文档库 最新最全的文档下载
当前位置:文档库 › 多媒体定时器问题

多媒体定时器问题

多媒体定时器问题
多媒体定时器问题

在Windows这样的多任务操作系统下不要要求定时器精度有多高,更高优先级的任务挂起你的定时器是完全可能的,因此编写程序是要考虑到这一点,尤其是在任务繁重时

我试验过多媒体定时器,虽然它的精度可达到1ms,但定时器定时的最小数值却是4~5ms,也许这就是线程调度的最短时间,定时器和你的程序是在不同线程中运行,因此应该是定时器事件唤起了线程的运行,(我记得以前在一本书上看到线程的最短时间片好像是18ms),如果你的任务所在的线程被挂起,你将有一段时间不能运行,这将造成延迟的可能,尤其是从磁盘读写资料的时候,磁盘驱动程序(高优先权)甚至可能使你的程序还有定时器挂起超过200ms或者永远挂起,后果可想而知

要实现真正意义的定时器只能使用单任务操作系统,或者实时操作系统

在Windows中,可以使用不同精度的定时器来满足不同的要求:

1、使用Timer组件

它其实是先调用SetTimer()函数建立一个定时器,然后每隔一定的时间向Windows发送一个WM_TIMER的消息,操作系统捕获此消息后处理相应的事件。但是由于Windows的定时器是建立在DOS的1CH的中断基础上的,而此中断的响应频率是每秒18.2次,所以Timer组件对小于55ms的计时器就无能为力了。此外,WM_TIMER消息没胡被处理时,定时器又触发了新的WM_TIMER消息就会被舍弃。因此组件只能适用于那些对时间要求不是很严格的场合。

2、使用多媒体定时器

使用多媒体定时器不容易遗失消息,且触发的最小时间间隔在10ms左右,可以称之为高精度定时器,它主要是使用TimeSetEvent()函数建立定时器事件,通过回调函数来触发,多媒体定时器会在程序中建立另外一个线程,不妨称为A线程。当定时器触发时,此线程就会暂时停下来,进行环境切换,切换到设定计时器的线程,执行回调函数,而不管线程的工作,这就是多媒体定时器定时精度的原因。此外A线程的优先级是15级,比大多数线程都高,所以可以很方便地执行此线程中的代码。

3、高精度定时器

可以使用Win32的取得计数器频率的函数QueryPerformanceFrequence()和取得计数值的函数QueryPerformanceCounter()来获得更高的计时精度。其中QueryPerformanceCounter()在IntelX86上准确度为0.8ms。

VC++中使用定时器的方法

1.启用一个定时器直接调用函数: SetTimer(1,500,NULL);//定义时钟1,时间间隔为500ms SetTimer(2,1000,NULL);//定义时钟2,时间间隔为1000ms 可以在按钮按下时启用定时器: void CTimeDlg::OnButton1() { // TODO: Add your control notification handler code here SetTimer(1,500,NULL);//定义时钟1,时间间隔为500ms SetTimer(2,1000,NULL);//定义时钟2,时间间隔为1000ms } 2.关闭定时器:可以在按钮中调用如下函数关闭某定时器: void CTimeDlg::OnButton2() { // TODO: Add your control notification handler code here KillTimer(1); //关闭1号定时器 KillTimer(2); //关闭2号定时器 } 3.添加定时器时间到的处理代码: 1)在开发界面中Ctrl+W 进入MFCclass wizard页面2)选择Message Maps选项卡 3)在Project中选择你的工程 4)在object Ids:中选择C…..Dlg

5)在Messages:中选择WM_TIMER,此时,Member functions中自动定位到: W OnTimer ON_WM_TIMER, 6) 单击EDIT code(或双击W OnTimer ON_WM_TIMER)自动进入如下函数:void CTimeDlg::OnTimer(UINT nIDEvent) { // TODO: Add your message handler code here and/or call default switch(nIDEvent) { case 1: //1号定时器应该处理的事情 //….. break; case 2: //2号定时器应该处理的事情 //….. break; } CDialog::OnTimer(nIDEvent); //此句VC自动生成 } 秘密

VC++实现微秒级的精确定时器

在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位机定时向下位机发送命令和传送数据等。特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要精确定时操作。 众所周知,Windows是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以,要想通过直接利用访问硬件来完成精确定时,也比较困难。所以在实际应用时,应针对具体定时精度的要求,采取相适应的定时方法。 VC中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。本文详细介绍了 VC中基于Windows的精确定时的七种方式: 方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数 OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小计时精度仅为30ms,CPU占用低,且定时器消息在多任务操作系统中的优先级很低,不能得到及时响应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。如示例工程中的Timer1。 方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer2。 方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。如示例工程中的Timer3和Timer3_1。以下是实现2秒的延时代码: COleDateTime start_time =COleDateTime::GetCurrentTime(); COleDateTimeSpan end_time=COleDateTime::GetCurrentTime()-start_time; while(end_time.GetTotalSeconds()< 2) //实现延时2秒 { MSG msg; GetMessage(&msg,NULL,0,0); TranslateMessage(&msg); DispatchMessage(&msg);

