-2402

Fax. (314) 982-1613Rangen Feeds

115 13th Ave. S.

Buhl, ID 83316

Tel. (800) 657-6446

Fax (208) 543-4698 Rangen Feeds Angleton, TX

Tel. (979) 849-6757

Star Milling Company PO Box 728

Perris, CA 92370

Tel. (909) 657-3143

Fax (909) 943-2400 Zeigler Brothers, Inc. PO Box 95

Gardners, PA 17324-0095 Tel. (800) 424-2033

Fax (717) 677-6826

Literature Cited

Akiyama, D. M., W.G. Dominy, and A.L. Lawrence. 1991. Penaeid shrimp nutrition for the commercial feed industry: Revised. Pages 80-98 in D.M. Akiyama and R.K.H. Tan, editors. Proceedings of the Aquaculture and Feed Processing and Nutrition

Workshop. Singapore, Republic of Singapore.

Davis, D.A. 1990. Dietary mineral requirements of Penaeus vannamei: evaluation of the essentiality for thirteen minerals and the requirements for calcium, phosphorus,

copper, iron, zinc, and selenium. Ph.D. Dissertation, Texas A&M University,

College Station, TX, USA.

Davis, D.A. and D.M. Gatlin III. 1991. Dietary mineral requirements of fish and shrimp.

Pages 49-67 in D.M. Akiyama and R.K.H. Tan, editors. Proceedings of the

Aquaculture and Feed Processing and Nutrition Workshop. Singapore, Republic of

Singapore.

Kanazawa, A., and S. Teshima. 1981. Essential amino acids of the prawn. Bul. Jap. Soc.

Sci. Fish. 43(9): 1111-1114.

Lim, C. and A. Persyn. 1989. Practical Feeding – Penaeid Shrimps. In, Editor, Tom Lovell. Nutrition and Feeding of Fish. Van Nostrand Reinhold. New York. pp. 205-222.

Robertson, L., A.L. Lawrence, and F.L. Castille. 1993. Effect of feeding frequency and feeding time on growth of Penaeus vannamei (Boone). Aquaculture and Fisheries

Management 24: 1-6.

Chapter 7 – Nutrition and Feeding of Litopenaeus vannamei

虾饲料采购合同

虾饲料采购合同 供货方(甲方): 定购方(乙方): 根据《中华人民共和国合同法》及其他有关法律法规,甲、乙双方在平等、自愿、公平、诚实信用的基础上,就青虾饲料定购的有关事宜达成以下协议。 一、饲料基本情况: 种类品名:青虾饲料;采购数量18吨;单价6600元/吨总金额118800元 合计人民币金额(大写):壹拾壹万捌仟捌佰元整 二、质量要求:饲料符合《饲料卫生标准》及国家相应的标准,且不得发霉、有异味或掺杂其他物质,同时应符合供货方的产品企业标准。 三、履行期限:为2017年12月4 日至2018年1月5日。 四、交货及验收:

1、交货时间:2017年12月4日开始陆续交货 2、交货地点: 3、交货时乙方应对饲料进行称重、验质,甲方对重量有异议,可与乙方验磅核对;乙方对甲方运输过程中的损耗不承担责任。 五、结算方式:收货后付款。 六、违约责任: 1、一方迟延交货或迟延支付货款的,应当每日按照迟延部分价款2% 的标准向对方支付违约金;迟延超过10日的,对方有权解除合同并要求迟延方赔偿损失。 2、因乙方未提供必要的交货验收条件致使甲方无法按时交货的,乙方应赔偿由此给甲方造成的损失。 3、甲方交付的饲料不符合质量要求,乙方有权拒收,情况严重的,乙方有权解除合同;因不符合质量要求给乙方造成损失的,甲方应承担赔偿责任。 4、若发生特殊情况,致使乙方不再需要甲方送货的,或甲方无足够饲料提供给乙方的,均应提前5日告知乙方,双方可解除合同;未及时通知的,应赔偿由此给对方造成的损失。 5、一方无正当理由中止履行或单方变更、解除合同的,

应赔偿由此给对方造成的损失。 七、不可抗力:因发生自然灾害等不可抗力的,经核实全部或部分免除责任,但应当及时通知对方,并在合理期限内提供证明。 八、争议解决方式:本合同项下发生的争议,由当事人双方协商或申请调解解决;协商或调解解决不成的,依法向广德县人民法院提起诉讼,或按照另行达成的仲裁条款或仲裁协议申请仲裁。 九、本合同自双方签字盖章后生效。未尽事宜,由双方共同协商签订补充协议。本合同一式两份,甲方壹份,乙方壹份,具有同等法津效力。 十、其他约定:未尽事宜双方可签到补充协议,补充协议与本合同具有同等法律效力。 供货方(签章):定购方(签章): 法定代表人:法定代表人:

江苏南美白对虾饲料

南美白对虾是我国目前主要养殖虾类之一,近年来养殖面积不断 扩大,已成为水产养殖业结构调整和农民增收的重要养殖品种。 那么,如何配制和加工饲料呢?下面就让淮北市正邦饲料科技有限公司来为您简单介绍江苏南美白对虾饲料,希望可以给您带来帮助! 1、饲料配方:根据当地原料的价格、营养成分含量和各阶段对虾对营养需求等因素,采用手工或计算机进行设计,确定科学合理的配方作为加工对象。一般可参考以下配方:鱼粉 17%,豆 粕 40%,麦麸 27%,次粉 10%,骨粉 3%,添加剂 3%。在虾的生长旺盛时期可在饲料中添加一定量的大蒜素、多糖类、有益微生物或中西药,以促进生长和防治疾病。 2.加工要求:南美白对虾一般在水底活动,摄食时是抱着食物缓慢咀嚼,因而配合饲料要求投入水中能迅速下沉,而且在水中又不易破碎,所以加工时要添加适量的粘合剂,用硬颗粒机加工。各种原料粉碎粒度是全通过 40 目标准筛(理想的粒径为 144-360 微

米)。饲料颗粒规格:虾体长小于3cm,粒径 0.5~1.5mm、粒长 1.5~3mm;虾体长 3.1~6cm,粒径 1.2~2.0mm、粒长 2.0~5.0mm;虾体长大于 6cm,粒径 1.8~2.5mm、粒长4.0~8.0mm。 3.饲料贮存:对虾配合饲料是由多种农产品或其副产品和鱼粉、无机盐、维生素等成分组成,营养成分丰富,易吸水,变质。因此应贮存在干燥、通风性能良好的仓库中,注意防潮、防雨和防虫害、鼠害,同时要防止有毒物质污染。在良好条件下一般可保存90d左右。 淮北市正邦饲料科技有限公司座落于淮北市凤凰山开发区凤鸣路3号,是一家专注从事畜、禽系列预混料、浓缩料、全价料的生产销售、科研开发、技术服务为一体的高科技民营企业。公司配置生产设备及工艺,拥有预混合饲料生产线、配合饲料生长线,采用电脑控制系统,多方位监控,实现产品生产效率高、稳定和安全。公司严把质量关,建立化验中心,配备化验员和品管员,引进一系列高分辨率、

