文档库 最新最全的文档下载
当前位置:文档库 › 实验二十九室温离子液体--1-甲基-3-丁基咪唑的溴盐的制备

实验二十九室温离子液体--1-甲基-3-丁基咪唑的溴盐的制备

实验二十九室温离子液体--1-甲基-3-丁基咪唑的溴盐的制备
实验二十九室温离子液体--1-甲基-3-丁基咪唑的溴盐的制备

实验二十九 室温离子液体--1-甲基-3-丁基咪唑的溴盐的制备

Experiment 29 Preparation of 1-methyl-3-butyl-imidazolium

bromide room temperature ionic liquids

【实验目的】

1、掌握室温离子液体的含义及其在有机合成中的应用。

2、熟悉1-甲基-3-丁基咪唑溴盐的制备方法。

【实验内容】

一、背景材料

室温离子液体[1](room temperature ionic liquids)顾名思义就是完全由离子组成的液体,是低温(<100℃)下呈液态的盐,也称为低温熔融盐,它一般由有机阳离子和无机阴离子(BF4, PF6等)所组成。早在1914年就发现了第一个离子液体——硝基乙胺[2],但其后此领域的研究进展缓慢,直到1992年,Wikes领导的研究小组[3]合成了低熔点、抗水解、稳定性强的1-乙基-3-甲基咪唑四氟硼酸盐离子液体([EMIM]BF4)后,离子液体的研究才得以迅速发展,随后开发出了一系列的离子液体体系。最初的离子液体主要用于电化学研究,近年来离子液体作为绿色溶剂用于有机及高分子合成受到重视[4]。

室温离子液体是一种新型的溶剂和催化剂。它们对有机、金属有机、无机化合物有很好的溶解性。由于没有蒸气压,可以用于高真空下的反应。同时又无味、不燃,在作为环境友好的溶剂方面有很大的潜力。离子液体为极性,可溶解作为催化剂的金属有机化合物,替代具有高的对金属配位能力的极性溶剂如乙腈等。溶解在离子液体中的催化剂,同时具有均相和非均相催化剂的优点。催化反应有高的反应速度和高的选择性,产物可通过静止分层、或蒸馏分离出来。留在离子液体中的催化剂可循环使用。

最近,室温离子液体由于其低蒸气压、环境友好、高催化率和易回收等特点,在有机合成中得到广泛的关注,如 Fridel-Crafts 烷基化和酰基化[5],Diels-Alder 反应[6],Heck 反应[7],Suzuki 反应[8],Mannich 反应[9]和醛酮缩合反应等[10]。

离子液体也被用于萃取特殊的化合物,如代替HF溶解油母岩[11],由天然产物中萃取多肽[12]。据文献报道[11],离子液体还可用于核废料的回收处理上。离子液体的溶解性可通过变化阴离子、或阳离子中烷基链的长短而改变。因此,人们称离子液体为“可设计合成的溶剂”。

二、实验原理

N

N

H3C C4H9Br N

N

H3C C4H9Br

注:该反应是原子经济性反应,投入的原料全部转化为产物,符合当前绿色化学的要求。

三、实验仪器及药品

仪器:50 mL 圆底烧瓶、磁力搅拌器、恒压滴液漏斗、球型回流冷凝管、旋转蒸发仪

药品:1-甲基咪唑、1,1,1-三氯乙烷、正溴丁烷

四、实验步骤

在50 mL 圆底烧瓶中加入3.0 g (0.037 mol)1-甲基咪唑,加入20 mL 1,1,1-三氯乙烷做溶剂,在磁力搅拌的条件下,用恒压滴液漏斗缓慢滴加正溴丁烷5.0 g (0.036 mol),约40 min 滴完,溶液变浑浊,将滴液漏斗撤下,换上球型回流冷凝管,加热回流2 h,完应完毕。用旋转蒸发仪将1,1,1-三氯乙烷蒸出,得到1-甲基-3-丁基咪唑的溴盐,为粘稠状液体。

注释:

1、要注意控制搅拌速度和滴加速度,使两种原料缓慢混合均匀。

2、滴完后,迅速换上球型冷凝管回流,1,1,1-三氯乙烷的沸点为73-76℃,应控制回流速度,

不易过快。

3、将旋蒸仪的水浴温度缓慢上升至80℃,0.1 Mp下旋蒸40 min,将1,1,1-三氯乙烷完全蒸

出。

4、得到的离子液体为红棕色粘稠状液体,可以不经处理直接作为催化剂和溶剂应用于有机

化合物的合成。

五、思考题

1、何为离子液体?在有机合成中有哪些应用?

2、为何生成的产物无需进一步处理?

附:参考文献

1. Seddon, K. R. J. Chem. Biotechnol., 1997, 68, 351.

2. Sugden, S.; Wilkins. H. J. Chem. Soc., 1929, 1291.

3. Wilkens, J. S.; Zaworatko, M. J. J. Chem. Soc. Chem. Commun., 1992, 965.

4. Welton, T. Chem. Rev.1999, 99, 2071.

5. (a) Song, C. E.; Shim, W. H.; Roh, E. J.; Chio, J. H. Chem. Commun. 2000, 1695.

(b) Nara, S. J.; Harjani, J. R.; Salunkhe, M. M. J. Org. Chem.2001, 66, 6616.

6. (a) Song, C. E.; Shim, W. H.; Roh, E. J. Chem. Commun. 2001, 1122.

(b) Yadov, J. S.; Reddy, B. V. S.; Reddy, J. S. S.; Tetrahedron.2003, 59, 1509.