定时器计数器

定时器/计数器 MCS-51单片机内部有两个16位可编程的定时器/计数器,即定时器T0(由TH0和TL0组成)和定时器T1(由TH1和TL1组成),它们既可用作定时器定时,又可用作计数器记录外部脉冲个数,其工作方式、定时时间、启动、停止等均用指令设定。 定时器/计数器的结构 1.定时器/计数器的工作原理 定时器/计数器T0和T1的工作方式通过八位寄存器TMOD设定,T0和T1 的启动、停止由八位寄存器TCON控制。工作前需先装入初值,利用传送指令将初值装入加1计数器TH0和TL0或TH1和TL1,高位数装入TH0或TH1,低位数装入TL0或TL1。当发出启动命令后,加1计数器开始加1计数,加到满值(各位全1)后,再加1就会产生溢出,系统将初值寄存器清0。如果需要继续计数或定时,则需要重新赋计数初值。 2.定时器的方式寄存器TMOD 特殊功能寄存器TMOD为定时器的方式控制寄存器。TMOD是用来设定定时器的工作方式,其格式如下: 各位功能如下: (1)GATE控制定时器的两种启动方式 当GATE=0时,只要TR0或TR1置1,定时器启动。 当GATE=1时,除TR0或TR1置1外,还必须等待外部脉冲输入端(P3.3)或(P3.2)高电平到,定时器才能启动。若外部输入低电平则定时器关闭,这样可实现由外部控制定时器的启动、停止,故该位被称为门控位。定时器1类同。 (2)定时/计数方式选择位 当该位为0时,T0或T1为定时方式;当该位为1时,T0或T1为计数方式。(3)方式选择位M1、M0 M1、M0两位可组合成4种状态,控制4种工作方式。每种方式的功能如表5-1。 表5-1 M1、M0控制的工作方式 M1 M0 工作方式说明 0 0 0 1 1 0 1 1 0 1 2 3 13位计数器 16位计数器 可再装入8位计数器

VC++定时方式

VC中基于 Windows 的精确定时 中国科学院光电技术研究所游志宇 示例工程下载 在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位机定时向下位机发送命令和传送数据等。特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要精确定时操作。 众所周知,Windows 是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以,要想通过直接利用访问硬件来完成精确定时,也比较困难。所以在实际应用时,应针对具体定时精度的要求,采取相适应的定时方法。 VC中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。本文详细介绍了 VC中基于Windows的精确定时的七种方式,如下图所示:

图一图像描述 方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数 OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小计时精度仅为30ms,CPU占用低,且定时器消息在多任务操作系统中的优先级很低,不能得到及时响应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。如示例工程中的Timer1。 方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太长,就好象死机一样,CPU 占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer2。 方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。如示例工程中的Timer3和Timer3_1。以下是实现2秒的延时代码: COleDateTime start_time = COleDateTime::GetCurrentTime(); COleDateTimeSpan end_time= COleDateTime::GetCurrentTime()-start_time; while(end_time.GetTotalSeconds()< 2) //实现延时2秒 { MSG msg; GetMessage(&msg,NULL,0,0); TranslateMessage(&msg); DispatchMessage(&msg); //以上四行是实现在延时或定时期间能处理其他的消息, //虽然这样可以降低CPU的占有率, //但降低了延时或定时精度,实际应用中可以去掉。 end_time = COleDateTime::GetCurrentTime()-start_time; }//这样在延时的时候我们也能够处理其他的消息。 方式四:在精度要求较高的情况下,VC中可以利用GetTickCount()函数,该函数的返回值是 DWORD型,表示以ms为单位的计算机启动后经历的时间间隔。精度比WM_TIMER消息映射高,在较短的定时中其计时误差为15ms,在较长的定时中其计时误差较低,如果定时时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer4和Timer4_1。下列代码可以实现50ms的精确定时: DWORD dwStart = GetTickCount(); DWORD dwEnd = dwStart; do

定时器计数器(TC)简介以及例子说明

定时器/计数器(T/C)简介 一、定时器/计数器有关的特殊功能寄存器 1. 计数数寄存器TH和TL 计数器寄存器是16位的,计数寄存器由TH高8位和TL低8 位构成。在特殊功能寄存器(SFR)中,对应T/C0为TH0和TL0,对应T/C1为TH1和TL1。定时器/计数器的初始值通过TH1/TH0和TL1/TL0设置。 2. 定时器/计数器控制寄存器TCON TR0,TR1:T/C0,1启动控制位。 1——启动计数0——停止计数 TCON复位后清“0”,T/C需受到软件控制才能启动计数,当计数寄存器计满时,产生向高位的进位TF,即溢出中断请求标志。 3. T/C的方式控制寄存器TMOD T/C1 T/C0 C/T :计数器或定时器选择位。 1——为计数器0——为定时器 GATE:门控信号 1——T/C的启动受到双重控制,即要求TR0/TR1和INT0/INT1