水产养殖概论

水产养殖概论 一、基于课堂笔记综述水产养殖的基本概念,基本内容和基本知识。 基本概念:以水体为经营空间,投入饵料/肥料/天然饵料,辅以各项措施,饲养各种水生动、植物,取得水产品,实现养殖效益的经济结构。 基本内容:水产养殖品种,水产养殖关键技术,淡水养殖,海水养殖,水产动物营养与饲料,水产动物病害防控,设施渔业,水产品加工,特种水产养殖,城市渔业。 基本知识:基本特点: 养殖空间——水体多样而变化复杂,各具特色;养殖对象——水生生物,食物链复杂,生态位各异; 养殖设施——工厂化和机械化,池塘、网箱、网具等渔具;经济活动——销售—养殖效益。 二、根据你的理解比较分析水产养殖(与畜牧养殖相比)的优缺点。 优:1、栖息与养殖地共存,可合理利用单性水域,生产潜力大。 2、比畜禽耗料少,繁殖力大,科学养殖可持续增产。 缺:1、生产繁殖技术受水环境与人类活动影响大,稳定环境很重要。 2、水产品难保持冷冻、加工、运输基础设施,衍接于冷链物流。 3、捕捞养殖场受气候变化的影响较大。 三、描述淡水养殖主要品种及其养殖特性。 淡水鱼、虾、蟹、甲鱼、贝类(河蚌) 养殖特点:1、面积小而分布广泛; 2、产量较稳定、投资少、收益大; 3、适于精养、集约化程度较高,有利于人工管理和控制; 4、以鱼类养殖为主,生产水平较高; 5、按养殖场所分为:池塘养殖、湖泊养殖、江河养殖、工厂化养殖、网箱养殖等。 四、描述海水养殖主要品种及其养殖特性。 海水鱼、虾蟹、贝类、藻类(紫菜、海带) 养殖特点:1、面积较大,一般利用浅海、滩涂、港湾、明塘等海域 2、集中发展某些经济价值较高的鱼类、贝类、虾类及棘皮动物; 3、生产周期较短; 4、单位面积产量较高。 鱼类:梭鱼、鲻鱼、尼罗罗非鱼、黑稠、石斑鱼、鲈鱼等;贝类:贻贝、扇贝、牡蛎、文蛤等; 虾类:中国对虾、斑节对虾、长毛对虾、日本对虾、南美白对虾等; 蟹类:锯缘青蟹、三疣梭子蟹等;藻类:海带、紫菜、裙带菜等。 五、我国水产养殖有哪些主要模式? 1、池塘养殖:利用经过整理或人工开挖的小型静水水体进行养鱼生产的经济活动。 2、大水面网箱养殖; 3、围网养殖; 4、水库养殖; 5、工业化养殖; 6、流水养殖 六、何谓工业化(或工厂化)养殖? 工业化(工厂化)养殖:在室内海水池中采用先进的机械和电子设备控制养殖水体的温度、光照、 溶解氧、pH、投饵量等因素,进行高密度、高产量的养殖方式。 占地少,产量高,单产高,周期短,高效节水,循环水,减少废水排放,产品价格高, 经济效益可观,管理高,为技术密集型产业。 七、水产养殖新技术? 1、选好养殖种苗; 2、创造良好条件; 3、解决好水质和饲料的矛盾; 4、匀好资源,提高效益; 5、改善水质,防控危害; 通过良种化、水质调控、饲料平等,实施高效健康养殖技术 健康养殖:以科学理论,工程技术和科学管理为基础,以优质苗种,高效饵料,清洁环境, 合理养殖模式,病害防控等技术体系,生产出清洁优质的水产品。

南美白对虾养殖技术

xx白对虾养殖技术 一、生物学特性 南美白对虾(penaeus vannamei)原产于太平洋西海岸至墨西哥湾中部。是当今世界上公认的养殖产量最高的三大优良虾种之一(其它两种为斑节对虾、中国对虾)。该虾生长快、抗环境变化能力强、抗病毒病强、肉味鲜美、加工出肉率高,是中南美洲对虾养殖的主要品种,也是目前国际水产市场的俏销对虾品种。 南美白对虾外形与中国对虾相似,头短、甲壳薄、出肉率高,正常体色为浅青灰色。 南美白对虾适应能力强,能在水温为6~40℃的水域中存活,生长水温为15~38℃,最适生长水温为22~35℃。对高温忍受极限达43.5℃(渐变幅度),对低温适应能力较差,水温低于18℃,其摄食活动即受影响,9℃以下时侧卧。 南美白对虾自然栖息环境水深0~72米,能在盐度0.5‰~35‰的水域中生长,据报道2~7厘米的幼虾,其盐度的允许范围为2‰~78‰。经盐度驯化,也可以在淡水池塘中养殖。近年在两广地区进行的淡水池塘和低盐度水域养殖已获得成功,并取得很显著的经济效益。 南美白对虾对饲料的营养需求低,饲料的粗蛋白质含量25%~30%就可满足其营养需要。 该虾具有互相残食的习性,而且这种习性随着生长表现更为明显,但池塘养殖的成活率还可以达80%以上,该虾要求水质清新,溶氧量在5毫克/升以上,但忍受的最低溶氧值为1.2毫克/升,离水存活时间长,可以长途运输,可以活虾销售。ph值7.0~8.5,氨氮含量较低。 自然环境中海水、咸淡水、江河水、水库水、池塘水及井水等,只要不受污染,均可使用养虾。 南美白对虾生长快、个体大,自然海域里可捕到个体重100克以上的成虾,养殖个体重可达60~80克。在合理密度和饲料充足的条件下,水温25~35℃,当地幼虾经60天左右饲养,即可养成10~12厘米、个体重10~15克。