7. Xu, L.; Chen, W.; Xiao, J. Organometallics2000, 19, 1123.

8. Rajagopal, R; Jarikote, D. V.; Srinivasan, K. V. Chem. Commun. 2002, 6616.

9. Chen, S.; Ji, S.; Loh, T. Tetrahedron Lett.2003, 44, 2405.

10. Mehnert, P.; Dispenziere, N. C.; Cook, P. A. Chem. Commun. 2002, 1610.

11. Freemantle, M. Chem. Eng. News. 1998, 76, 32.

12. Freemantle, M. Chem. Eng. News. 2001, 79, 21.

最新甲基叔丁基醚开题报告

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000~4000字左右的文献综述: 文献综述 摘要:介绍了甲基叔丁基醚(MTBE)的概况,包括其性质、用途、危害,概述了当前国内外甲基叔丁基醚的生产及消费状况,介绍总结了国内外各种生产工艺,选择技术较优工艺成熟的混相反应蒸馏工艺作为年产1万吨甲基叔丁基醚车间设计的设计对象。 关键词:甲基叔丁基醚发展概况生产工艺工艺选择 概述 甲基叔丁基醚简称MTBE,分子式CH3OC4H9,是一种透明、无色、高辛烷值的液体,具有醚类所特有的气味,氧含量为18%(质量分数)。[1]甲基叔丁基醚的辛烷值较高(研究法辛烷值RON为117,马达法辛烷值MON为101[2,3]),能与汽油很好的互溶,是生产无铅汽油、高辛烷值、含氧汽油的理想调合组分,作为汽油添加剂已经在全世界范围内普遍使用。它不仅能有效提高汽油辛烷值和汽油燃烧效率,使汽车尾气中不含铅,而且还能改善汽车性能,减少CO排放量,同时减少其他有害物质(如臭氧、苯、丁二烯等)的排放,降低汽油的成本。随着我国国民经济和轿车行业的发展,加上国家对含铅汽油的禁止使用,作为环保型无铅汽油主要添加剂的甲基叔丁基醚,可有效改善汽油的冷启动特性和加速性能,对气阻无不良影响,能完善汽油高辛烷值的分布,提高汽油前端的辛烷值等,因此其社会需求量将与日俱增。[4] 1 甲基叔丁基醚的发展概况 1.1 世界MTBE发展概况 自20世纪70年代甲基叔丁基醚(MTBE)工业化生产以来,在美国和西欧掀起了建设MTBE装置的热潮,并由此一跃而成为新兴的大吨位石化厂品,产量猛增[5]。在欧洲,使用甲基叔丁基醚作为汽油中的一种辛烷值增强剂开始于1970年代中期,从那时起烷基铅化合物辛烷值增强剂逐步被淘汰,同时为了减少苯的含量和其他芳香族化合物的使用,导致汽油中甲基叔丁基醚的生产和使用得到巨大增加。[6,7,8]据分析,2005

除盐水处理工艺

除盐水处理工艺 除盐水处理工艺介绍 1 前言 目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点: 在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用。 离子交换法处理有以下特点: 优点: ◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低; ◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。 缺点: ◇由于离子交换床阀门众多,操作复杂烦琐; ◇离子交换法自动化操作难度大,投资高; ◇需要酸碱再生,再生废水必须经处理合格后排放,存在环

境污染隐患; ◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物 ◇在含盐量高的区域,运行成本高 从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。 反渗透法处理有以下特点: 优点: ◇反渗透技术是当今较先进、稳定、有效的除盐技术; ◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等 ◇原水含盐量较高时对运行成本影响不大 ◇缺点: ◇预处理要求较高、初期投资较大 本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。 2 除盐水处理工艺比较 2.1离子交换法 1)离子交换处理工艺流程:

(完整版)甲基叔丁基醚的合成

甲基叔丁基醚的合成 烷基以取代醇类或酚类-OH中的氢原子或以与环醚上的氧原子结合的方式,可生成脂肪族醚类和芳香族醚类。常见的脂肪族醚有单醚和混合醚、甲基纤维素和乙基纤维基、乙二醇-乙醚和二乙二醇-乙醚、平平加、甲基叔丁基醚等,芳香族醚类有苯甲醚、β-萘基甲基醚、二苯甲醚等,其中生产吨位最大者要数甲基叔丁基醚。 甲基叔丁基醚(简称MTBE)是汽油添加剂醚类的主要产品,稍为次要的醚类还有甲基叔戊基醚(TAME)、乙基叔丁基醚(ETBE)、乙基叔戊基醚(TAEE)和二异丙基醚(DIPE)等。据预测,到2000年对上述醚类的需求在30Mt/a以上。汽油中添加上述醚类后,不仅能提高汽油的辛烷值(MTBE本身的马达辛烷值可达101,研究法辛烷值可达118),改善汽车的行车性能,而且还能降低排气中CO含量。生产成本(达相同辛烷值汽油)仅为烷基化油的80%。现在,MTBE除主要用作汽油添加剂外,还用来经裂解制取高纯异丁烯。 1.化学反应

MTBE通常是由甲醇与异丁烯在磺化离子交换树脂的催化作用下合成的: 主要副反应有:异丁烯与原料中的水分反应生成叔丁醇、甲醇脱水缩合生成二甲醚,异丁烯聚合生成二聚物或三聚物等。生成的这些副产物会影响产品的纯度和质量,因此要控制适宜的反应条件以减少副反应的发生。此外,为让磺化离子交换树脂发挥正常的催化作用,要求原料中的金属阳离子如Na+、K+、Ca2+、Mg2+等的含量小于1 ppm,不含碱性物质及游离水等。 2.合成技术分类 甲醇与异丁烯之间发生的醚化反应,甲醇是烷基化原料,异丁烯是烷基化剂。在实际生产中,常以C4混合烃作烷基化剂,其中异丁烯含量在10%~50%之间,其余为正丁烷和正丁烯等惰性组分,由于醚化反应进行得很完善,异丁烯转化率很高,反应尾气稍经分离就可得到纯度很高的正丁烯,用于有机合成或高聚物单体。因此,按照异丁烯在MTBE装置中达到的转化率及下游配套工艺的不同,合成MTBE技术可分为三种类型,见表5-3-03。表中的标准转化型对异丁烯的转化没有严格的限制,剩余的异丁烯仍可用作烷基化装置的有