同时为高。 M1和M0:工作方式选择位。(四种工作方式) 4.定时器/计数器2(T/C2)控制寄存器 TF2:T/C2益出标志——必须由软件清除 EXF2:T/C2外部标志。当EXEN2=1,且T2EX引脚上出现负跳变而引起捕获或重装载时置位,EXF2要靠软件来清除。 RCLK:接收时钟标志1——用定时器2 溢出脉冲作为串行口的接收时钟0——用定时器1的溢出脉冲做接收时钟。 TCLK:发送时钟标志。 1——用定时器2 溢出脉冲作为串行口的发送时钟 0——用定时器1的溢出脉冲作发送时钟 EXEN2:T/C2外部允许标志。1——若定时器2未用作串行口

的波特率发生器,T2EX端的负跳变引起T/C2的捕获或重装载。 0——T2EX端的外部信号不起作用。 TR2:T/C2运行控制位 1——T/C2启动0——T/C2停止 C/T2:计数器或定时器选择位 1——计数器0——定时器 CP/RL:捕获/重载标志。 1——若EXEN2=1,且T2EX端的信号负跳变时,发生捕获操作。 0——若定时器2溢出,或在EXEN2=1条件下T2EX端信号负跳变,都会造成自动重装载操作。 二、定时器/计数器的工作方式 1.方式0 当TMOD中M1M0=00,T/C工作在方式0。 方式0为13位的T/C,由TH提供高8位,TL提供低5位的计数值,满计数值213,但启动前可以预置计数初值。 当C/T=0时,T/C为定时器,振荡源12分频的信号作为计数脉冲;当C/T=1时,T/C为计数器,对外部脉冲输入端T0或T1输入的脉冲计数。计数脉冲能否加到计数器上,受到启动信号控制。当GATE=0时,只要TR=1,则T/C启动。当GATE=1时,启动信号 =TR×INT,此时T/C启动受到双重控制。 T/C启动后立即加1计数,当13位计数满时,TH向高位进位,此进位将中断溢出标志TF置1,产生中断请求,表示定时时间到或

Windows中7种定时器

众所周知,Windows 是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以,要想通过直接利用访问硬件来完成精确定时,也比较困难。所以在实际应用时,应针对具体定时精度的要求,采取相适应的定时方法。 VC中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。本文详细介绍了VC中基于Windows的精确定时的七种方式,如下图所示:

图一图像描述 方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时间隔,如SetTimer(0,200,NULL)即为设置200ms 的时间间隔。然后在应用程序中增加定时响应函数OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小计时精度仅为30ms,CPU占用低,且定时器消息在多任务操

作系统中的优先级很低,不能得到及时响应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。如示例工程中的Timer1。 方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer2。 方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。如示例工程中的Timer3和Timer3_1。以下是实现2秒的延时代码: COleDateTime start_time = COleDateTime::GetCurrentTime(); COleDateTimeSpan end_time= COleDateTime::GetCurrentTime()-start_time; while(end_time.GetTotalSeconds()< 2) //实现延时2秒 { MSG msg; GetMessage(&msg,NULL,0,0); TranslateMessage(&msg); DispatchMessage(&msg); //以上四行是实现在延时或定时期间能处理其他的消息, //虽然这样可以降低CPU的占有率, //但降低了延时或定时精度,实际应用中可以去掉。 end_time = COleDateTime::GetCurrentTime()-start_time; }//这样在延时的时候我们也能够处理其他的消息。 方式四:在精度要求较高的情况下,VC中可以利用GetTickCount()函数,该函数的返回值是 DWORD型,表示以ms为单位的计算机启动后经历的时间间隔。精度比WM_TIMER消息映射高,在较短的定时中其计时误差为15ms,在较长的定时中其计时误差较低,如果定时时间太长,就好象死机一样,CP U占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer4和Timer4_1。下列代码可以实现50ms的精确定时: DWORD dwStart = GetTickCount(); DWORD dwEnd = dwStart; do