南美白对虾的生物学特性

南美白对虾的生物学特性 南美白对虾(Penaeus vannamei),又称白肢虾(white-leg shrimp)、白对虾(white shrimp),以前翻译为万氏对虾,原产于南美洲太平洋沿岸的暖水水域,主要分布秘鲁北部至墨西哥湾沿岸,是目前世界上三大养殖对虾中单产量最高的虾种。它具有生活力强、适应性广,抗病力强、生长迅速、对饲料蛋白含量要求低、出肉率高、离水存活时间长等优点,是集约化高产养殖的优良品种。 1、分类地位 南美白对虾(Penaeus vannamei Boone,1931),分类学上隶属于节肢动物门(Arthropoda)、甲壳纲(Crustacea)、十足目(Decapoda)、游泳亚目(Natantia)、对虾科(Penaeidae)、对虾属(Penaeus)、Litopenaeus亚属。 2、主要形态特征 外形与中国对虾、墨吉对虾酷似。成体最长可达23cm,甲壳较薄,正常体色为浅青灰色,全身不具斑纹。步足常呈白垩状,故有白肢虾之称。 额角尖端的长度不超出第1触角柄的第2节,其齿式为5-9/2-4;头胸甲较短,与腹部的比例约为1∶3;额角侧沟短,到胃上剌下方即消失;头胸甲具肝刺及鳃角剌;肝剌明显;第1触角具双鞭,内鞭较外鞭纤细,长度大致相等,但皆短小(约为第1触角柄长度的1/3);第l~3对步足的上肢十分发达,第4~5对步足无上肢,第5对步足具雏形外肢;腹部第4~6节具背脊;尾节具中央沟,但不具缘侧剌。 3、生活习性 自然栖息区为泥质海底,水深0~72m,水温25~32℃,盐度28‰~34‰,pH值8.0土0.3。成虾多生活在离岸较近的沿岸水域,幼虾则喜欢在饵料丰富的河口区觅食生长。该虾白天一般都静伏池底,晚上则活动频繁。蜕皮都在晚上(上半夜),两次蜕皮的时间间隔为20天左右。南美白对虾性情温和,实验条件下很少见到个体间有相互残食现象发生。 4、食性与生长 南美白对虾属杂食性种类,对动物性饵料的需求并不十分严格。饵料中蛋白质的比率占20%以上,即可正常生长。其生长速度较快,在盐度20‰~40‰、水温30~32℃的自然条件下,从虾苗至成虾的180天内,平均每尾对虾的体重可增至41g,体长由1cm增加到14cm。 5、南美白对虾的养殖生物学特点

江苏南美白对虾配合饲料

在对虾饲料生产过程中,原料都要经过制粒前的高温调质处理使淀粉充分糊化,这样既提高了糖类的利用率,同时又起到粘结作用,提高颗粒的水稳定性。那么,江苏南美白对虾配合饲料有哪些产品特点呢?下面就让淮北市正邦饲料科技有限公司来为您简单介绍,希望可以给您带来帮助! 1、优选优质、新鲜原料,具有良好的诱食性及适口性。鱼粉、乌贼粉、虾粉、稳定型复合维生素等主要原料均采用国外进口名牌产品,以确保原料品质。 2、配方科学独特、营养全面,对满足南美白对虾各个不同生长阶段对各种营养成分的需求;科学的添加各种维生素、矿物质和微量元素,饲料转化率高。 3、运用现代动物营养学理论,充分考虑南美白对虾对各种必需氨基酸和游离脂肪酸的需要,调节各种原料的事宜比例来保证氨基酸的平衡,做到物美价廉,让利于广大养殖户。

4、采用先进的生产设备和加工工艺,原料的粉碎力度较细,饲料颗粒大小均匀,表面光滑,切口平整,质量稳定。 5、合理添加各种功能性添加剂,能提高饲料的消化率,减少排泄物,降低水质污染,并提高南美白对虾的免疫力,减少疾病发生。 6、产品多层包装,能防水防潮,易于储存。使用方便,节省人力物力。 7、“正邦”牌南美白对虾配合饲料具有较好的水中稳定性,且耐水性强,不易松散,可减少营养物质的散失,减少水质污染。 淮北市正邦饲料科技有限公司座落于淮北市凤凰山开发区凤鸣路3号,是一家专注从事畜、禽系列预混料、浓缩料、全价料的生产销售、科研开发、技术服务为一体的高科技民营企业。公司配置生产设备及工艺,拥有预混合饲料生产线、配合饲料生长线,采用电脑控制系统,多方位监控,实现产品生产效率高、稳定和安全。公司严把质量关,建立化验中心,配备化验员和品管员,引进一系列高分辨率、

对虾生物学特性及常见病害

南美白对虾生物学特性及养殖实用技术 南美白对虾是当今世界养殖产量最高的三大虾类之一。南美白对虾原产于南美洲太平洋沿岸海域,中国科学院海洋研究所张伟权教授率先由美国引进此虾,并在一九九二年突破了育苗关,从小试到中试直至在全国各地推广养殖。目前我广东、广西、福建、海南、浙江、山东、河北等省或自治区已逐步推广养殖,天津市汉沽区杨家泊镇养殖的南美白对虾世界闻名,有“中国鱼虾之乡”的美称,其中隶属南美白对虾的技术最为成熟。 南美白对虾肉质鲜美,加工出肉率可高达67%,适温范围广,可在18-32℃生长,适盐范围也广,可在盐度1-40‰条件下生长,是一种优良的淡化养殖品种。南美白对虾生长快,抗病能力强,现已逐渐成为我国南方的主要养殖虾种。我国厦门、北海、南宁和广州等地均有虾苗、虾无节幼体或亲虾供货 南美白对虾原产于美洲太平洋沿岸水域,主要分布秘鲁北部至墨西哥湾沿岸,以厄瓜多尔沿岸分布最为集中。南美白对虾具有个体大、生长快、营养需求低、抗病力强等优点,对水环境因子变化的适应能力较强,对饲料蛋白含量要求低、出肉率高达65%以上、离水存活时间长等优点,是集约化高产养殖的优良品种,

也是目前世界上三大养殖对虾中单产量最高的虾种。南美白对虾壳薄体肥,肉质鲜美,含肉率高,营养丰富。 南美白对虾人工养殖生长速度快,60天即可达上市规格;适盐范围广(0-40‰),可以采取纯淡水、半咸水、海水多种养殖模式,从自然海区到淡水池塘均可生长,从而打破了地域限制,且具耐高温,抗病力强;食性杂,对饲料蛋白要求低,35%即可达生长所需。是“海虾淡养”的优质品种,使其养殖地域范围扩大。养殖南美白对虾,放养虾苗规格要在2厘米以上,经淡化到零度的种苗,池塘以3-5亩为宜,水深1.5米左右,放苗时间在5月底、6月初,水温在20℃以上,一般养殖条件下,亩放虾苗2万尾,并搭养500-100尾花、白鲢,以投喂颗粒饲料为主,定期使用光合细菌和水质调节剂,调控水质,预防虾病。 亘据养殖条件的不同,在养殖模式上可采用主养、混养、套养等不同的养殖模式,目的是在不同养殖环境条件下即不浪费水体资源又能取得更高产量和效益。 混养: 混养模式为三种①南美白对虾与河蟹混养,不但充分利用水体饵料资源(水草、残饵等),还具有防虾病的作用,河蟹可将体弱多病的虾或死虾吃掉,减少病原的传播。②南美白对虾与刀额新对虾、罗氏沼虾混养,以增加虾的养殖品种和产量效益。③南美白对虾与花白鲢混养,在养殖期间,淡水池塘藻类易繁殖过盛,造成“转水”,利用花白鲢以浮游生物为食的习性,控制水中藻类数量,以调节改善水质。 套养:

南美白对虾科学投喂方法

南美白对虾科学投喂方法 周茂澴 有好多老养殖户还是老观念,一天投喂两次,早晚各一次,不管虾子吃完没吃完,吃饱没吃饱,只要人吃饱就行,管你虾子是充死还是饿死,人在养殖过程中道是舒服了,晒不着,饿不着,可到出虾时,经济效益看不着,这究竟是为什么?有些新养殖户看起来挺忙,一天也喂四、五次,却不管虾吃饱没吃饱,人是挺累,到出虾时也没经济效益,这又究竟是为什么呢? 投喂次数少,一次投喂量过多,虾在短时间内吃不了,剩料中的营养(水溶性维生素、矿物质、氨基酸等)会在水中溶失,营养降低,败坏水质;诱食剂释放后的剩料诱食性变差,对虾不爱摄食;剩料蛋白含量高,在水中停留时间过长,很容易附着细菌,虾子摄食后容易感染消化道疾病。长期投喂不足,容易产生营养缺乏症,体质弱,发病快。 投喂次数过多,投喂量不足,容易造成虾子长时间处于食欲兴奋状态,使体内能量消耗过多,生长缓慢,甚至营养不良,水质不好情况下易发病。 这说明了适量与多餐是不能分开的,虾类消化道比较短,排泄快,在虾类消化道内能容纳的食物是有限的,故分多次适量投喂有利于饲料的消化和吸收。多餐制可以在短时间内及时调整下一次的投喂量,避免投喂过量或投喂不足,减少饲料的浪费。适量投喂有利于提高虾子体质和生长速度。建议日投喂4—6次,6:00、10:00、14:00、18:00、

21:00、24:00。 虾池的投饵量与虾的摄食量有关,对虾的摄食量与对虾的体长、发育阶段、水环境条件有关。高溶氧、适温范围内的高水温、低氨氮时摄食量增加。一般根据以下情况确定投饵数量。 ①应比较准确地估测池中对虾的数量; ②根据估测的对虾数量及平均体长,参考对虾投饵量表,计算出 实际投饵数量。 ③投喂后,根据对虾实际摄食情况,调节投饵量。如果投饵后很 快被摄食掉,应适当增加投饵量;如果在下次投饵之前池内仍有余饵,应适当减少或暂停投饵。料台上的采食量与料台位置、料台结构、料台材料、料台数量、料台投饲量有很大关系;观察料台有70%依据,但不能完全相信料台,完全依靠料台调整投喂,极有可能造成饲料投喂不足和饲料浪费严重,造成虾病爆发。 ④根据对虾胃的饱满程度进行调节是最科学的。投饵1小时后, 如果有 2/3以上的对虾达到饱胃和半胃,说明投饵量充足;如果对虾的饱胃和半胃达不到总数的1/2,表明投饵量不足,应适当增加投饵量。 ⑤根据对虾生长情况和生活习性调整投饵数量。一般在小苗期(3 厘米以前),水质培育的好,饵料生物充足可适当少投,甚至不投喂。早晚投喂量占全天70%,夜间12点后溶氧降低不投喂。 ⑥5月份放苗,6、7月份对虾平均体长日增长量为1.0-1.2mm , 8月份平均体长日增长量为 0.8-1.0mm,9 月份平均体长日增长

南美白对虾饲料的选择与科学投喂方法

南美白对虾饲料的选择与科学投喂方法 一、对饲料和养殖环境的要求1.食性特点:南美白对虾为杂食性,幼体以浮游动物的无节幼体为食,幼虾除摄食浮游动物外,也摄食底栖动物幼体;成虾则以活的或死的动植物及有机碎屑为食,如蠕虫、各种水生昆虫及其幼体、小型软体动物和甲壳类、藻类等。该虾具有相互残食的习性,而且随着生长这种习性表现得更为明显。 2.饲料营养:南美白 对虾对饲料要求相对较低,对饲料蛋白(特别是养殖后期)的要求不高,幼虾期(5cm 以下)饵料的蛋白质含量在35% 以上;成虾期(5?12cm )可相应减少蛋白含量至30%?20% 。对虾在生长过程中需要多次蜕壳,饲料中的无机盐尤为重要(因钙和磷是构成骨骼的主要成份,每次蜕壳都要消耗一部分),饲料的总钙量要求为 1.5% ?2.0% ,总磷量为 1.0%?1.8%,钙磷比例为1 :1或1.5 :13养殖环境:南美白对虾属热带虾类,生长水温15?38 C,最适水温22? 35C, 27?31 C时饲料利用率和饲料报酬最高。水质要求p H7.3?8.6 之间,溶解氧5mg/L 以上,氨氮0.2mg/L 以下,池底H2S 不超过0.1mg/L ,有机质含量不大于5mg/L ,透明度保持在35 ?60cm 之间。达到上述环境要求,才能达到优质饲料的最佳利用率。二、专用配合饲料的选购1.饲料厂家选择:现在市场上南美白对虾专用饲料生产厂家很多,

良莠不分。养殖者选购饲料时,要选择有一定规模、技术力量雄厚、售后服务到位、信誉度好、养殖效果佳(主要以价效比高和成活率高为参数)的饲料厂家生产的饲料。 2. 饲料选择的要求:配合饲料要求无农药残留,有毒有害物质含量控制在安全允许范围内,无致病微生物,霉菌毒素不超过标准,不污染环境,不影响人体健康。必须同时符合三个条件: ①在为南美白对虾提供充足、均衡营养成分的同时,不能含有违禁成分,符合NY5072 标准,对养殖对象无毒害作用; ②在商品虾中无任何有害残留,对食品安全不构成威胁,对人体健康无危害;③水产动物的排泄物、残饵等对养殖环境无污染,有利于可持续发展。3.饲料的产品选择:①产品应适应养殖南美白对虾不同生长阶段,避免饲料营养配方不相匹配,而发生营养代谢病。②饲料的径粒要适合南美白对虾的口经大小。③饲料的整齐度和一致性好,鉴别方法:饲料的表观颜色均一;尝几粒味道差异不大;放入透明的玻璃瓶中浸软发散后,残留颗粒大小差异小。④粘合糊化程度好,要求饲料袋中无粉尘集中现象,放在水中至少1h 不散开。⑤标识要清禁,及组成成分质量参数,出厂日期与保质期,保存要求、使用方法及注意事项等。三、饲料的配制和加工具有一定规模的养殖户可自购原料,到附近饲料加工厂加工,可降低饲料成本30%以上,且饲料的质量可靠、有针对性(如添加防病治病药物等)。

