文档库 最新最全的文档下载
当前位置:文档库 › 光隔离器实验

光隔离器实验

光隔离器实验
光隔离器实验

廿一、光隔离器

实验人:合作人:

(物理科学与工程技术学院,光信息科学与技术2011 级 1 班,学号11343026)一、实验目的:

1.学习光隔离器的原理

2.了解光准直器的原理及其应用

3.学习测量光隔离器的主要技术参数

二、实验原理与器件:

光隔离器是一种只允许光沿光路正向传输的互易性光无源器件,主要用于抑制光通信网络中的反射波。光隔离器广泛应用于光信号的发射、放大、传输等过程中。因为许多光器件对来自连接器、熔接点、滤波器等的反射光非常敏感,若不消除这些反射光将导致器件性能的急剧恶化。这时就需要用光隔离器来阻止反射光返回系统。

1.法拉第磁光效应

光隔离器的工作原理需要是利用磁光晶体的法拉第效应。典型的光隔离器采用法拉第旋转器,转光转角为45度,其材料主要为钇铁石榴石(YIG),现在多采用高性能磁光晶体。高性能磁光晶体是一种采用液相外延技术在石榴石单晶上生成掺镱、镓、钬或铽等元素的薄膜材料,如:(YbTbBi)3Fe5O12石榴石单晶薄膜,其单位长度的法拉第旋转角是传统YIG晶体的5倍以上,而所需磁感应强度B却仅为传统材料的一半或者1/3。

法拉第效应(1945年):对于给定的磁光晶体材料,光振动面旋转的角度θ与光在该物质中通过的距离L和磁感应强度B成正比(α为光线与磁场的夹角,):

θcosα(21.1)

=

VLB

式中,V是比例系数,它是材料的特性常数,称维尔德(Verdet)常数,单位是:分/高斯?厘米。进一步研究表明,法拉第效应旋转角是材料的介电常数、旋磁比和饱和磁场强度以及光波频率、外加磁场强度的函数。

值得注意的事,磁致旋光效应和材料的固有磁光效应不同。固有磁光效应的方向受光的传播方向影响,而与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去,光的偏振面总是朝同一方向旋转。因此,在材料的固有旋光效应中,如果光束沿着原光路返回时,其偏振面将转回到初始位置。而在法拉第磁光旋转效应中,磁场对此光材料产生作用,是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的方向取决于外加磁场的方向,与光的传播方向无关。迎着光看去,当线偏振光方向沿磁力线方向通过介质时,其振动面向右旋转;当线偏振光方向沿磁力线反方向通过介质时,其振动面向左旋转。旋转角θ的大小受磁光材料的旋磁特性、长度、工作波长及磁场强度的影响。材料介质越长、磁场强度越强、工作波长越短,旋转角度将越大。

不同介质,振动面的旋转方向不同。顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,V为正值。反之,则称为左旋或负旋介质,V为负值。

对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。这点是磁光介质和天然旋光介质之间的重要区别。就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,

另一次是与这个方向相反,观察结果,振动面并没旋转。可是磁光物质则不同,光线以相反的两个方向两次通过磁光物质时,其振动面的旋转角是叠加的。因此,在磁致旋光的情况下,使光线多次通过磁光物质可得到旋

转角累加。

在强磁场中放一块磁光物质ab ,ab 呈平行六面体状。其相对的两表面除留有一个很窄的缝隙外皆涂以银(图21.1中的斜线)。光线从狭缝进入磁光介质,然后经过在镀银表面上的多次反射,从另一个狭缝射出。这时,出射的偏振光振动面的旋转角,将与光线在介质中多次反射的总光程成正比例。

2. 光隔离器的工作原理

图21.1、

磁光介质旋转角的累

(1)入射光透过偏振镜之后,只让偏振角为90度(y 轴)方向的光通过,在经一順时针方向旋转45度的法拉第回旋器(45°Faraday Rotator)將原本偏振角为90度順时针调整成为45度输出,如图21.2(a)、图21.2(b)。

(2)入射光经调整后为90度,而输出的光偏振角則为45度,如图21.2(c)。

(3)此時如果有一反射光循原路径返回经过输出端偏振镜后,只让偏振角为45度角的光通过,经过法拉第回旋器,將反射回來的光偏振角再调整成0度(x 轴)到了输入端的偏振镜時,原本输入端的偏振镜角度为90度,会將偏振角度为0度的反射光滤除。這時输入端便不会有自系統反射回來的光了,如图21.2(d)。

或者见示意图(图21.3和图21.4所示)

正向传输时,光可顺利通过第二个偏振器(导通):

反向传输时,光偏振面再转45度,与第二个偏振器成90度,光被隔离:

3. 偏振无关隔离器 其光学结构如图21.5所示 图

21.3、光隔离器正向导通

图21.4、光隔离器反向截止

Wedge 是楔形双折射晶体,作为偏振器使用,两个偏振器成45度。法拉第旋转器放置在中间。 4. 光纤准直器

光纤准直器是光纤通信系统和光纤传感系统中的基本光学元件,它是由光纤和长度为0.25节距的具有合适镀层的自聚焦透镜组成,如图21.6所示。

自聚焦透镜的焦距为:

()[]

1

sin -=z A A n

f (21.2)

其中,z 为自聚焦透镜的长度。由此可见,因为A 是波长的函数,所以f 也是波长的函数,在给定的波长条件下如果z 过长,则焦点在透镜的端面内;反之,z 过短,则焦点在透镜端面外。因此,透镜长度的误差必然会影响光耦合的效果,这是造成准直器损耗的主要原因之一。

光纤和自聚焦透镜之间的耦合原理同普通透镜的耦合原理相似,所以用自聚焦透镜的长度为:

A

P z 24π==

(21.3) 式中,P 为自聚焦透镜的节距。因为自聚焦透镜的四分之一节距P 是在近轴近似的条件下,子午光线遵循正弦路径传播而确定的。同时,GRIN 的折射率分布在离轴心0.8mm 半径处有一拐点。所以,由(21.1)式算出的z 值还不够精确,带来了耦合时的损耗;另外,GRIN 的像差也会使光束的耦合效率下降,增加了器件的损耗。

光准直器的用途是对高斯光束进行准直,两个光准直器放在图21.5所示光学结构的两端,以提高光纤与光纤间的耦合效率。

基本技术参数

1. 插入损耗(Insert Loss )

在光路中增加了光隔离器而产生的额外损耗,称为插入损耗,定义隔离器输入和输出端口之间的光功率之比(dB ),

图21.5、光隔离器内部光学结构

图21.6 光纤准直器

in

out

P p L I lg

10..-= (21.4)

其中P in 为发送进输入端口的光功率,P out 为从输出端口接收到的功率。 2. 隔离度

它是指光隔离器反方向的传输损耗,所以,也称作反向隔离度:

in

out

P p L I lg

10..-= (21.5)

所以,光隔离器的插入损耗与隔离度的测量方法是一样的,只是一个测量正向、另一个测量反向。 3. 回波损耗

器件的回波损耗是指入射到器件中的光能量和沿入射光路反射回的光能量之比。回波损耗由各元件和空气折射率失配造成的反射引起,主要包括晶体元件和光准直器引起的回波损耗。回波损耗的测试原理如下图:

这是CCITT 和国家标准中建议的方法。测试时,选择一个插入损耗小,分光比为1:1带连接器端口的定向耦合器进行测试。先将耦合器的第三端口用匹配剂匹配起来,用光功率计测得耦合器第二端的光功率P 0,再将待测器件接上,并在待测器件的尾端涂好匹配液,测得耦合器第三端的回返光功率P r ,即得到待测器件的回波损耗:

23lg 10)lg(

10..T P P L R o

r

+-= (21.6)

其中,T 23为定向耦合器的传输系数,对于1:1均匀分光定向耦合器,其值一般设为0.5。

三、实验用具与装置图:

实验用具:稳定光源、光功率计(武邮)、单模标准跳线(用于测量器件的输入功率)、

光隔离器(OISS1310ASO1111)

实验装置示意图如下所示:

实验步骤需要同学自行拟定。

光 源

光功率计

定向耦合器 匹配液

待测器件

图21.6 光纤准直器

四、实验步骤和数据记录

1、测量跳线的输出光功率。

(1)用镜头纸擦拭跳线两端的光纤界面,避免尘土影响光波入射。 (2)跳线的一段连接稳定化光源,另一端连接光功率计。 (3)调节稳定化光源,使其稳定输出1310nm 和1550nm 光波。

(4)选择光功率计的1310nm 和1550nm 档,待其稳定后读数,记录数据。 (5)以上操作需在下面每个实验参数测量前重复进行一次。

2、测量光隔离器1310nm 和1550nm 的插入损耗I.L

(1)用镜头纸擦拭光隔离器的光纤的每端界面。

(2)把光隔离器正、反向分别接入1310nm 稳定化光源和光功率计。 (3)接入后即开始读数,记录数据。

(4)隔几分钟读数一次,重复四次,共记录5个数据。 (5)换上1550nm 稳定化光源,重复上述步骤。 1.测得标准跳线当的光功率in P 为: 1310nm: 76.5μW , -11.15dBm 1550nm : 409μW , -3.89dBm

用μW 表示,插入损耗为

in out P p L I lg

10..-=

得到插入损耗的平均值为2.075 dB ,其误差为:

0072.0.)...(5151

i 2

1=-=

∑=L I L I i σ

用dBm 记录的数据来计算

m 084.2..111dB P P L I out in =-=

其误差为:

0049.0.)...(5151

i 2

1=-=

∑=L I L I i σ

(2)对于1550nm 光源,隔离器输出端功率out P 为:

插入损耗为:

用μW 表示,插入损耗为

in out P p L I lg

10..-=

得到插入损耗的平均值为0.4834 dB ,其误差为:

002.0.)...(5151

i 2

1=-=

∑=L I L I i σ

用dBm 记录的数据来计算,插入损耗为:

m

47.0..111dB P P L I out in =-=

其误差为:

0.)...(515

1

i 21=-=

∑=L I L I i σ

对于1310nm 光源,插入损耗约为2.075±0.0072dB,对于1550nm 光源,插入损耗约为0.4834±0.002dB 。可见两种计算方法得出的结果基本一致,这是由于两种单位制之间存在

的关系

)

1)

(lg(

10mW mW P dBm =,但显然,用dBm 单位来的更简单方便。并且相对于1550nm 的

输入功率来说,插入损耗值比较小,约为输入功率的0.5%左右,可看出光隔离器并不是对于每个波长都起隔离作用,而是对应与特定的波长工作的。本实验的隔离器对应波长为1550nm 。

3·求光隔离器1310nm 和1550nm 的反向隔离度so I

(1)用镜头纸擦拭光隔离器的光纤的每端界面。

(2)把光隔离器反、正向分别接入1310nm 稳定化光源和光功率计。 (3)接入后即开始读数,记录数据。

(4)隔几分钟读数一次,重复四次,共记录5个数据。 (5)换上1550nm 稳定化光源,重复上述步骤。

对于1310nm 光源,输入光功率为: 78.6μW , -11.04dBm

用μW 表示,反向隔离度为:

dB P P C out

out 96.96.78944

.7lg 10'lg

10=?-=-=

其误差为:

dB P P P C P C out P out P P out P out C out out out out 01.0)10

ln '10()10ln 10()'()(

2

'22'2=??+??=???+???=σσσσσ

则其反向隔离度为:

dB C )01.096.9(±=∴

用dBm 记录的数据来计算,反向隔离度为:

dB P P C out out 96.9)996.20()04.11(=---=-=

dB P P P C P C out P out P P out P out C out out out out 002.0)10

ln '10()10ln 10()'()(

2

'22'2=??+??=???+???=σσσσσ 则其反向隔离度为:

dB C )002.096.9(±=∴

对于1550nm 光源,输入光功率为: 375.9 μW ,-4.24dBm

用μW 表示,反向隔离度为:

dB P P C out

out 69.409.37503209

.0lg 10'lg

10=?-=-=

其误差为:

dB P P P C P C out P out P P out P out C out out out out 004.0)10

ln '10()10ln 10()'()(

2

'22'2=??+??=???+???=σσσσσ

则其反向隔离度为:

dB

C )004.069.40(±=∴

用dBm 记录的数据来计算,反向隔离度为:

dB P P C out out 69.40)93.44()24.4(=---=-=

其误差为:

dB P P P C P C out P out P P out P out C out out out out 0006.0)10

ln '10()10ln 10()'()(

2

'22'2=??+??=???+???=σσσσσ

dB

C )0006.069.40(±=∴

可见两种计算方法得出的结果基本一致,其中隔离度较大表明分波性能越好,可看出一种光隔离器是对应与特定的波长工作的。表明该光隔离器对于1550nm 波长起着隔离作用,对于1310nm 波长隔离性能较差。

总结,可得两种波长下光隔离器的参数:

4·测量光隔离器1550nm 的偏振相关损耗

(1)用镜头纸擦拭光隔离器和偏振控制器的光纤的每端界面。

(2)把光隔离器正向接入偏振控制器和光功率计。 (3)把偏振控制器的另一端接入1550nm 稳定化光源。 (4)手动调节偏振控制器,改变光波的偏振。

偏振相关损耗为: dB L D 88.19

.375244

lg

10..P =-=

P.D.L= -4.24-(-6.12)=1.88dB

所得偏振相关损耗值均很小,这可推测本实验所用的单模光纤为偏振非相关的,其偏振相关损耗应与偏振方向无关。对于光隔离器,有一定程度的偏振非相关的,其偏振相关损耗应与比自身偏振损耗要大一点。

5、光隔离器回波损耗测量

(1)用镜头纸擦拭光隔离器和光耦合器(如图)的光纤的每端界面。 (2)把光耦合器的光纤1接入1550nm 稳定化光源。 (3)把光耦合器的光纤3正向接入光隔离器。 (4)把光耦合器的光纤2接入光功率计。 (5)接入后即开始读数,记录数据。

(6)隔几分钟读数一次,重复四次,共记录5个数据。

输入功率0P =187.4 μW , -7.27dBm

(1)以μW 单位制进行计算

dB P P L r 4.412lg 104.18700678

.0lg 10lg

10..R 0

=?-?-=-=

误差为:

dB P P P L R P L R P P r P P r L r r 026.0)10

ln 10

()10ln 10()..()..(

202202..R 00=?+?-=???+???=σσσσσ

因此,

dB L )026.04.40(..R ±=

(2)以dBm 单位制进行计算

dB P P L r 42.41)01.370.51()27.7()2lg 10(..R 0=+---=?+-=

误差为:

dB P P P L R P L R P P r P P r L r r 003.0)10

ln 10

()10ln 10()..()..(

202202..R 00=?+?-=???+???=σσσσσ

因此,

dB L )003.042.41(..R ±=

五、思考题:

1.法拉第磁光效应与克尔磁光效应的差异及其应用?