甲基叔丁基醚MTBE工艺

万吨/年MTBE 装置工艺设计 摘要:简述甲基叔丁基醚(MTBE)生产的工艺流程,对国内外MTBE生产 工艺进行对比,阐述了本装置相对于传统装置的优势。 甲基叔丁基醚是汽油的一种无毒添加剂,也可作为二次加工化工产品的原料,对于国民经济发展具有重要作用。 甲基叔丁基醚(MTBE)装置是一个催化反应与精馏操作相结合的装置。整套装置涵盖筒式催化反应技术及催化精馏技术等先进理念,融合国内外先进技术。它包括筒反、催化精馏[1][2]、甲醇水洗回收三个单元。其中催化精馏技术较为先进,正在逐渐应用到化工生产中。整套装置具有操作方便、投资小、节约能源的特点。 关键词:甲基叔丁基醚;甲醇;混合碳四;催化精馏 tons / year MTBE plant process design Abstract:Description methyl tert-butyl ether (MTBE) production process,MTBE production processes at home and abroad to compare,described the device as opposed to the advantages of conventional devices. Methyl tert-butyl ether is a non-toxic gasoline additive, but also can be used as secondary processing chemical products, raw materials play an important role for national economic development. Methyl tert-butyl ether (MTBE) device is a catalytic reaction and distillation operations combined device. Cover the entire cylindrical catalytic reaction device technology and advanced concept of catalytic distillation technology, integration of advanced technology at home and abr oad. It consists of anti-cylinder, catalytic distillation, methanol washing recovery of three modules. One catalytic distillation technology is more advanced, is gradually applied to the chemical into the births. Whole device has easy operation, low invest ment, energy-saving features. Key Word:Methyl tert-butyl ether;Methanol;Hybrid Carbon 4;Catalytic distillation 目录 一、绪 论 (4) (一)概 况 (4)

甲基叔丁基醚安全技术说明书

甲基叔丁基醚安全技术说明书 化学品中文名称:甲基叔丁基醚 化学品英文名称:methyl-tert-butyl ether 中文名称2: 英文名称2:tert-butyl methyl ether 技术说明书编码:317 CAS No.:1634-04-4 分子式:C5H12O 分子量:88.2 第二部分:成分/组成信息回目录 有害物成分含量CAS No. 甲基叔丁基醚1634-04-4 第三部分:危险性概述回目录 危险性类别: 侵入途径: 健康危害:本品蒸气或雾对眼睛、粘膜和上呼吸道有刺激作用,可引起化学性肺炎。对皮肤有刺激性。 环境危害:对环境有危害。 燃爆危险:本品易燃,具刺激性。 第四部分:急救措施回目录 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施回目录 危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。与氧化剂接触猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理回目录 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存回目录 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止

3(专)离子交换除盐实验

实验三离子交换除盐实验 一实验目的 1.熟悉顺流再生固定床运行的操作过程。 2.加深对阳离子交换和阴离子交换基本理论的理解。 3.了解离子交换法在水处理中作用与原理。 二实验原理 离子交换过程可以看做是固相的离子交换树脂与液相中电解质之间的化学置换反应,其反应一般都是可逆的。 本实验采用国产001×7(711)强酸树脂和201×4(711)强碱树脂把水中的成盐离子(阳、阴离子)除掉,这种方法称为水的化学除盐处理。原水通过装有阳离子交换树脂的交换器时,水中的阳离子如Ca2+、Mg2+、K+、Na+等离子便与树脂是的可交换离子(H+)交换;接着通过装有阴离子交换树脂的交换器时,水中的阴离子Cl-、SO42-、HCO3-等与树脂中的可交换离子(OH-)交换。基本反应如下: 1/2Ca2+1/2SO42-1/2Ca2+1/2SO42- RH+ +1/2Mg2+Cl-=== R 1/2Mg2++ H+Cl- Na+HCO3-Na+HCO3- K+HSiO3-K+HSiO3- 1/2SO42-1/2SO42- ROH-+ H+Cl-==== R Cl-+ H2O HCO3-HCO3- HSiO3-HSiO3- 经过上述阴、阳离子交换器处理的水,水中的盐分被除去,此即为一级复床的除盐处理。树脂使用失效后要进行再生即把树脂上吸附的阴、阳离子置换出来,代之以新的可交换离子。阳离子交换树脂用HCl或H2SO4再生,阴离子交换树脂用NaOH再生。基本反应式如下:R2Ca + 2HCl → 2RH + CaCl2 R2Mg + 2HCl → 2RH + MgCl2 RCl + NaOH → ROH + NaCl 三实验仪器、设备与药品 阴阳离子交换树脂 离子交换树脂装置一套 电导率仪, 秒表 pH计 四实验步骤 1.熟悉装置。研究管路连接方式、明白阀门作用、弄懂管路流程。 2.连接装置。将两个交换柱串联起来:水箱进水→阴离子柱→阳离子柱→出水,反复研究,确保各路连接管无误(忘关阀门漏水、漏开阀门成死路)后启动水泵进水。