南美白对虾饲料生产厂家

在20世纪80年代,我国对虾养殖业的发展带动了我国水产养殖业的迅猛发展,促进了我国沿海地区经济的发展,同时也带动了冷藏加工、育苗、饵料生产等产业和相关产业链的同步发展。下面就让淮北市正邦饲料科技有限公司来为您简单介绍南美白对虾饲料生产厂家,希望可以给您带来帮助! 饵料投喂需要掌握两个原则。首先,应对饵料的投喂数量进行合理选择,保证饵料投喂能够达到白对虾的生长需要,避免饵料投喂过量或者饵料投喂不足,提高饵料投喂的有效性。其次,应选择饵料投喂的时间,保证饵料投喂的频率能够符合白对虾的生长需要,并且饵料投喂的时间能够符合白对虾的进食习惯,避免饵料浪费,减少过量的饵料对池塘水质的影响川。

在大棚池塘中,由于换水的频次较低,应在白对虾养殖过程中加强对水质变化情况的了解。具体可以通过固定频次的水质监测,掌握池塘中水质变化情况,并通过换水、减少养料投放等措施,对池塘水质进行有效调节。同时,还要根据春秋季节的水温特点,掌握春秋季节水温变化规律,在水温发生变化时,采取必要的措施降低水温变化对白对虾的影响,使水温变化能够做到逐渐变化,避免水温突然升高或者突然降低。所以,加强对池塘水质的调节,对大棚养殖具有重要作用。 淮北市正邦饲料科技有限公司座落于淮北市凤凰山开发区凤鸣路3号,是一家专注从事畜、禽系列预混料、浓缩料、全价料的生产销售、科研开发、技术服务为一体的高科技民营企业。公司配置生产设备及工艺,拥有预混合饲料生产线、配合饲料生长线,采用电脑控

制系统,多方位监控,实现产品生产效率高、稳定和安全。公司严把质量关,建立化验中心,配备化验员和品管员,引进一系列高分辨率、高灵敏度的精密检验化验设备,具备严格的现场管理和完善的质量保障体系。本着“严格管理、不断创新、团结求实、精益求精”的企业精神,以高品质的产品,完善的售后服务,取胜于市场,奉献于养殖业,奉献于社会。正邦全体员工愿与广大饲料界同仁及养殖户朋友们携手共创美好未来!

南美白对虾对虾工厂化养殖模式分析

南美白对虾对虾工厂化养殖模式分析 工厂化养虾占地少,产量高,效益好,可以避免传统养虾方式带来的虾病和水体污染,减少天气对养殖的不利影响。我国沿海的对虾养殖经过多年的发展,工厂化养虾具有一定的基础,部分地区工厂化养殖已达世界先进水平,但总体上基本采用“水泥池+温室大棚”为核心的精养模式。经济效益较好,但还存在曝气设备能耗过高、废水多数得不到有效处理等问题。欧美等西方国家在工厂化循环水对虾养殖系统方面所作的诸多尝试和研究,值得我们借鉴。 在虾病肆虐的当下,全程可控的工厂化养殖或许是一个新的思路和方向。 就单一养殖品种而言,南美白对虾在2008年的全球产值是最高的,达90亿美元。虾类是世界上最重要的水产品贸易商品,约占15%的世界水产品贸易总额。目前对虾养殖受到虾病的困扰,从20世纪90年代起,厄瓜多尔、泰国、中国等地受到日益严重的对虾疾病威胁。据估算,90年代亚洲的一些国家和地区由于病害原因造成的损失高达几十亿美元。对虾工厂化养殖是用工业手段控制池内生态环境,为对虾创造一个最佳的生存和生活条件。在高密度集约化的放养条件下,投放优质饲料,促进对虾顺利成长,争取较高经济效益的养殖模式。在虾病肆虐的当下,全程可控的工厂化养殖或许是一个新的思路和方向。 欧美等西方国家在工厂化循环水对虾养殖系统方面已经做了很多尝试和研究。工厂化养殖的方式大致分为三种形式:流水养殖、半封闭循环水养殖和全封闭循环水养殖。流水式养殖的全过程均实现开放式流水,用过的水不再回收处理,流水交换量为每天6-15次;半封闭循环水养殖方式对养殖用水不是完全开放,而是对部分养殖废水经沉淀、过滤、消毒等简单处理后再流回养殖池重复使用;全封闭循环水养殖方式的养殖用水经过城店、过滤、去除可溶性有害物、消毒等处理,再根据对虾不同生长阶段的生理要求,进行调温、增氧、和补充适量的新鲜水,再重新输送到养殖池中,反复循环使用。 对虾循环水养殖系统应能有满足对虾生长的水质、水温、盐度条件,并保证有一定的水流,促进养殖池的排污和满足对虾生理需求。环道式养虾系统,佛罗里达三阶段养虾系统,以及基于微藻的循环水对虾养殖系统等都取得了较好的养殖效果。目前我国工厂化养殖系统发展水平尚处初级发展阶段,近些年对虾工厂化循环水养殖系统研究也取得不少成果。 工厂化对虾养殖应当根据不同地区的水质条件和养殖习惯,因地制宜形成适宜当地推广应用的封闭循环水养殖模式。例如在南美,多采用跑道式循环水养殖、常流水养殖、微流水式的封闭循环水养殖等模式;我国东海、黄渤海地区多采用封闭式循环水养殖;热带、亚热带沿海地区多采用封闭、半封闭的微换水工厂化养殖模式。我国华南沿海地区水温高、光照时间长、海域中生物资源丰富,可根据其特点充分利用自然地理资源,减少控温设施降低能耗,引入微生物、富有藻类、大中型水生植物等元素,从而构建一个适宜亚热带地区特色的环境友好型对虾封闭循环水养殖模式。 水处理技术