答:克尔磁光效应的方向受光的传播方向影响,与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去光的偏振总是朝同一个方向旋转。而在法拉第磁光旋转效应中,磁场对光材料产生作用是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的

次通过磁光物质可得到旋转角的叠加。

2.光隔离器工作原理。

答:(1)入射光透过偏振镜之后,只让偏振角为90度(y 轴)方向的光通过,在经一順时针方向旋转45度的法拉第回旋器(45°Faraday Rotator)將原本偏振角为90度順时针调整成为45度输出。

(2)入射光经调整后为90度,而输出的光偏振角則为45度。

(3)此時如果有一反射光循原路径返回经过输出端偏振镜后,只让偏振角为45度角的光通过,经过法拉第回旋器,將反射回來的光偏振角再调整成0度(x 轴)到了输入端的偏振镜時,原本输入端的偏振镜角度为90度,会將偏振角度为0度的反射光滤除。這時输入端便不会有自系統反射回來的光了。

正向传输时,光能顺利通过第二个偏振器(导通);反向传输时,光偏振面再转45度,与第二个偏振器成90度,光被隔离。

3.如果采用图21.6的方案制作光隔离器,其PDL 应该会是多大?比较与图21.2的差异。

答:器件的回波损耗是指入射到器件中的光能量和沿入射光路反射回的光能量之比。回波损耗由各元件和空气折射率失配造成的反射引起,主要包括晶体元件和光准直器引起的回波损耗。偏振相关损耗(PDL )的测量对测量系统中的扰动极其敏感,这些扰动包括光源的不稳定性,连接器的反射,甚至是测试光纤的布局。

图21.6中的回波损耗为max

min

lg 10PDL P P -=。

4.光准直器的结构与应用?

答:光纤准直器室由光纤和长度为0.25节距的具有合适镀层的自聚焦透镜组成。光准直器

的用途是对光纤中传输的高斯光束进行准直,以提高光纤与光纤间的耦合效率。

5.除了法拉第旋转器,是否能用其它的方法制作光隔离器?

答:只要能够实现旋转角累加的旋转器都可以用来制作光隔离器。目前除了法拉第效应能够实现旋转角累加外,我还不知道其他方法可以思想旋转角叠加。

6.光隔离器的品种、型号、规格和外形尺寸

答:光隔离器有单级和双级之分;按照各个参数的不同可以分为S 级,P 级和A 级;规格按波长的不同分别有1310nm -1550nm 之分;外形一般为筒状,尺寸规格为筒子长几十个毫米,外径一般为几个毫米。

六、参考文献:

1.林学煌等编:《光无源器件》,人民邮电出版社,1998.

2.李玲、黄永清著:,《光纤通信基础》,国防工业出版社,1999.

3.有关制造厂家的网址:

https://www.wendangku.net/doc/a710650537.html,/fiboptiso/hp.html

https://www.wendangku.net/doc/a710650537.html,/catclog/products/8381.html

https://www.wendangku.net/doc/a710650537.html,/olc/namiki/ns035.htm

4.磁光调制器件与隔离器件:https://www.wendangku.net/doc/a710650537.html,/gj/photonics/cai/ch5p5.htm 5.宋金生:“光纤无源器件技术的发展方向”,中国电信,https://www.wendangku.net/doc/a710650537.html,/

能量隔离讲义 三模块培训资料

项目:泵检修前的能量隔离 【场景】正在运行的一套储罐-泵物料输送系统,离心泵出现泄漏。 【任务】维持系统稳定运行,并为故障泵的检修做好准备。

知识准备一:离心泵的切换 (一)离心泵的开停 离心泵的启动: ?开泵前应先打开泵的入口阀 ?检查泵体内是否已充满液体 灌泵:如果不引水灌泵,那么泵内则充满了空气,空气的质量、密度都远远小于水,泵不可能将内部气体抽出,泵内压力就不会远小于大气压,水也就不可能被压入泵内。通过灌泵让泵内部形成密闭环境,泵启动将水抽出后将造成局部真空,外部的水在内外压差下被大气压压入泵的入口,完成吸水动作。 ?启动离心泵 ?慢慢打开泵的出门阀 思考:为什么先开电机再启动离心泵?往复泵呢? 泵启动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。 ?通过流量及压力指示,将出口阀调节至需要流量 离心泵的停止: ?慢慢关离心泵的出口阀 ?按电动机按钮,停止电机运转 ?关闭离心泵进口阀 (二)离心泵的切换 根据离心泵的开停程序,写出泵的切换步骤(将正在运行的A泵切换至B泵)