定时器计数器答案

定时器/计数器 6·1 80C51单片机内部有几个定时器/计数器?它们就是由哪些专用寄存器组成? 答:80C51单片机内部设有两个16位的可编程定时器/计数器,简称为定时器0(T0)与定时器l(Tl)。在定时器/计数器中的两个16位的计数器就是由两个8位专用寄存器TH0、TL0, THl、TLl组成。 6·2 80C51单片机的定时器/计数器有哪几种工作方式?各有什么特点? 答:80C51单片机的定时器/计数器有4种工作方式。下面介绍4种工作方式的特点。 方式0就是一个13位的定时器/计数器。当TL0的低5位溢出时向TH0进位,而TH0溢 出时向中断标志TF0进位(称硬件置位TF0),并申请中断。定时器0计数溢出与否,可通过查询TF0就是否置位或产生定时器0中断。 在方式1中,定时器/计数器的结构与操作几乎与方式0完全相同,惟一的差别就是:定时器就是以全16位二进制数参与操作。 方式2就是能重置初值的8位定时器/计数器。其具有自动恢复初值(初值自动再装人)功; 能,非常适合用做较精确的定时脉冲信号发生器。 方式3 只适用于定时器T0。定时器T0在方式3T被拆成两个独立的8位计数器TL0: 与TH0。其中TL0用原T0的控制位、引脚与中断源,即:C/T、GATE、TR0、TF0与T0 (P3、4)引脚、INTO(P3、2)引脚。除了仅用8位寄存器TL0外,其功能与操作与方式0、方式1 完全相同,可定时亦可计数。此时TH0只可用做简单的内部定时功能。它占用原定时器Tl 的控制位TRl与TFl,同时占用Tl的中断源,其启动与关闭仅受TRl置1与清0控制。

6·3 定时器/计数器用做定时方式时,其定时时间与哪些因素有关?作计数时,对外界计数频率有何限制? 答: 定时器/计数器用做定时方式时,其定时时间与时钟周期、计数器的长度(如8位、13位、16位等)、定时初值等因素有关。作计数时,外部事件的最高计数频率为振荡频率(即时钟周期)的1/24。 6·4 当定时器T0用做方式3时,由于TR1位已被T0占用,如何控制定时器T1的开启与关闭? 答:定时器T0用做方式3时,由于TRl位己被T0占用,此时通过控制位C/T切换其定时器 或计数器工作方式。当设置好工作方式时,定时器1自动开始运行;若要停止操作,只需送入一个设置定时器1为方式3的方式字。 6.5 己知80C51单片机系统时钟频率为6 MHz,请利用定时器T0与Pl。2输出矩形脉冲, 其波形如下: 答:设置T0为方式2定时,定时50us,初值X 为: X=28-(6×106×50×10-8 )÷12= 231D= E7H TH0= TL0=E7H ,TMOD= 2H 源程序如下: MOV TMOD,#02H ;设置T0为方式2定时 MOV TH0,#E7H ;赋初值 MOV TL0,#E7H

定时器与计数器

四川工程职业技术学院 单片机应用技术课程电子教案 Copyright ? https://www.wendangku.net/doc/ae10548993.html, 第 讲 15 定时器/计数器基础

本讲主要内容: 15-1.实现定时的方法 15-2.定时器/计数器的结构和工作原理15-3.定时器/计数器的控制 15-4.定时器/计数器的工作方式 15-5.定时器/计数器应用

15-1.实现定时的方法 软件定时 ? 软件延时不占用硬件资源,但占用了CPU时间,降低了CPU的利用 率。例如延时程序。 采用时基电路定时 ?例如采用555电路,外接必要的元器件(电阻和电容),即可构成硬 件定时电路。但在硬件连接好以后,定时值与定时范围不能由软件 进行控制和修改,即不可编程,且定时时间容易漂移。 可编程定时器定时 ?最方便的办法是利用单片机内部的定时器/计数器。结合了软件定时 精确和硬件定时电路独立的特点。 定时器/计数器 如何使用呢?

定时器/计数器的结构 定时器/计数器的实质是加1计数器(16位),由高8位和低8位两个寄存器组成。TMOD 是定时器/计数器的工作方式寄存器,确定工作方式和功能;TCON 是控制寄存器,控制T0、T1的启动和停止及设置溢出标志。 G A T E C /T M 1 M 0 G A T E C /T M 1 M 0 TH1TL1TH0TL0 T1方式T0方式 T1引脚 T0引脚 机器周期脉冲 内部总线 TMOD TCON 外部中断相关位 T F 1 T R 1 T F 0 T R 0 T1计数器 T0计数器 控制单元

定时器/计数器的工作原理 ?计数器输入的计数脉冲源 系统的时钟振荡器输出脉冲经12分频后产生; T0或T1引脚输入的外部脉冲源。 ?计数过程 每来一个脉冲计数器加1,当加到计数器为全1(即FFFFH)时,再输入一个脉冲就使计数器回零,且计数器的溢出使TCON中TF0或TF1置1,向CPU发出中断 请求(定时器/计数器中断允许时)。如果定时器/计数器工作于定时模式,则表 示定时时间已到;如果工作于计数模式,则表示计数值已满。