提高饲料利用率的南美白对虾饲料的制作方法

本技术公开了一种提高饲料利用率的南美白对虾饲料,属于养殖饲料技术领域,一种提高饲料利用率的南美白对虾饲料,包括杂鱼粉、豆粕粉、小麦粉、玉米粉、骨粉、油脂、复合维生素、复合矿物质、粘结剂、诱食剂612份、复合中药抗菌剂、抗氧化剂、防霉剂等组份。本技术提高饲料利用率的南美白对虾饲料,采用杂鱼粉、豆粕粉、小麦粉、玉米粉和骨粉的原材料,辅以复合维生素、复合矿物质、抗菌剂等辅料,制得南美白对虾饲料,能明显增强南美白对虾的机体免疫能力和抗病力,有效的提高南美白对虾养殖的成活率。本技术的制备工艺简单,适合进行大规模生产。 权利要求书 1.一种提高饲料利用率的南美白对虾饲料,其特征在于:包括以下按重量份计的组份: 杂鱼粉40-50份、豆粕粉20-30份、小麦粉20-30份、玉米粉15-20份、骨粉15-20份、油脂10-15份、复合维生素2.5-4份、复合矿物质2.5-4份、粘结剂1-1.5份、诱食剂6-12份、复合中药抗菌剂8-15份、抗氧化剂1-1.5份、防霉剂0.5-1份、包膜材料30-45份。

鱼油和亚麻籽油的混合物,其中鱼油和亚麻籽油的质量比为1:2-4。 3.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述复合维生素包括以下按重量份数计的组份:维生素B1 8-17份、维生素B2 15-22份、维生素B68-12份、维生素C 4-6份、肌醇8-12份、泛酸4-6份、维生素E 4-6份、维生素A 4-6份、叶酸4-6份、α-生育酚8-12份、抗坏血酸8-12份、氯化胆碱4-6份。 4.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述复合矿物质包括以下按重量份数计的组份:氟化钠8-14份,碘化钾4-6份,六水二氯化钴4-6份,五水硫酸铜4-6份,一水硫酸亚铁4-6份,一水硫酸锌4-6份,一水硫酸锰4-6份,七水硫酸镁13-25份,一水磷酸二氢钙15-25份,氯化钠8-12份,沸石8-12份。 5.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述粘结剂为大豆蛋白胶和海藻酸钠的混合物,其中大豆蛋白胶和海藻酸钠的质量比为1-2:1-3。 6.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述诱食剂包括以下按重量份计的组份:2、6-二溴苯酚预混剂0.1-0.3份、精氨酸5-10份、甘氨酸15-30份、丙氨酸15-30份、二氧化硅32.7-59.8份。 7.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述复合中药抗菌剂为金银花粉、柴胡粉和黄芪粉的混合物,其中金银花粉、柴胡粉和黄芪粉的质量比为1:1-2:1-1.5。 8.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述抗氧化剂为茶多酚,所述防霉剂为番茄红素和虾青素的混合物。 9.根据权利要求1所述的一种提高饲料利用率的南美白对虾饲料,其特征在于:所述包膜材料为羧甲基壳聚糖和甲基纤维素的混合物,其中,羧甲基壳聚糖和甲基纤维素的重量比为1:2-2.5。

南美白对虾养殖技术(培训教材之三)

目录 第一章南美白对虾的生物学特性第一节南美白对虾的分类地位第二节主要形态特征 第三节生活习性 第四节对水环境变化的适应能力第五节食性及摄食量 第六节蜕皮与生长 第七节繁殖期与繁殖特点 第八节南美白对虾的交配 第九节怀卵量和产卵 第十节早期发育 第十一节生长、成熟与寿命 第二章南美白对虾的人工育苗第一节种虾的选择 第二节种虾成熟培育 第三节幼体培育 第三章南美白对虾的养殖 第一节主要养殖方式: 第二节养殖场地的选择和改造第三节放苗前的准备工作 第四节放苗

第五节中间培育管理 第六节养成期管理 第七节防病防害 第八节南美白对虾收获和活体运输 第一章南美白对虾的生物学特性 南美白对虾原产于秘鲁、墨西哥、厄瓜多尔等地,是世界养殖产量最高的三大优良虾种之一。其自然栖息地为泥质海底,水温25~32℃,盐度28~34‰,pH值~,形态与中国对虾相似。我国养殖斑节对虾和中国对虾的虾池基本上都适合养殖南美白对虾。 南美白对虾具有适应力强、生长迅速和抗病力强三大特点,国外从70年代起将其选为重要养殖品种,先后完成了亲虾培育、交配、育苗和高密度养成的科研工作,形成了产业化生产。 1988年,中科院海洋所首次从美国引进南美白对虾种苗。其后陆续完成了南美白对虾育苗和养殖的一系列技术工作。1994年首次成功地进行了生产性育苗和养成。 亲虾来源困难、育苗工艺复杂、出苗量低一致制约着我国南美白对虾养殖生产的发展。近两年来,育苗规模逐渐扩大,一些海外厂商也在我国的南方投资育苗,虾苗短缺得到了缓解。我国海南、广东的一些现代化养殖基地率先开展了南美白对虾的产业化养

殖。他们采取高投入、高产出的方式,进行高密度精养,一般一年养殖二~三茬,每茬亩产300-400kg,有的达800kg或更高,经济效益十分显着。 南美白对虾作为世界性的养殖对象,具有下列显着优点: (1)适宜条件下繁殖时间长,全年皆可进行育苗生产;(2)抗病能力强,对白斑综合症病毒病等杆状病毒有较强的抵抗能力,潮差式养殖成活率不低于60%,半精养一般可达80%,工厂化养殖成活率可达95%;(3)离水存活的时间长,控温充氧可干运48小时,便于活虾销售;(3)对饵料的蛋白质含量要求较低,20~35%即可满足其正常生长;(4)生长快,养殖周期短,70天可养至商品规格12cm以上;(5)对环境因子变化的抗逆能力强,适温范围为16~℃,最适为25~32℃,盐度允许范围为~78‰,不仅适应海水及半咸水养殖,同时也适用于淡水养殖;(6)体大壳薄,肉质鲜美,出肉率高。 第一节南美白对虾的分类地位 南美白对虾Litopenaeusvannamei(Boone,1931),在分类学上属于节肢动物门(Arthropoda)、甲壳纲(Crustacea)、十足目(Decapoda)、游泳亚目(Natantia)、对虾科(Penaeidae)、对虾属(Penaeidae)、滨对虾亚属(Litopenaeus)。 第二节主要形态特征 外形与中国对虾和墨吉对虾酷似。成体最大体长可达23厘米,甲壳较薄,正常体色白且透明,大触须为青蓝色,全身不具斑纹,

罗氏沼虾中成虾典型饲料配方

罗氏沼虾中成虾典型饲料配方罗氏沼虾中成虾典型饲料配方 (一)原料配方: 1.秘鲁鱼粉15% 2.国产鱼粉8% 3.醇母粉4% 4.大豆磷脂4% 5.豆粕20% 6.花生粕7.4% 7.虾过粉12.5% 8.次粉15% 9.小麦面筋粉6% 10.植物油1.5% 11.乳酸钙0.5% 12.磷酸二氢钙2.6% 13.预混料3.5% (二)预混料配方: 1.多维预混剂1000克 2.矿物元素预混剂3000克 3.50%氯化胆碱3200克 4.维生素C多聚磷酸脂550克 5.25%大蒜素140克