第一步:________________________________________ 第二步:________________________________________ 第三步:________________________________________ 第四步:________________________________________ 第五步:________________________________________

磁光隔离器项目可行性研究报告

磁光隔离器项目可行性研究报告 (立项+批地+贷款) 编制单位:北京中投信德国际信息咨询有限公司编制时间:二〇二〇年一月 咨询师:高建

目录

专家答疑: 一、可研报告定义: 可行性研究报告,简称可研报告,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。 一般来说,可行性研究是以市场供需为立足点,以资源投入为限度,以科学方法为手段,以一系列评价指标为结果,它通常处理两方面的问题:一是确定项目在技术上能否实施,二是如何才能取得最佳效益。 二、可行性研究报告的用途 项目可行性研究报告是项目实施主体为了实施某项经济活动需要委托专业研究机构编撰的重要文件,其主要体现在如下几个方面作用: 1. 用于向投资主管部门备案、行政审批的可行性研究报告 根据《国务院关于投资体制改革的决定》国发(2004)20号的规定,我国对不使用政府投资的项目实行核准和备案两种批复方式,其中核准项目向政府部门提交项目申请报告,备案项目一般提交项目可行性研究报告。 同时,根据《国务院对确需保留的行政审批项目设定行政许可的决定》,对某些项目仍旧保留行政审批权,投资主体仍需向审批部门提交项目可行性研究报告。 2. 用于向金融机构贷款的可行性研究报告 我国的商业银行、国家开发银行和进出口银行等以及其他境内外的各类金融机构在接受项目建设贷款时,会对贷款项目进行全面、细致的分析平谷,银行等金融机构只有在确认项目具有偿还贷款能

信号隔离安全栅与信号隔离器的区别

信号隔离安全栅与信号隔离器的区别 一、定义 1、信号隔离器(isolator ):一般指弱电系统中的信号隔离器,既保护下级信号系统不受上级系统影响和干扰。 2、信号隔离安全栅(safety barrier):接在本质安全电路和非本质安全电路之 间。将供给本质安全电路的电压或电流限制在一定安全范围内的装置。安全栅是一种统称,分为齐纳式安全栅和隔离式安全栅,隔离式安全栅简称隔离栅。 金湖英普瑞电子设备有限公司主营产品有:隔离安全栅,信号隔离器,信号隔离配电器,直流信号隔离器,开关量信号安全栅,电流变送器。同时代理日本横河EJA变送器,横河AXF 电磁流量计,横河DY涡街流量计,罗斯蒙特3051系列变送器,罗斯蒙特248系列温度变送器,罗斯蒙特475手操器。 二、工作原理 1、信号隔离器工作原理:首先将变送器或仪表的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。 2、齐纳式安全栅的工作原理 安全栅的主要功能就是限制安全场所的危险能量进入危险场所,及限制送往危险场所的电压和电流。 齐纳管Z用于限制电压。当回路电压接近安全限压值时,齐纳管导通,使齐纳管两端的电压始终保持在安全限压值以下。 电阻R用于限制电流。当电压被限制后,适当选择电阻值,可将回路电流限制在安全限流值以下。 保险丝F的作用是防止因齐纳管被长时间流过的大电流烧断而导致回路限压失效。当超过安全限压值的电压加在回路上时,齐纳管导通,如果没有保险丝,流经齐纳管的电流将无限上升,最终烧断齐纳管,使回路失去限压。 为确保回路限压安全,保险丝的熔断速度要比齐纳管可能被烧断的速度快十倍。 采用图一所示的三冗余齐纳管的安全栅基本限能电路结构,能够确保安全栅在正常工作、一个故障点和两个故障点时均能将安全栅的输出能量限制在安全参数规定的范围之内,从而满足ia级本质安全电路的要求。 3、隔离式信号隔离安全栅的工作原理 与齐纳安全栅相比,隔离式安全栅除具有限压与限流的作用之外,还带有电流隔离的功能。隔离栅通常由回路限能单元、电流隔离单元和信号处理单元三部分组成,基本功能电路如图二所示。回路限能单元为安全栅的核心

光隔离器的功能和基本原理教学文案

光隔离器的功能和基 本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系 统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相 关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者 又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体 激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的 光隔离器而享有低成本的优势;在通信线路或者 EDFA 中,一般采用在线型光隔离器,因 为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由 空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏 振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片 1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片 2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片 2 的透光轴方向,经法拉第旋光片时仍逆 时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相 对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测 试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和 成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入 PMD,因此相应出现 PMD 补偿型 Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双 级光隔离器,在更宽的带宽内获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器 1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针 旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器 2;反向光从准直器 2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和