甲基叔丁基醚实用工艺设计

年产4.0万吨甲基叔丁基醚的工艺设计 摘要:本设计是年产4.0万吨甲基叔丁基醚装置生产工艺设计,主要以精馏工段为工艺设计对象,结合了中联能源年产3.0万吨MTBE项目的基础上,按任务要求生产量设计此工 艺流程。此反应采用的合成工艺是汽油经脱丙烷后的混合成分中的异丁烯与甲醇在强酸性苯 乙烯系阳离子交换树脂催化剂上进行反应生成MTBE。随着我国国民经济和轿车行业的发 展,加上国家对无铅汽油的禁止使用,作为环保型无铅汽油主要添加剂的甲基叔丁基醚,不 仅能有效的提高汽油的辛烷值和汽油燃烧效率,并且减少有害气体的排放,还可有效改善汽 油的冷启动特性和加速性能,对气阻无不良影响,因此其其社会需求量与日俱增。 关键词:甲基叔丁基醚;异丁烯;甲醇;MTBE工艺设计 Process design of an annual output of 40000 tons of methyl tert- butyl ether Abstract: The design is annual outputs of 40000 tons of methyl tart-butyl ether device production process design, mainly in the distillation process for process design; combined with the Anhui Zhonglian Energy Company Limited annual production capacity of 30000 tons of MTBE project according to the task requirements, design the production process. The synthesis process of this reaction is used in gasoline by isobutene and methanol mixture components after depropanizer in strongly acidic styrene was the reaction of MTBE cation exchange resin catalyst. With the rapid development of our national economy and the car industry, together with the national ban on the use of unleaded gasoline, methyl tert butyl ether environment-friendly lead-free gasoline as main additive, not only can effectively improve the octane number of gasoline and gasoline combustion efficiency, and reduce the emission of harmful gases, the cold start characteristics can effectively improve the gasoline and the acceleration performance, no adverse effect on the air resistance, so its social demand grow with each passing day Key Words:Methyl tert-butyl ether;Isobutene ;Methanol; MTBE process design

离子交换软化与除盐

离子交换软化和除盐实验 一、 实验目的 ① 加深离子交换基本理论的理解。 ② 了解离子交换软化设备的操作方法。 ③ 熟悉离子交换过程。 ④ 进一步熟悉水的硬度、碱度和pH 值的测定方法。 二、实验原理 离子交换是目前常用软化与除盐的方法。离子交换树脂是一种不溶于水的固体颗粒状物质,它能够从电解质溶液中把本身所含的另外一种带有相同电性符合的离子与其等量的置换出来,按照所交换的种类,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两大类。 阳离子交换树脂是以钠离子(Na +型)或氢离子型(H +型)置换溶液中的阳离子从而将其去除掉。置换反应为: 钠型 NaOR+M 2+?MR+2Na + 氢型 H 2R+M 2+?MR+2H + 反应式中R 表示树脂,M 2+表示阳离子。 阴离子交换树脂是以羟基(OH -)离子置换溶液中的阴离子,从而将其去除掉,置换反应式为: R(OH)+A 2-?RA+2OH - 反应式中R 表示树脂;A 2-表示阴离子。 离子交换吸附能力,在其他条件相同时,交换能力大小顺序如下:阳离子交换顺序(强酸性阳树脂)Fe 3+>Al 3+>Ca 2+>Mg 2+>K +>H +>Na +>H +>Li +。 阴离子交换顺序(强碱性阴树脂)为:草酸离子>柠檬酸离 子>-34PO >-24SO >Cl ->- 3NO 。 实际上,天然水中及工业废水中都不会只含有一种离子,通常都含有多种阳离子和多种阴离子,交换过程也复杂的多。就软化而言,含有多种阳离子和多种阴离子交换层时Cu 2+、Zn 2+、Ni 2+、Ca 2+、Mg 2+被吸附在树脂上,同时释放Na ,从而使水得到软化。当树脂的交换容量耗尽时,交换柱流出水的硬度就会超过规定值,这一情况称为穿透。此时,必须将树脂再生。再生前,应对交换柱进行反冲洗,以除去固体沉积物。阳离子交换柱再生方法是用盐溶液()或用酸溶液()流过交换柱;而阴离子交换柱再生方法是用氢氧化钠()溶液或氢氧化铵()溶液流过交换柱。再生后,用纯水冲洗交换柱以除去残留的无效离子。 如既需要软化水的硬度又要降低水的碱性,则可将OH 型和Na 型离子交换柱串联使用。利用阴阳树脂共同工作是目前制取纯水的基本方法之一。阳树脂自身可交换的H 与水中阳离子交换,去除阳离子;阴树脂官能团中的OH 与水中阴离

离子交换除盐实验设计

离子交换除盐实验设计 【摘要】通过对离子交换除盐实验的设计,使学生了解并掌握离子交换法除盐实验装置的操作方法,并深刻理解离子交换机理,培养学生综合运用基础知识的能力,引导学生主动思考并提高其发现问题解决问题的综合能力。 【关键词】离子交换;除盐;再生 天然水中有很多可溶性无机盐类物质,在人类生活中和工业生产中对水中含盐量有不同的要求,在有些工业(如电子工业、制药工业)用水中,要求水中含盐量要很低,需经除盐制备纯水或高纯水。离子交换法是除盐的主要方法,对于市政工程和环境科学与工程的工作人员,掌握离子交换技术及其除盐机理十分必要。 1.实验目的与原理 1.1 实验目的 通过离子交换再生及除盐实验过程,使学生了解并掌握离子交换法除盐的技术操作,熟悉离子交换除盐过程,并加深离子交换基本理论及再生原理的理解。该实验涉及给水排水工程、环境工程、城市水资源等多个专业,掌握离子交换除盐技术,对提高学生综合实验及实践能力极为重要。 1.2 实验原理 1.2.1离子交换原理 离子交换树脂是一种不溶于水的高分子化合物,由空间结构骨架与附属在骨架上的活性基团组成[1]。活性基团在水溶液中电离,并于溶液中其他同性粒子发生交换反应。离子交换反应可以是中和反应、中性盐分解反应或复分解反应。 1.2.2失效树脂的再生 运行制水和交换再生是离子交换水处理的两个主要阶段,树脂失去继续交换离子的能力,称为失效。离子交换树脂交换能力被恢复过程称为再生。以下主要介绍一下强酸H交换器的再生和强碱OH交换器的再生。 1)强酸H交换器的再生 强酸H交换器失效后,必须用强酸进行再生,通常用HCl或H2SO4。再生时的交换反应如下: 相对来说,由于HCl再生时不会有沉淀物析出,所以操作比较简单。再生