6.胆固醇2150克 7.甜菜碱3000克 8.水产复合酶1000克 9.虾脱壳素1000克 10.HJ-1粘合剂5000克 11.克氧130克 12.双乙酸钠800克 13.载体(小麦粉)14030克,合计35千克(每吨饲料添加量)(三)维生素及矿物元素组成: 1.维生素组成:维生素A1700国际单位/千克,维生素DJ1200国际单位/千克。维生素E45毫克/千克,维生素K4毫克/千克,维生素B1为4.5毫克/千克,维生素B2为10毫克/千克,维生素B6为15毫克/千克,维生素B12为0.05毫克/千克,烟酸为65毫克/千克,D-泛酸23毫克/千克,叶酸5.5毫克/千克,D-生物素0.1毫克/千克,肌醇110毫克。 2.矿物元素组成:铜11毫克/千克,铁170毫克/千克,锌34毫克/千克,锰12毫克/千克,钴1.2毫克/千克,碘1.5毫克/千克,硒0.15毫克/千克,镁60毫克/千克,钾200毫克/千克。 (四)配方分析: 本配方适用于罗氏沼虾的中成虾阶段,加工时的粉碎粒度应通过200目以上分析筛。饲料粒状直径为1.5---2毫米的硬颗粒饲料。本配方的粗蛋白质水平为38.3%,粗脂肪在5%以上。罗氏沼虾的价格在

南美白对虾耗氧率和窒息点的初步测定

南美白对虾耗氧率和窒息点的初步测定 陈琴1,陈晓汉2,罗永巨2,黄钧1,李贵福1,宁良坤1 (1广西大学动物科技学院,南宁530005;2广西水产研究所,南宁530021) 摘要:对2种规格南美白对虾的耗氧率和窒息点进行了测定。结果表明,南美白对虾的耗氧率随体重的增加而减小,耗氧量和窒息点随体重的增加而增加。平均体长53133mm、体重1148g的南美白对虾耗氧率是014493mg/g#h,窒息点016663mg/L;平均体长70188mm、体重3149g时,耗氧率为013004mg/g#h,窒息点110186mg/L。南美白对虾的耗氧率呈现明显的昼夜变化规律。 关键词:南美白对虾;耗氧率;窒息点 中图分类号:S917文献标识码:A文章编号:1003-1278(2001)02-0014-02 南美白对虾(Penaeus V annamei,自1997年起更名为L itop enaeus V annamei)属白虾类,亦称万氏对虾、白脚虾,原产于中、南美洲太平洋沿岸的暖水水域,以厄瓜多尔沿岸分布最为集中,与斑节对虾、中国对虾并列为目前世界养殖产量最高的3大优良虾种之一,是集约化高产养殖的优良品种。1988年7月我国首次从美国引进南美白对虾。南美白对虾以其壳薄体肥、肉质鲜嫩、生长快、群体增长均匀、抗病能力强等优点近2年而逐渐成为南方主要养殖虾种,深受国内消费者的青睐。近年来对南美白对虾在生物学特性和养殖技术方面已有不少资料[1~4],但对南美白对虾的耗氧率和窒息点的研究尚未见报道。我们对此进行初步研究,以了解南美白对虾的基础代谢水平,为南美白对虾在养殖生产中的合理放养、水质管理和活虾苗运输等提供参考依据。 1材料和方法 实验在广西水产研究所中试基地虾苗场进行。南美白对虾取自基地当年自繁的苗种,挑选个体健壮、附肢完整的虾进行试验。分为平均体长51133mm、平均体重1148g和平均体长70188mm、平均体重3149g2种规格。 实验用水为充气曝气72h以上的自来水,以海盐配成018盐度。以北京产的水质测定盒测得pH值为811,硬度为9176德国度,氨态氮<0120mg/L,初始溶氧为513mg/ L。 实验虾试验前停喂并在苗池中静养半天,实验前2h 把虾放入580mL的呼吸室,待其适应其中的环境后再进行测定。耗氧率的测定在2个相邻的面积6m2、容水量5 m3的室内虾苗池中进行(其中1池作实验用、1池作补水用),实验装置仿陈宁生、施王泉芳[5]并稍作改进(图略)。整个实验(包括实验前2h适应)均在流水条件下进行,实验苗池的水位保持恒定以保证呼吸室的水压稳定。呼吸室能完全排出其中空气,流速可控制,流量为5000mL/h 左右,使出水口溶解氧维持在415mg/L以上。每1h测定1次水温、流过呼吸室的水量及呼吸室进出水口的溶氧量。实验设2个平行,每个平行进行3次重复测定,取结果的平均值,连续测定24h。 窒息点的实验装置同耗氧率,在耗氧率试验结束后关闭进出水口,待呼吸室内虾半数死亡时,测定其中的溶氧即为窒息点。溶氧均采用碘量法测定。 实验期间水温在2619~2715e,实验虾无粪便排出。 实验结束后,用滤纸吸干虾体表水分,以油标卡尺测量体长并在精度为0101g的莎多丽斯电子天平上称重,然后按下列公式计算虾的耗氧率及耗氧量: 耗氧率(mg/g#h)=(A1-A2)@V/W 耗氧量(mg/尾#h)=(A1-A2)@V/M 式中:A1、A2分别为进水口和出水口的溶氧量,V为流量,W为虾体重,M为虾尾数。 2结果与讨论 211不同规格南美白对虾的耗氧量和耗氧率 南美白对虾的耗氧量和耗氧率与其它鱼虾类具有相同的特性,并与十足目的刀额新对虾[6]、脊尾白虾[7]、澳大利亚红螯螯虾[8]等耗氧值相近,即依个体的大小而有所不同,个体增大耗氧量提高而耗氧率降低。在水温2619~ 2715e、盐度018的条件下,对南美白对虾进行连续24h 的观察测定结果见表1。 方差分析表明,在同等条件下,小规格南美白对虾的平均耗氧量仅为大规格个体的56135%,差异极显著(F= 79.6272,p<0.001),而耗氧率却极显著地高于大规格的个体(F=39.7812,p<0.001)。 212耗氧率昼夜变化 实验表明,南美白对虾的耗氧率有明显的昼夜变化规律,且不同体长组南美白对虾的耗氧率在一昼夜中有相似的变化规律,都在19时、21时出两2个高峰值,而且第1次比第2次略高(图1)。其中平均体长为51133mm的个体耗氧率高峰平均值为016711mg/g#h,显著高于日平均耗氧率(F=7.6645,P<0105);平均体长70188mm个体耗氧率高峰平均值014310mg/g#h,也显著高于日平均耗氧率(F=6.4705,P<0105)。低谷值出现时刻不尽相同,规格小的1d中有5个较为明显的耗氧低谷,分别在4时、8时、11时、12时和16时,其平均值为01318 1mg/g#h,极为显著地低于日平均耗氧率(F=10.4160, # 14 #(总第114期)水利渔业2001年第21卷第2期 收稿日期:2000-09-13