信号隔离器的工作原理及功能是什么

信号隔离器的工作原理及功能是什么? 1.工作原理: 首先将变送器或仪表的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。 2.功能: 一:保护下级的控制回路。 二:消弱环境噪声对测试电路的影响。 三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。 DIN系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。 信号隔离器的主要类型有哪些? 1.隔离器: 工业生产中为增加仪表负载能力并保证连接同一信号的仪表之间互不干扰,提高电气安全性能。需要将输入的电压、电流或频率、电阻等信号进行采集、放大、运算、和进行抗干扰处理后,再输出隔离的电流和电压信号,安全的送给二次仪表或plc\dcs使用。 2.配电器: 工业现场一般需要采用两线制传输方式,既要为变送器等一次仪表提供24V配电电源,同时又要对输入的电流信号进行采集、放大、运算、和进行抗干扰处理后,再输出隔离的电流和电压信号,供后面的二次仪表或其它仪表使用。 3.安全栅:

一些特殊的工业现场(如燃气公司和化工厂)不但需要两线制传输,既提供配电电源又有信号隔离功能,同时还需要具有安全火花防爆的性能,可靠地遏制电源功率、防止电源、信号及地之间的点火,限流、降压双重限制信号及电源回路,把进入危险场所的能量限制在安全定额范围内。 信号隔离器安装维护应注意哪些事项? 由于生产厂家不同,对隔离器的生产工艺、接线定义也不都相同,但使用场合基本相同,所以对产品的防护要求及维护基本相同。 1. 使用前应详细阅读说明书。 2. 作为信号隔离使用时,应将输入端串入环路电路中,输出端接取样回路。 3. 作为隔离配电使用时,应将输入端串入电源电路中,输出端接变送器。 4. 若不正常工作应先检查接线是否正确,注意电源有无及极性反正。 为什么有时PLC接收到的现场信号误差大且稳定性差? 造成这种现象的原因很多,不同仪表信号参考点之间的电位差是重要因素。由于这个“电位差”造成仪表信号之间产生干扰电流,致使PLC误差大且稳定性差。所以不同设备、仪表的信号有一个共同的参考点是最佳状况。隔离器使输入/输出电气上完全隔离,在PLC模拟接口板形成共同的参考点,达到理想状况问题就解决了。 设计隔离端子的原则是什么? 需要为每台隔离器都配电源吗?设计要遵循两个原则。第一:外部设备与中央处理系统(例如PLC、DCS)之间要进行电气隔离。第二:外部设备信号(无论是向中央处理系统发送信号的外部设备到还是接收信号的外部设备)之间要实现相互电气隔离。例如要把PLC输出的一路

最新光隔离器的插入损耗、反向隔离度、回波损耗的测试

光隔离器的插入损耗、反向隔离度、回波损耗的测试 一.实验目的和任务 1.了解光隔离器的工作原理和主要功能。 2.了解光隔离器各参数的测量方法。 3.测量光隔离器的插入损耗、反向隔离度、回波损耗参数。 二.实验原理 光隔离器又称为光单向器,是一种光非互易传输无源器件,该器件用来消除或抑制光纤信道中产生的反向光,由于这类反向光的存在,导致光路系统间将产生自耦合效应,使激光器的工作变得不稳定和产生系统反射噪声,使光纤链路上的光放大器发生变化和产生自激励,造成整个光纤通信系统无法正常工作。若在半导体激光器输出端和光放大器输入或输出端连接上光隔离器,减小反射光对LD的影响,因此,光隔离器是高码速光纤通信系统、精密光纤传感器等高技术领域必不可少的元器件之一。 光隔离器是利用了磁光晶体的法拉第效应,其组成元件有:光纤准直器(Optical Fiber Collimator)、法拉第旋转器(Faraday Rotator)和偏振器(Polarizator)。隔离器按照偏振特性来分,有偏振相关型和偏振无关型。它们的原理图如图1.1和图1.2所示: 图1.1 偏振相关的光隔离器 图1.2 偏振无关的光隔离器