定时器计数器

图1-2 将T1计数的结果送P0口显示 (3)控制LED 灯左循环亮 用A T89C51单片机控制一组LED 灯左循环亮,采用50ms 延时子程序调用达到1S 延时,使用P0口输出控制发光二极管灯。电路图如图1-2所示,晶振采用12MHZ 。要求如下: ①用发光二极管灯左循环亮为输出值; ②利用单片机的定时器完成此项目; ③每1S 左循环一次。 图1-3 控制LED 灯左循环亮 三、实验程序 1. 用定时器T0查询方式控制P3口8位LED 闪烁 (1)分析: 用定时器0、方式1, 则TMOD =××××0001B 由于T 机器=12T 时钟=12 1/fosc=1us ,而方式1的最大定时时间为65.536ms ,所以可选择:50ms 。定时器初始值为: TH0=(65536-50000)/256;//定时器T0的高8位赋初值 TL0=(65536-50000)%256;//定时器T0的低8位赋初值 (2)程序设计 先建立文件夹“SY 1-1”,然后建立“SY2-1”工程项目,最后建立源程序文件“SY 1-1.c”,输入如下源程序: #include // 包含51单片机寄存器定义的头文件 void main(void) { TMOD=0x01; //使用定时器T0的方式1 TH0=(65536-50000)/256; /*定时器T0的高8位赋初值*/ TL0= (65536-50000)%256; /*定时器T0的低8位赋初值*/ TR0=1; //启动定时器T0 组长 学号 专业 班级 实验项目 实验1 定时器/计数器 课程名称 单片机原理 课程代码 试验时间 实验地点 成绩 教师签字: 一、实验目的 (1)了解80C51定时器/计数器的结构; (2)掌握定时器/计数器方式寄存器TMOD 设置; (3)掌握定时器/计数器控制寄存器TCON 设置; (4)掌握定时器/计数器的初始化步骤; (5)掌握定时或计数初值的计算; (6)掌握80C51定时器/计数器编程方法。 二、实验内容 (1)用定时器T0查询方式控制P3口8位LED 闪烁 使用T0工作于方式1,采用查询方式控制P3口8位LED 的闪烁周期为100ms ,即亮50ms ,熄灭50ms ,电路图如图1-1所示,设单片机晶振频率为12MHz 。 图1-1 用定时器T0查询方式控制P3口8位LED 闪烁 (2)将T1计数的结果送P0口显示 用AT89C51单片机控制LED 灯左循环亮,采用50ms 延时子程序调用达到1S 延时,使用P0口输出控制发光二极管灯。电路图如图1-2所示,设单片机晶振频率为12MHz 。

多媒体定时器的使用

在Windows系统下播放多媒体时,需要去精确控制播放过程,如果用Windows产生的WM_TIMER常规定时器来实现,多媒体画面会出现断断续续的现象,原因在于WM_TIMER只能提供大于等于55ms的精确定时。解决办法就是利用Windows系统本身提供的一个可以精确到1ms的多媒体定时器,它完全可以保证多媒体播放的实时性要求。 多媒体定时器不依赖于WM_TIMER消息,使用自己单独的线程来调用一个自己的回调函数。它的优先级很高,每隔一定时间就发送一个消息而不管其它消息是否执行完。所以无论应用程序在进行什么工作,操作系统都能在多媒体定时器事件到来时中断该程序,而先去调用多媒体定时器的回调函数。此外,对于现在的Intel CPU来说,它的最小定时精度通常都可以达到微秒级,足以满足步进电机控制的定时要求。 利用QueryPerformanceFrequency()和QueryPerformanceCounter()函数即可实现精确定时。该函数的定时精度与CPU的时钟频率高低有关系,即需要硬件支持,它们的函数原型如下: BOOL QueryPerformanceFrequency (LARGE_INTEGER *lpFrequency) BOOL QueryPerformanceCounter (LARGE_INTEGER *lpCount); LARGE_INTEGER是一个联合结构,它可以是8字节的整型数,亦可两个4字节的整数,该联合的原型如下: typedef union _LARGE_INTEGER { struct { DWORD LowPart ; LONG HighPart ; }; LONG QuadPart ; } LARGE_INTEGER ; 在该联合的字段含义需要在定时使用之前进行定义,其定义过程为首先调用QueryPerformanceFrequency(),去获取CPU的时钟频率计数,然后在需要严格定时的事件发生之前和发生之后,各调用一次QueryPerformanceCounter()函数,根据两次调用该函数所获取的时钟频率计数值做差,即可得到计算机执行一次指令所消耗的技术值,从而根据实际定时或延时需求,按倍数的扩大计数值即可。使用这两个函数进行采样周期定时可按如下操作步骤完成: 1、利用QueryPerformanceFrequency()函数去获取计算机CPU的时钟频率;

单片机定时器计数器实验报告

单片机定时器计数器实验报告 篇一:单片机计数器实验报告 计数器实验报告 ㈠实验目的 1. 学习单片机内部定时/计数器的使用和编程方法; 2. 进一步掌握中断处理程序的编程方法。 ㈡实验器材 1. 2. 3. 4. 5. G6W仿真器一台 MCS—51实验板一台 PC机一台电源一台信号发生器一台 ㈢实验内容及要求 8051内部定时计数器,按计数器模式和方式1工作,对 P3.4(T0)引脚进行计数,使用8051的T1作定时器,50ms 中断一次,看T0内每50ms来了多少脉冲,将计数值送显(通过LED发光二极管8421码来表示),1秒后再次测试。 ㈣实验说明 1. 本实验中内部计数器其计数器的作用,外部事件计数器脉冲由P3.4引入 定时器T0。单片机在每个机器周期采样一次输入波形,因此单片机至少需要两个机器周期才能检测到一次跳变,这就要求被采样电平至少维持一个完整的机器周期,以保证电