南美白对虾营养与饲料(精)

百度文库专用 南美白对虾营养与饲料 目录:引言 1 消化酶活力与食性 2 对能量需求 3 对饲料蛋白质的需求研究 4 对脂类的营养需求 5 对碳水化合物的需求 6 南美白对虾营养与免疫的关系 7 南美白对虾营养生态学问题 8 南美白对虾的生殖营养 9 饲料质量在养虾生产中的作用 10 南美白对虾营养研究方法的标准化问题 11 给饲技术与给饲效果问题 引言 南美白对虾(Litopenaeus vannamei),具有适应盐度范围广、抗病力强、生长速度快、出肉率高、肉质鲜美、高蛋白低脂肪、适合于人工高密度养殖等特点, 既可海养,也可淡养,加之繁殖育苗技术已基本成熟,是一个很有前途的养殖对虾品种,也是当今世界上公认的三大养殖对虾(南美白对虾、斑节对虾、中国对虾)优良品种之一。1988年7月,中国科学院海洋研究所张伟权教授将南美白对虾引入我国, 1992年8月全人工繁殖获得成功,1994年又成功地开展了批量人工育苗和养殖生产。同年7月,福建省也引进南美白对虾在厦门市同安区进行生产性试验成功后,逐步扩散到我国广东、海南和广西等东南沿海,特别是南美白对虾淡化养殖成功并大力推广后,更是在全国范围内掀起了一股南美白对虾养殖热潮,从沿海水域的海南至内陆湖泊的新疆均有养殖,其养殖发展速度,养殖范围,以及养殖规模都是空前的,从而带动闽粤渔用饲料中南美白对虾饲料生产量飚升。 目前,南美白对虾养殖趋向有两大特点,一是集约化、高密度、高产量,且要求养殖周期短;二是淡化养殖甚至淡水养殖。这两大养殖特点均对南美白对虾的配合饲料提出了更高的营养要求。为此,深入探讨南美白对虾的营养需求,研制出适合各种养殖模式和养殖环境的全价配合饲料,已变得越来越迫切。大家知道,配合饲料是南美白对虾健康养殖的物质基础, 是影响其养殖成败的重要环节, 营养全面优质配合饲料能保证对虾营养的全面需求, 满足对虾生长所需能量消耗和机体发育代谢的需要。同时能增强对虾自身免疫力, 提高抗病力, 使对虾迅速健康生长。投喂优质饲料使对虾易消化和吸收生长快, 可使对虾不发病或迟发病, 并能缩短养殖周期,是夺取南美白对虾高产稳产的关键条件之一。 十几年来,福建生产的名牌对虾配合饲料质量誉满闽、粤、琼、鲁和江浙诸省,部分还外销至印尼、越南、泰国。全省对虾配合饲料产量、质量水平优于兄弟省区,但见于养虾户的南美白对虾配合饲料的质量差异明显存在,仍须业者不懈努力,继续严格执行《NY5072-2002 无公害食品渔用配合饲料安全限量》标准,保证符合SC/T2002-2002 对虾配合饲料标准的要求,科学平衡诸营养素,依靠科技进步,脚踏实地为对虾养殖业发展服务。为了促进南美白对虾营养需求的研究和配合饲料的优化,推进南美白对虾养殖朝着强化营养,减轻环境污染,提高虾体免疫力和商品虾价值,缩短养虾周期的方向发展。现综述南美白对虾营养与饲料的若干问题,以期深入探讨。 1. 消化酶活力与食性 探究南美白对虾生长发育过程消化酶活力变化将可为研究其消化生理、营养、食性与生长提供依据。 已有文献报道,南美白对虾的胃蛋白酶和类胰蛋白酶的活力随其幼体变态发育而逐渐增强,且类胰蛋白酶活力比胃蛋白酶高2倍左右;淀粉酶活力在蚤状幼体(Z)至糠虾幼体(M)阶段升高,在糠虾幼体至仔虾(P)则下降;脂肪酶活力较低,且各发育期变化不大。淀粉酶活力(A)与类胰蛋白酶活力(T)的比值(A/T)可作为甲壳动物幼体的食性指标,比值大于1则为偏植物性或植物性,比值小于1则为肉食性或偏肉食性。南美白对虾的A/T值在

南美白对虾科学投喂方法与相关技术

本技术公开了一种南美白对虾科学投喂方法,所述方法如下:(1)养殖池处理,(2)南美白 对虾的投喂:包括选用饲料、投料管理、投料后摄食观察、适时调整用料,(3)养殖水体的调节。本技术利用益菌克菌原理,提高饲料转化率,控制水质恶化风险;天然动物饵料和配合饲料轮流投喂养不仅能使对虾生长迅速,降低饵料系数,而且可避免水体富营养化,有利于南美白对虾摄食、消化和吸收;根据不同的生长阶段对用料投喂量、投喂时间、次数作相应调整,最大化利用饲料,成虾阶段辅以饲料添加剂,为南美白对虾提供必要的微量元素并改善养殖环境,增强了南美白对虾的免疫力,提高了南美白对虾的存活率,从而提高了经济效益。 权利要求书 1.一种南美白对虾科学投喂方法,其特征在于,包括以下步骤: (1)养殖池处理:包括晒塘、消毒、清野、进水和培水,养殖池内注入清水,用消毒剂对彻底清塘消毒,消毒时间2-3天,消毒后将养殖池中水全部放光,再注入清水,打茶麸清野,开启增氧机进行曝气增氧,使水中溶氧量保持在5ml/L以上,之后定向调水培藻,等待放苗; (2)南美白对虾的投喂: a选用饲料:南美白对虾幼虾期配合饲料中粗蛋白含量为40%,中成虾期为30%-35%,对虾养成期采用天然动物饵料和配合饲料轮流投喂养,配合饲料中添加饲料添加剂; b投料管理:按照少量多次的原则,前期日投喂2次,随对虾生长逐渐增加投饵次数,中后期日投喂4-5次;对虾养成期具体时间和日投喂饲料重量的比例为:在6:00-7:00,投喂比例30%;11:00-12:00,比例15%;17:00-18:00,比例35%;20:00-23:00,比例20%; c投料后摄食观察:在虾池设置小缯网及下塘验料相结合,每个池塘设置小缯网,每次投料

相关文档
相关文档 最新文档