对于偏振相关光隔离器,光通过法拉第旋转器时,在磁场作用下,光偏振方向旋转角为FHL =φ,式中H 为磁场强度,L 为法拉第材料长度,F 为材料的贾尔德系数。如图 1.1,当输入光通过垂直偏振起偏器后,成为垂直偏振光,经过法拉第旋转器旋转了 045,而检偏器偏振方向和起偏器偏振方向成045角,使得光线顺利通过,而反射回来 的偏振光经过检偏器、法拉第旋转器以后,继续沿同一方向旋转045,即偏振方向刚好与起偏器偏振方向垂直,则光无法反向通过。由于只有垂直偏振的光能通过光隔离器,因此称为偏振相关光隔离器。 偏振无关光隔离器如图1.2所示,图1.2(a)为光隔离器正向输入。当包含两个正交偏振的输入光波被一个偏振分束器分离,变为垂直偏振光和平行偏振光。这两束光通过法拉第旋转器,沿同一方向旋转045,再通过λ/2波片旋转045,垂直偏振光变为平行偏振光,平行偏振光变为垂直偏振光,经过偏振分束器合为一束光输出。图1.2(b)是反向输入光的偏振态在隔离器中的演化过程。在SWP 水平偏振态光折射,垂直偏振态光透射,则光不能从正向输入端输出。 (一) 光隔离器插入损耗测试的实验原理 光隔离器的插入损耗是光隔离器正向接入时,输出光功率相对输入光功率的比率(以dB 为单位)。假设光隔离器的正向输入光功率为正1P ,输出光功率为正2P ,则其计算公式为: 正 正 21lg 10P P Insertloss = (1-1) 其插入损耗实验原理图如图1.3所示。 光隔离器 图1.3 光隔离器插入损耗测量原理图 (二) 光隔离器隔离度测试的实验原理 反向隔离度是隔离器最重要的指标之一,它表征光隔离器对反向传输光的隔离能力。将光隔离器按图1.4反向接入,假设光隔离器反向输入光功率为反1P ,输出光功率为反2P 。则光隔离器隔离度计算公式为:

信号隔离器原理及应用

信号隔离器原理及应用 在工业生产过程中,生成过程的监视和控制中要用到各种各样的仪器仪表,会产生各种各样的信号:既有微弱的毫伏级的小信号,又有数十伏的大信号,甚至还有高达数千伏和数百安培的强信号;既有直流低频信号,也有高频或脉冲尖峰信号;而这些信号都要经过互相传递和输送的过程,因此如何保证这些信号,特别是模拟信号在传输过程中不失真将成为系统调试中必须解决的问题。 具体地说,只有当控制装置和分布在现场的传感器和执行器之间的模拟信号传输无故障并且不失真时,才能保证过程控制安全可靠。尤其是小功率的模拟信号在干扰大的工业环境中传输时受各种外部干扰信号的影响,它们需要一条可靠的传输通道。日常工作经验表明,受设备要求的制约,必须谨慎小心的处理和传输模拟信号。而现场和控制层之间以模拟信号形式传输的测量和控制参数,在传输工程中常处于较恶劣的工业环境中,很可能会造成这些信号的失真。 z造成模拟信号失真的原因 1.接地环路问题:如下图所示,当过程环路中有两处或两处以上接地电阻不相等时,就会产生接地环路,过 程信号就会失真。 要使信号完整而不失真地传输,理想化的情况是所有设备、仪表中的信号都有一个共同的参考点,也就是有一个共同的“地”。只有这样,所有的设备、仪表的信号参考点之间电位差才能为“零”。很显然,不同设备的接地电阻很难保证都相等,接地电阻也会随着传输距离的增加而升高,有时甚至产生高达200V的电位差。 2.测量回路相互连接问题:如下图所示,在这些回路中,参考点要将因为接通多个信号回路而升高。 设备一 设备二 设备三 设备四 U 如上图,在这种相互连接的测量回路中,由于线间电阻的不断增加,必然会引起参考电压的不断升高。

磁光效应实验报告讲解

磁光效应实验报告 班级:光信息31 姓名:张圳 学号:21210905023 同组:白燕,陈媛,高睿孺

近年来,磁光效应的用途愈来愈广,如磁光调制器,磁光开关,光隔离器,激光陀螺中的偏频元件,可擦写式的磁光盘。所以掌握磁光效应的原理和实验方法非常重要。 一.实验目的 1.掌握磁光效应的物理意义,掌握磁光调制度的概念。 2.掌握一种法拉第旋转角的测量方法(磁光调制倍频法)。 3.测出铅玻璃的法拉第旋转角度θ和磁感应强度B之间的关系。二.实验原理 1. 磁光效应 当平面偏振光穿过某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表面其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ(9-1) = vlB 式中l为光波在介质中的路径,v为表征磁致旋光效应特征的比例系数,称为维尔德常数,它是表征物质的磁致旋光特性的重要参数。根据旋光方向的不同(以顺着磁场方向观察),通常分为右旋(顺时针旋转)和左旋(逆时针旋转),右旋时维尔德常数v>O,左旋时维尔德常数v<0。实验还指出,磁致旋光的方向与磁场的方向有关,由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏振等功能性磁光器件,在激光技术发展后,其应用价值倍增。如

用于光纤通讯系统中的磁光隔离器等。 2.在磁场作用下介质的旋光作用 从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。这里左旋和右旋是相对于磁场方向而言的。 图3 法拉第效应的唯象解释 如果磁场的作用是使右旋圆偏振光的传播速度c / n R 和左旋圆偏振光的传播速度c / n L 不等,于是通过厚度为d 的介质后,便产生不同的相位滞后: d n R R λπ ?2= , d n L L λ π?2= (2) 式中λ 为真空中的波长。这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量E 可以分解为图3(a)所示两个旋转方向不同的圆偏振光E R 和E L ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图5.16.3(b)所示。当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。从图上容易看出,由介质