平在变化之前即被采样,同时这就决定了输入波形的频率不能超过机器周期频率。 2. 计数脉冲由信号发生器输入(从T0端接入)。 3. 计数值通过发光二极管显示,要求:显示两位,十位用L4~L1的8421 码表示,个位用L8~L5的8421码表示 4. 将脉搏检查模块接入电路中,对脉搏进行计数,计算出每分钟脉搏跳动 次数并显示 ㈤实验框图(见下页) 程序源代码 ORG 00000H LJMP MAIN ORG 001BH AJMP MAIN1 MAIN: MOV SP,#60H MOV TMOD,#15H MOV 20H,#14H MOV TL1,#0B0H MOV TH1,#3CHMOV TL0,#00H ;T0的中断入口地址 ;设置T1做定时器,T0做计数器,都于方式1工作 ;装入中断次数 ;装入计数值低8位 ;装入计数值高8位 MOV TH0,#00H SETB TR1 ;启动定时器T1 SETB TR0 ;启动计数器T0 SETB ET1 ;允许T1中断 SETB EA ;允许CPU中断 SJMP $;

多媒体定时器

速度参数实时数据采集的软件实现 1 实时数据采集的要求及软件平台 ---- 数据采集一般是通过软件或硬件的定时中断通过A/D来读取外界传感器的数据。因此实时数据采集的首要的基本要求是定时准确,即采样间隔具有较好的一致性。 ---- 实时数据采集系统过去一般是在DOS操作系统下应用汇编语言开发的。Windows操作系统的普及应用,尤其是可视化开发软件Vis ual C++ 的出现,为软件开发提供了强大的图形界面功能,使得开发出来的应用程序具有良好的人机交互功能。汇编语言的特点是难调试,而高级语言具有良好的可读性及方便的调试手段。 ---- 本文采用美国微软公司推出的Visual C++为软件开发工具,采样间隔采用多媒体定时器进行精确定时,并采用Visual C++ 提供的端口操作的操作台函数进行硬件I/O编程。 2 多媒体定时器和硬件接口函数 ---- Visual C ++ 提供了两种定时器。一般常用的是系统计时器,它使用函数SetTimer进行初始化,应用程序响应SetTimer函数发送来的消息WM_TIMER。这个定时器是IBM PC硬件和ROM BIOS构造的定时器逻辑的一个相当简单的扩展。PC的ROM初始化Intel825 9定时器芯片来产生硬件中断08H。这个中断有时称为"定时器滴答"中断。中断08H每隔54.925毫秒产生一次,或大约每秒18.2次。BI OS使用中断08H更新存于BIOS数据区的"时间"值。因此,这个定时器在Windows中的最大缺点是计时器的最大分辨率是55毫秒,也

就是说应用程序每秒只能接收到18个消息。此外,这个计时器消息的优先权太低,只有在所有的消息(除了消息WM_PAINT)被处理后才能被处理。因此函数SetTimer只能用于一般的定时,如扉屏显示时间定时等,它远远不能满足实时数据采集的要求。本文重点介绍的是多媒体定时器(Multimedia Timer)。它使用自己单独的线程(T hread),来调用一个自己的回调函数(Callback Function)。它的优先级很高,它每隔一定时间就发送一个消息而不管其它消息是否执行完。此外,对于现在的Intel CPU来说,它的最小定时精度通常都可以达到1毫秒,足够满足实时数据采集的定时精度。第4节将详细阐明Visual C++ 5.0 中多媒体定时器使用的详细过程。 ---- Visual C++ 5.0 作为C++的可视化编程工具,具有C语言对硬件操作的能力。它提供了大量的操作台函数(可参阅Visual C++提供的帮助)。例如:从端口地址读取数据的函数_inp(读字节), _inp w(读字), _inpd(读双字)和向端口写操作字和赋初值的函数_out p(写字节), _outpw(写字), _outpd(写双字)。_inp, _inpw, _i npd三个函数的参数均为地址变量,返回的是该地址口读取的数据。_outp, _outpw, _outpd三个函数的第一个参数是地址,第二个参数是须写入地址的数据。 ---- 读端口地址的三个函数原型分别是: int _inp( unsigned short port ); unsigned short _inpw( unsigned short port ); unsigned long _inpd( unsigned short port );