甲基叔丁基醚

甲基叔丁基醚 C5H12O CAS 登记号:1634-04-4 中文名称:甲基叔丁醚; 叔丁基甲醚; MTBE; 甲基-1,1-二甲基乙醚; 2-甲氧基-2-甲基丙烷 RTECS号:KN5250000 UN编号:2398 EC编号:603-181-00-X 英文名称:METHYL TERT-BUTYL ETHER; tert-Butyl methyl ether; MTBE; Methyl-1,1-dimethylethyl ether; 2-Methoxy-2-methyl propane 原中国危险货物编号:32084 分子量:88.2 化学式:C5H12O 危害/接触 类型 急性危害/症状预防急救/消防 火灾高度易燃。 禁止明火、禁止火花和禁止吸 烟。禁止与氧化剂接触。干粉、水成膜泡沫、泡沫、二氧化碳。 爆炸 蒸气/空气混合物有爆炸 性。密闭系统,通风,防爆型电气 设备和照明。不要使用压缩空 气灌装、卸料或转运。 着火时,喷雾状水保持料桶等冷 却。 接触 # 吸入 倦睡,头晕,头痛,虚弱, 神志不清。通风,局部排气通风或呼吸防 护。 新鲜空气,休息。必要时进行人工 呼吸。给予医疗护理。 # 皮肤皮肤干燥,发红。防护手套。 脱去污染的衣服,冲洗,然后用 水和肥皂清洗皮肤。 # 眼睛发红。护目镜,或面罩。 先用大量水冲洗几分钟(如可能 易行,摘除隐形眼镜),然后就医。 # 食入 腹部疼痛,恶心,呕吐。 (另见吸入)。工作时不得进食,饮水或吸烟。 漱口,用水冲服活性炭浆,不要 催吐,给予医疗护理。 泄漏处置 移除全部引燃源。尽可能将泄漏液收集在有盖的容器中。用砂土或惰性吸收剂吸收残液,并 转移到安全场所。不要冲入下水道。个人防护用具:适用于有机气体和蒸气的过滤呼吸器。 包装与标志欧盟危险性类别:欧盟危险性类别:F符号Xi符号R:11-38 S:2-9-16-24 联合国危险性类别:3 联合国包装类别:II 中国危险性类别:第3类易燃液体中国包装类别:II 应急响应运输应急卡:TEC(R)-30GF1-I+II

甲基叔丁基醚

甲基叔丁基醚C5H12O CAS登记号:1634-04-4 RTECS号:KN5250000中文名称:甲基叔丁醚; 叔丁基甲醚; MTBE; 甲基-1,1-二甲基乙醚; 2-甲氧基-2-甲基丙烷 UN编号:2398 EC编号:603-181-00-X英文名称:METHYL TERT-BUTYL ETHER; tert-Butylmethylether; MTBE; Methyl-1,1-dimethylethyl ether; 2-Methoxy-2-methyl propane 原中国危险货物编号:32084 分子量:88.2化学式:C5H12O 危害/接触 类型 急性危害/症状预防急救/消防 火灾高度易燃。禁止明火、禁止火花和禁止 吸烟。禁止与氧化剂接触。 干粉、水成膜泡沫、泡沫、二氧 化碳。 爆炸蒸气/空气混合物有爆炸 性。 密闭系统,通风,防爆型电气 设备和照明。不要使用压缩 空气灌装、卸料或转运。 着火时,喷雾状水保持料桶等冷却 。 接触 # 吸入倦睡,头晕,头痛,虚弱,神 志不清。 通风,局部排气通风或呼吸防 护。 新鲜空气,休息。必要时进行人 工呼吸。给予医疗护理。 # 皮肤皮肤干燥,发红。防护手套。脱去污染的衣服,冲洗,然后用水和肥皂清洗皮肤。 # 眼睛发红。护目镜,或面罩。先用大量水冲洗几分钟(如可能易行,摘除隐形眼镜),然后就医。 #食入腹部疼痛,恶心,呕吐。 (另见吸入)。 工作时不得进食,饮水或吸烟 。 漱口,用水冲服活性炭浆,不要催 吐,给予医疗护理。 泄漏处置移除全部引燃源。尽可能将泄漏液收集在有盖的容器中。用砂土或惰性吸收剂吸收残液,并转移到安全场所。不要冲入下水道。个人防护用具:适用于有机气体和蒸气的过滤呼吸器。 包装与标志欧盟危险性类别:欧盟危险性类别:F符号 Xi符号 R:11-38 S:2-9-16-24联合国危险性类别:3 联合国包装类别:II

水的离子交换除盐处理

一、填空题 1、离子交换树脂的交换容量分为全交换容量、工作交换容量、平衡交换容量。 2、按离子交换树脂的结构,离子交换树脂分为凝胶型树脂、大孔型树脂、超凝胶型树脂和均孔型强碱型阴树脂。 3、树脂型号为001×7,第一位数字代表活性基团代号,第二位数字代表骨架代号,第三位数字代表顺序代号,×代表联接符号,第四位数字代表交联度。 4、树脂的污染主要分为有机物污染,无机物污染,硅酸根污染。 5、阴树脂发生硅酸根污染的主要原因为未及时再生或者再生不彻底。 6、离子交换器体再生分为顺流再生、逆流再生、分流再生和串联再生四种。 7、被处理的水流经离子交换树脂层时,其离子交换树脂按水流顺序可分为失效层、工作层、保护层。 8、离子交换树脂的可逆性是反复使用的基础。 9、离子交换器再生过程中,提高再生液温度,能增加再生程度,主要因为加快了扩散和膜扩散的速度。 10、混床反洗分层是利用阴阳树脂密度不同;若反洗效果不佳,可通过加碱浸泡后,重新反洗分层。 11、运行规程中,阳床出水Na>100ug/L,即为失效;阴床出水DD>5us/cm或SiO2>50ug/L,即为失效;混床出水DD>0.2us/cm或SiO2>20ug/L,即为失效。 12、运行分析中测量钠离子,所用碱化剂为二异丙氨,控制样水pH>10,pNa4=2300ug/L。 13、每台阳离子交换器的额定制水量为205t/h,每台阴离子交换器额定制水量

为205t/h,每台混合离子交换器的额定制水量为235t/h。 14、除盐水的主要监测的项目为电导率和二氧化硅,其标准分别为DD≤0.2μs/cm,SiO2≤20μg/L。 15、阳床或阴床或混床失效时应停运进行再生。 16、001×7型树脂是强酸阳离子交换树脂。 17、离子交换器的交换过程,实质上就是工作层逐渐下移的过程。 18、强弱碱树脂联合使用,弱阴树脂交换强酸根离子,强阴树脂交换弱酸根离子。 19、混床阴阳树脂的填装比例阴:阳=2:1。 20、阴树脂再生液加热温度控制围30~45℃。 21、强碱阴离子交换器失效时首先漏过的是硅酸氢根。 22、树脂由骨架和活性基团两部分组成。 23、混床反洗的主要作用阴阳树脂分层。 24、树脂型号为201×7,其中2表示该树脂为强碱性。 25、离子交换树脂的再生过程实际上是除盐制水过程的逆反应。 26、判断混床阳阴树脂反洗分层终点的依据是阳阴树脂有明显的分层线。 27、若混床阳阴树脂反洗分层界线不明显时,应给混床进入1~2%浓度的NaOH 溶液,然后重新分层。 28、我厂除盐水系统混床反洗后,树脂分为两层,上层为阴树脂,下层为阳树脂,两层树脂高度分别为2比1。 29、我厂阳离子交换树脂再生采用的再生剂为盐酸,阴离子交换树脂的再生剂为氢氧化钠。 30、我厂除碳器填料为Φ40多面PP空心球,除碳器的作用是去除阳床出水中

甲基叔丁基醚

甲基叔丁基醚 CAS号1634-04-4 性质无色、低粘度液体,具有类似萜烯的臭味。沸点 55、3℃。凝固点-108、6℃。相对密度0、7407(20/4℃)。折射率nD(20℃)1、3694。闪点(闭杯)-28℃。燃点460℃。爆炸极限(空气中)1、65%~8、4%(体积)。蒸气压(25℃) 32、664kPa。临界压力3、43MPa。临界温度2 23、95℃。粘度(20℃)0、36mPas。微溶于水,但与许多有机溶剂互溶,与某些极性溶剂如水、甲醇、乙醇可形成共沸混合物。 用途用作高辛烷值汽油掺加组分。 毒性有轻度麻醉作用,微毒。老鼠经口LD50为 3865mg/kg,皮肤吸收LD50>10000mg/kg。对眼有刺激作用,溅入眼睛后应立即用大量水冲洗15分钟以上,并就医诊治。操作中应戴防护目镜及橡皮手套。 包装储运贮存容器和密封材料与贮存汽油的要求相同,对容器材质无特殊要求,如铁、锌、铝都可应用,也可使用聚乙烯制的容器。因本品为可燃液体,装载容器应注明“易燃品”字样,按易燃品规定贮运。性质:无色低粘度液体。熔点-109℃,沸点

55、3℃,凝固点-108、6℃,相对密度0、7407(20/4℃),折射率1、3694。闪点(闭杯)-28℃,燃点460℃,爆炸极限(空气中)1、65%-8、4%(体积),蒸气压(25℃) 32、664kPa,临界压力3、43MPa,临界温度2 23、95℃,粘度(20℃)0、36mPas。能与汽油及许多有机溶剂互溶,微溶于水,与某些极性溶剂如水、甲醇、乙醇可形成共沸混合物。具有类似萜烯的气味。制备方法:以混合丁烯和甲醇为原料,在酸性催化剂存在下,进行放热反应而得。具有代表性的工艺是德国赫斯和意大利斯纳姆普罗吉蒂法。美国化学研究、许可证公司和新化学公司开发的一种催化精馏新工艺已于1981年开始应用。此法把催化固定床反应器与蒸馏塔合于同一设备内,利用反应的释热于甲基叔丁基醚的蒸馏提纯,使过程的能耗降低。原料消耗定额:甲醇361kg/t、异丁烯(100%)650kg/t。用途:该品主要用作汽油添加剂,具有优良的抗爆性。它与汽油的混溶性好,吸水少,对环境无污染。MTBE能改善汽油的冷起动特性和加速性能,对气阻没有不良影响。虽然甲基叔丁基醚热值低,但行车试验证明使用含10%MTBE的汽油能使燃料消耗下降7%,并使废气中含铅量、CO量特别是致癌多环芳烃的排放物明显降低。作为有机合成原料,可制高纯度的异丁烯。还可用于生产2-甲基丙烯醛、甲基丙烯酸及异戊二烯等。另外,还可用作分析溶剂、萃取剂。制备甲基叔丁基醚的方法一种由混合C↓[4]烃中异丁烯与甲醇合成制备化工型甲基叔丁基醚的工艺方法,采

离子交换设计计算书课件

混合离子交换器 详 细 设 计 计 算 书 宜兴市华电环保设备有限公司

1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生 -含量为水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO 3 器除去重碳酸20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO 2 根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱

→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

甲基叔丁基醚

甲基叔丁基醚 Methyl Tertbutyl Ether jia甲墓叔丁基醚第8卷三种基本类型.即标准回收型、高度回收型、超高回收型.异丁烯转化率分别为97~98%、99%、99.9%。抽余碳四中异丁烯含量分别为2.5%、99%的MTBE 产品,塔顶为剩余碳四和甲醇,进入水洗塔水洗,水洗塔顶物料为不含甲醉的碳四,塔底为甲醉水溶液,进入甲醉回收塔,从回收塔顶采出纯度为99%以上甲醇,送反应器循环使用,塔底为含少量甲醇的水,大部分作甲醉水洗塔用水,少部分排放。斯一阿一段法工艺流程如图 2所示。 [rt1收甲醇「1哩碳四┌──┐│」6 │└──┘图3斯一阿二段法工艺流程 1一一段列管式反应器;2一第脱碳四塔; 3一第二反应器;4一第二脱碳四塔; 5一水洗塔;6一甲醇lrtI收塔回收甲醉剩余碳四过多地反应产生线状聚合物,需选择适宜的温度和空速,温度与空速之间关系可用如下公式表示甲醉碳四了 ~2(LHSV+25) 式中,—反应温度,C; LHSV—液相空速,h 5.4.2.法国石油研究院(I FP)工艺 MTBE 图2斯一阿标准回收型工艺示意图 1一列管式反应器;2一MTBE分离塔; 3一水洗塔;4一甲醇回收塔该工艺可用各种异丁烯含量的碳四作原料,主反应器采用上流筒式外循环膨胀床,催化剂为阳离子交换树脂。根据对异丁烯转化率的要求,可选用一段或二段工艺。二段和一段工艺区别在于增加二段反应器和第二脱碳四塔。异丁烯转化率可达99.9%。二段法工艺流程如图4所示。 (2)斯一阿二段法工艺为提高异丁烯转化率和克服一段法中因甲醇过量,使MTBE分离困难的问题,斯一阿工艺采用了两段法工艺。该工艺将新鲜碳四、甲醇和含甲醉的MTBE循环物料,进入第一段反应器,异丁烯过量,使甲醉全部转化,反应产物进入第一脱碳四塔,塔顶为碳四馏分,塔底为不含甲醇的MTBE产品,塔项碳四馏分补加甲醉后进二段反应器,甲醇过量,以保证异丁烯转化率,二段反应器产物进入第二脱碳四塔,塔顶采出含甲醉碳四,经水洗塔,甲醇回收塔回收甲醇,塔底为含甲醉的MTBE,循环至第一反应器入口。斯一阿二段法工艺如图3所示。该工艺特点:对碳四馏分的适应性强,可适用不同异丁烯含量(10~55%)的碳四原料。还可根据对异丁烯转化率的要求,选择标准型、高效型和超高效型工艺。由标准型改为高效型或超高效型只需增加设备,不需要对装置进行改造。如果用含有丁二烯的碳四作为原料,为抑制丁二烯回收甲醉剩余碳四甲竺碳四一段二段甲醉+MTBEL一一MTBE 图J IFP一几段法一〔艺流程 1一主反应器;2一补充反应器;3一第一脱碳四塔; 4一二段反应器;5一第几脱碳四塔; 6一水洗塔;7一甲醇回收塔新鲜和循环甲醇与碳四馏分由反应器底部加入,从主反应器顶部出来物料一部分进入补充反应器中继续反 2 18 第8卷甲基叔丁荃醚jia 工艺相比,简化了流程,降低能耗和生产成本。②竖式炉型反应器结构简单投资费用低。 5.4.4.美国化学研究和许可证—新化学工艺该工艺把反应器和蒸馏塔组合在一起,实现反应和蒸馏在同一设备内进行。有两种流程,一种称催化蒸馏 MTBE流程,另一种叫复合MTBE流程(MTBE一Plus流程)。所用原料主要来自催化裂化碳四馏分,也有称作催化裂化碳四催化蒸馏工艺。工艺流程如图6、图7所示。—刁甲石薪炎四1醉醉一四甲一碳应,另一部分通过冷却器换热后循环到主反应器底部,以调节和控制主反应器温度和反应物料浓度。从补充反应器底部出来的物料进入第一脱碳四塔,塔底为MTBE产品,塔顶为碳四与甲醉共沸物,再进入第二醚化反应器 C 二段反应器)进一步反应,异丁烯总转化率可达 99.9%,二段反应器出来的物料进入第二脱碳四塔,塔底为MTBE和甲醉,循环到主反应器中,塔顶为含甲醇的碳四,经水洗、甲醇回收塔可得到基本上不含异丁烯的碳四和甲醉,甲醇循环回主反应器底部。该工艺有以下特点: O)采用上流筒式膨胀床反应器与列管固定床反应器相比造价低,装卸催化剂容易,可防止催化剂颗粒粘结,床层阻力降较低。反应器内催化剂处于运动状态,反应热分布均匀,可防止床层过热,减少副反应和延长催化剂使用寿命。②主反应器中催化剂负荷大,而且最易受原料中阳离子的毒害而失活。本工艺可设两个主反应器,当一个反应器内催化剂失活时,可切换另一个反应器。③异丁烯转化率高,操作容易、灵活,可适应不同异