关于各种延时

关于各种延时 在Linux中,如果是应用层下的一些应用,我们可以: 1)调用unsigned int sleep(unsigned int second);函数去定时,这个时候它是秒级的;头文件为; 2)调用int usleep(useconds_t);函数去定时,这个时候它是微秒级的;头文件为; 3)调用高精度睡眠int nanosleep(const struct timespec * rep, struct timespec *rem);是一个相比标准UNIX 的sleep 调用具有更高高精度的版本。和普通的sleep 调用计算整秒数不同,nanosleep 接受一个指向一个struct timespec 对象的指针作为参数,它可以表示毫微秒(nanosecond,十亿分之一秒)的时间。然而,了解Linux 内核的工作细节后可知,nanosleep 所提供的真正精确度是10毫秒——比sleep 提供的要精确。这个附加的精确度非常有用,比如说,可以根为反复进行的任务设置更短的间隔。 struct timespec 由两部分构成:tv_sec 表示整秒数部分;tv_nsec 则表示毫微秒。tv_nesc 的值必须小于109。 nanosleep 相比sleep具有另一个优点。与sleep 相同,nanosleep 调用可以被信号中断,这是errno 将被设置为EINTR 而调用将返回-1。但是,nanosleep 的第二个参数,另一个指向struct timespec 对象的指针,如果不为NULL 则在这种情况下它将被写入剩余的时间(这就是所请求的睡眠时间和实际睡眠时间的差)。这使重新开始睡眠变的很容易。头文件。 以下是内核中的: 1.udelay(); mdelay(); ndelay();实现的原理本质上都是忙等待,ndelay和mdelay都是通过udelay衍生出来的,我们使用这些函数的实现往往会碰到编译器的警告implicit declaration of function 'udelay',这往往是由于头文件的使用不当造成的。在include/asm-???/delay.h中定义了udelay(),而在include/linux/delay.h中定义了mdelay和ndelay.udelay一般适用于一个比较小的delay,如果你填的数大于2000,系统会认为你这个是一个错误的delay函数,因此如果需要2ms以上的delay需要使用mdelay函数。 2.由于这些delay函数本质上都是忙等待,对于长时间的忙等待意味这无谓的耗费着cpu的资源,因此对于毫秒级的延时,内核提供了msleep,ssleep等函数,这些函数将使得调用它的进程睡眠参数指定的时间。 那么,在Windows中呢: 1)我们很快想到Sleep();头文件

51单片机计数器和定时器的本质区别及应用方法

51单片机计数器和定时器的本质区别及应用方法 在51单片机的学习过程中,我们经常会发现中断、计数器/定时器、串口是学习单片机的难点,对于初学者来说,这几部分的内容很难理解。但是我个人觉得这几部分内容是单片机学习的重点,如果在一个学期的课堂学习或者自学中没有理解这几部分内容,那就等于还没有掌握51单片机,那更谈不上单片机的开发了,我们都知道在成品的单片机项目中,有很多是以这几部分为理论基础的,万年历是以定时器为主的,报警器是以中断为主的,联机通讯是以串口为主的。 在这几部分内容中,计数器/定时器对于初学者说很容易搞混淆,下面我将对这方面的内容结合自己的学习经验谈几点看法。 计数器和定时器的本质是相同的,他们都是对单片机中产生的脉冲进行计数,只不过计数器是单片机外部触发的脉冲,定时器是单片机内部在晶振的触发下产生的脉冲。当他们的脉冲间隔相同的时候,计数器和定时器就是一个概念。 在定时器和计数器中都有一个溢出的概念,那什么是溢出了。我们可以从一个生活小常识得到答案,当一个碗放在水龙头下接水的时候,过了一会儿,碗的水满了,就发生溢出。同样的道理,假设水龙头的水是一滴滴的往碗里滴,那么总有一滴水是导致碗中的水溢出的。在碗中溢出的水就浪费了,但是在单片机的定时计数器中溢出将导致一次中断。 在定时器计数器中,我们有个概念叫容量,就是最大计数量。 方式0是2的13次方, 方式1是2的16次方, 方式2是2的8次方, 把水滴比喻成脉冲,那么导致碗中水溢出的最后一滴水的就是定时计数器的溢出的最后一个脉冲。 在各种单片机书本中,在介绍定时计数器时都讲到一个计数初值,那什么是计数初值呢?在这里我们还是假设水滴碗。假设第一百滴水能够使碗中的水溢出,我们就知道这个碗的容量是100。

Visual+C++实现微秒级精度定时器

Visual C++实现微秒级精度定时器 在工产控制系统中,有许多需要定时完成的操作,如:定时显示当前时间,定时刷新屏幕上的进度条,上位机定时向下位机发送命令和传送数据等。特别是在对控制性能要求较高的控制系统和数据采集系统中,就更需要精确定时操作。众所周知,Windows是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以要想通过直接利用访问硬件来完成精确定时,也比较困难。在实际应用时,应针对具体定时精度的要求,采取与之相适应的定时方法。 本实例实现了一中微秒级的精确定时,程序的界面提供了两个"Edit"编辑框,其中一个编辑框输入用户理想的定时长度,另外一个编辑框返回实际的时间长度,经过大量的实验测试,一般情况下误差不超过5个微秒。程序的运行界面如图一所示: 图一、实现微秒级的精确定时器 一、实现方法 Visual C++中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。Visaul C++中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数Se tTimer()设置定时间隔(退出程序时别忘了调用和SetTimer()配对使用的KillTimer ()函数),如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常简单,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。 微软公司在其多媒体Windows中提供了精确定时器的底层API支持。利用多媒体定时器可以很精确地读出系统的当前时间,并且能在非常精确的时间间隔内完成一个事件、函数或过程的调用。利用多媒体定时器的基本功能,可以通过两种方法实现精确定时。1)使用ti meGetTime()函数,该函数定时精度为ms级,返回从Windows启动开始所经过的时间。由于使用该函数是通过查询的方式进行定时控制的,所以,应该建立定时循环来进行定时事件的控制。2)使用timeSetEvent()函数,该函数原型如下:

MFC定时的用法

VC 中的定时 VC中提供了很多关于时间操作的函数,编写程序时我们可以跟据定时的不同精度要求选择不同的时间函数来完成定时和计时操作。 方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数 OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小计时精度仅为18ms。CPU占用低,且定时器消息在多任务操作系统中的优先级很低,不能得到及时响应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。 方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。 方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。以下是实现2秒的延时代码: COleDateTime start_time = COleDateTime::GetCurrentTime(); COleDateTimeSpan end_time= COleDateTime::GetCurrentTime()-start_time; while(end_time.GetTotalSeconds()< 2) //实现延时2秒 { MSG msg; GetMessage(&msg,NULL,0,0); TranslateMessage(&msg); DispatchMessage(&msg); //以上四行是实现在延时或定时期间能处理其他的消息, //虽然这样可以降低CPU的占有率, //但降低了延时或定时精度,实际应用中可以去掉。

基于EtherCAT的多轴运动控制器研究

EtherCAT工业以太网技术协会刘艳强、王健、单春荣 应用领域:石油天然气石化化工冶金电力建材矿业开采造纸纺织印染食品饮料加工烟草汽车制造电子制造水处理建筑楼宇交通运输轨道交通纺织机械塑料机械橡胶机械食品机械包装机械制药机械印刷机械烟草机械机床电子制造设备 基于工业以太网的运动控制器在工业机器人、数控机床和机电一体化加工和测试设备中获得了广泛应用。由于以太网通信速度快、数据量大等特点使运动控制性能得到了极大的提升。EtherCAT(Ethernet for Control Automation Technology)技术(也称为以太网现场总线)是德国BECKHOFF公司提出的实时工业以太网技术,它基于标准的以太网技术,具备灵活的网络拓扑结构,系统配置简单,具有高速、高有效数据率等特点,其有效数据率可达90%以上,全双工特性完全得以利用。本文设计和实现了基于EtherCAT的伺服控制器从站,每个从站可以最多控制8个伺服轴。 1 EtherCAT技术介绍 1.1 EtherCAT系统组成和工作原理 EtherCAT采用主从式结构,主站PC机采用标准的100Base-TX以太网卡,从站采用专用芯片。系统控制周期由主站发起,主站发出下行电报,电报的最大有效数据长度为1498字节。数据帧遍历所有从站设备,每个设备在数据帧经过时分析寻址到本机的报文,根据报文头中的命令读入数据或写入数据到报文中指定位置,并且从站硬件把该报文的工作计数器(WKC)加1,表示该数据被处理。整个过程会产生大约10ns的时间延迟[1]。数据帧在访问位于整个系统逻辑位置的最后一个从站后,该从站把经过处理的数据帧做为上行电报直接发送给主站。主站收到此上行电报后,处理返回数据,一次通信结束。系统结构原理图如图1所示:EtherCAT支持几乎所有的拓扑类型,包括线型、树型、星型等,其在物理层可使用100BASE-TX 双绞线、100BASE-FX光纤或者 LVDS(Low Voltage Differential Signaling, 即低压差分信号传输),还可以通过交换机或介质转换器实现不同以太网布线的结合。快速以太网的物理层(100Base-TX)允许两个设备之间的最大电缆长度为100米,而LVDS的物理层只能保障10米的传输间距,适合于近距离站点的连接。整个网络最多可以连接65535个设备。 借助于从站中的EtherCAT专用芯片和主站中读取网卡数据的DMA技术,整个协议处理过程都在硬件中进行。EtherCAT系统可以在30μs内刷新1000个I/O点,它可以在300μs内交换一帧多达1486个字节的协议数据,这几乎相当于12000个数字量输入或输出。控制100个输入输出数据均为8字节的伺服轴只需要100μs[2]。EtherCAT的高性能使它还可以处理分布式驱动器的电流(转矩)控制。 1.2 EtherCAT数据帧结构

相关文档