离子交换制备除盐水实验

专业综合性实验 实验名称离子交换制备除盐水实验 一、实验目的 1.熟悉顺流再生固定床运行的操作过程。 2.加深对阳离子交换和阴离子交换基本理论的理解。 3.了解离子交换法在水处理中作用与原理。 二、实验原理 离子交换过程可以看做是固相的离子交换树脂与液相中电解质之间的化学置换反应,其反应一般都是可逆的。 本实验采用国产001×7(711)强酸树脂和201×4(711)强碱树脂把水中的成盐离子(阳、阴离子)除掉,这种方法称为水的化学除盐处理。原水通过装有阳离子交换树脂的交换器时,水中的阳离子如Ca2+、Mg2+、K+、Na+等离子便与树脂是的可交换离子(H+)交换;接着通过装有阴离子交换树脂的交换器时,水中的阴离子Cl-、SO42-、HCO3-等与树脂中的可交换离子(OH-)交换。基本反应如下: 1/2Ca2+1/2SO42-1/2Ca2+1/2SO42- RH+ +1/2Mg2+Cl-=== R 1/2Mg2++ H+Cl- Na+HCO3-Na+HCO3- K+HSiO3-K+HSiO3- 1/2SO42-1/2SO42- ROH-+ H+Cl-==== R Cl-+ H2O HCO3-HCO3- HSiO3-HSiO3- 经过上述阴、阳离子交换器处理的水,水中的盐分被除去,此即为一级复床的除盐处理。树脂使用失效后要进行再生即把树脂上吸附的阴、阳离子置换出来,

代之以新的可交换离子。阳离子交换树脂用HCl或H2SO4再生,阴离子交换树脂用NaOH再生。基本反应式如下: R2Ca + 2HCl 2RH + CaCl2 R2Mg + 2HCl 2RH + MgCl2 RCl + NaOH ROH + NaCl 三、实验仪器、设备与药品 离子交换树脂装置一套、DDSJ-308A型电导率仪、秒表 四、实验步骤 (1)熟悉实验装置,搞清楚每条管路、每个阀门的作用。 (2)强酸性阳离子交换树脂和强碱性阴离子树脂的预处理用70~80°C 浸洗树脂7~8次(阴离子树脂耐热性较差一些,可用50~60°C热 水),浸洗至浸出水不带褐色,然后用1mol/L盐酸和1mol/LNaOH 轮流浸洗,即按酸-碱-酸-碱-酸顺序浸洗五次(阴离子树脂与 之相反),每次2h,浸泡体积为树脂体积的2~3倍。酸碱互换时应 用水进行洗涤,五次浸泡结束后用去离子水洗涤至溶液呈中性。 (3)测定原水电导率,测量交换柱内径及树脂层高度。(表1) 表1 原水电导率及实验装置的有关数据 (4)离子交换。原水按一定的流速通过交换柱,每隔10min测一次出水的电导率。 (5)改变运行流速。改变原水通过交换柱的流速,每个流速按每隔5min 测一次出水的电导率。(表2) 表2 交换实验记录

甲基叔丁基醚

第一章绪论 1.1概述 甲基叔丁基醚(MTBE)是一种高辛烷值汽油添加剂,用MTBE取代四乙基铅可减少环境污染。MTBE也是一种不腐蚀、低污染、成本低的碳四分离新手段。裂解得到的聚合级异丁烯,供丁烯橡胶使用。含异丁烯0.5%以下的直链丁烯用作丁烯氧化脱氨制丁二烯的原料。将MTBE进行分解,所得的异丁烯只需要进行经过简单蒸馏及洗涤,即可得到99.5%的高纯度异丁烯。MTBE作为新兴的重要的化工产品,已广泛应用在法国、意大利、加拿大等国家。在我国也有着广泛的开发前景。 1.1.1 MTBE生产历史和生产前景 自1970 年Raycher发现醇和烯烃醚化反应后的数十年间,有关文摘指导极少,但却有大量的专利指导了甲基叔丁基醚。1973年意大利第一套10万吨/年的MTBE工业装置投产后,作为新兴汽油添加剂,MTBE引起了各国石油化学界的普遍重视,其产量每年以54%的速度增长。MTBE工业是当今极有前途的新兴工业之一。 1979年我国才开始研究MTBE合成工业。1983年我国第一套500万吨/年化工型MTBE 工业装置建成后,增长的速度较快,已形成一定规模的生产能力。制备MTBE的原料异丁烯的技术发展呈多样化的趋势,用一种异丁烷制异丁烯的技术生产MTBE极为理想。总收率达95%. MTBE生产工艺普遍采用用酸性的离子交换树脂合成MTBE,用MeoH和异丁烯在液相70~100%下通过酸性的离子交换树脂在填充床内进行。离子交换树脂是磺化聚苯乙烯和二乙烯基苯共聚物。 我国继齐鲁5500吨/年MTBE装置投产后,上海燕山、吉化、浙江、抚顺等MTBE 工业装置相继投产。第一套采用催化蒸馏新工艺的4万吨/年MTBE工业装置建成投产,标志着我国生产工艺水平达到80年代国际先进水平。现在的中国石油吉林分公司的MTBE 生产水平已达到5万吨/年. 1.1.2 设计依据【12】 根据要求,设计年产5万吨MTBE的生产工艺。由于MTBE取代四乙基铅可减少环境污染,且用途广泛,促使世界各国对MTBE的需求量日益增加,因此世界各国在寻求更先进的方法,投资建厂生产MTBE。由此可见,建设项目具有十分重要的意义。目前合成MTBE 的方法主要有:1、离子交换树脂法2、硫酸法3、催化蒸馏法。目前催化蒸馏法最先进,但远没有广泛应用。硫酸具有腐蚀性,因此本设计是采用离子交换树脂法。此法工业应用最早,技术上比较成熟,采用一器一塔流程,能耗低,经济合算。 由于位于松花江畔,水源充足,所以设计的车间建设在松花江畔,且既靠近丰满水电站又临热电厂及动力厂,能源充足,且资源也较富足。本设计装置所用的原料由吉化104厂丁二烯抽取。所用的甲醇原料来自吉化化肥厂生产的甲醇,为MTBE的生产奠定了雄厚的基础。 1.1.3厂址的选择及设计地区的自然条件车间的组成及人员 1.1.3.1厂址选择 本厂建于吉林市铁东,其原因是水电充足。 1.1.3.2设计地区的自然条件 吉林市自然条件如下:

相关文档