数字隔离器工作原理及应用实例

龙源期刊网 https://www.wendangku.net/doc/a710650537.html, 数字隔离器工作原理及应用实例 作者:徐华 来源:《电脑知识与技术·学术交流》2008年第22期 摘要:讨论了隔离技术的发展,分析了数字隔离器的工作原理,给出了数字隔离器的应用实例。 关键词:隔离;数字隔离器;高频通道;低频通道;传感器;接口 中图分类号:TN305文献标识码:A文章编号:1009-3044(2008)22-772-02 The Working Principle and Applications of the Digital Isolator XU Hua (Xiamen Kerun Electronic Technology Co.Ltd, Xiamen 361006, China) Abstract: Discuss the development of isolation technology, analysis the working principle of the digital isolator, and also give the applications of digital isolators. Key words: isolation; digital isolators; high-frequency channel; low-frequency channel; sensor; interface 1 引言 进行隔离是防止电流在两个通讯点之间流动的一种方法。一般在两种情况下采用隔离:第一种情况是,在有可能存在损坏设备或危害人员的潜在的电流浪涌时。第二种情况是必须避免存在不同地电位和分裂的接地回路的互连。两种情形都是采用隔离来避免电流流过,而允许两点之间有数据或功率传送。隔离应用涉及高电压、高速/高精度通信、或者长距离通信。普通的例子如工业I/O系统、传感器接口、电源/调节杆,发动机控制/驱动系统以及仪器仪表。 2 早期的隔离技术 早期的设计除使用变压器之外,还使用各种模拟隔离放大器,将工厂地面的传感器电路与控制室内的信号处理系统进行隔离。在通道数量有限及信号带宽小的应用中,目前仍在采用这些放大器。隔离放大器虽然具有高可靠性和高精度,但受限于信号带宽50kHz。其老旧的技 术要求最小±4V的电源,不支持目前的3V及以下的低电压应用。此外,其制造过程涉及输入和输出部分单独制作,异常电路匹配的激光微调,以及在两部分间安装隔离电容,使这些器件相当昂贵。 3 多通道隔离

实验报告光隔离器(中大)

光隔离器相关参数测量 中山大学理工学院光信息专业 摘要:本文通过测量光隔离器的插入损耗、隔离度等相关参数,并对相关数据进行分析,得出结论,以进一步了解光隔离器的原理、功能。 关键词:光隔离器光功率插入损耗隔离度偏振相关损耗回波损耗 Measurement of the Parameters of an Optoisolator Major of optical information science and technology, SYSU, Guangzhou Abstract: In this experiment, we measured several important parameters of an optoisolator, then analyzed the data and draw some useful conclusions. After that, we got a further comprehension about the principles, the functions of the optoisolator. Key Words: optoisolator, optical power, insertion loss(IL), isolation, polarization dependent loss(PDL), return loss(RL); 一、实验目的 1.学习光隔离器的原理。 2.了解光准直器的原理及其应用。 3.学习测量光隔离器的主要技术参数。 二、实验用具及装置图 实验用具:稳定光远、光功率计(武邮)、单模标准跳线(用于测量器件的输入功率)、光隔离器(OISS1310ASO1111) 实验装置示意图如下所示: 三、实验原理与器件

磁光效应及其应用_周静

17卷5期(总101期) 19世纪中至20世纪初是科学发现的黄金时 期,各领域的伟大发现如雨后春笋般涌出,若干种对于了解固体物理特性并揭示其内部电子态结构有着重要意义的磁光效应现象也相继被发现,但至20世纪60年代末,对这一现象的研究主要集中在基础理论的探索和实验数据的积累方面。近几十年来,当光电子技术在新兴高科技领域获得日益广泛应用的同时,以磁光效应原理为背景的各种磁光器件也显示了其独特的性能和极为广阔的应用前景,并引起了人们浓厚的兴趣。 一、磁光效应(Magnetic-opticalEffect)磁光效应指的是具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使光波在其内部的传输特性也发生变化的现象。1845年,英国物理学家法拉第(Faraday)发现,入射光线在被磁化的玻璃中传播时,其偏振面会发生旋转,这是物理学史上第一次发现的磁光效应,称之为法拉第效应。受法拉第效应的启发,1876年克尔(Kerr)又发现了光在磁化介质表面反射时偏振面旋转的现象,即磁光克尔效应。随之在八九十年代又发现了塞曼效应和磁致线双折射效应。 法拉第效应当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象称为磁致旋光效应,这一效应最早由法拉第发现,通常又称为法拉第旋转效应。如图1所示,假设有一圆柱形磁光介质,沿着轴线方向外加一稳恒磁场H(此磁场值处在法拉第旋转器件的工作区内)。在这种情况下,将发生法拉第旋转效应,光波的偏振面绕传输轴连续右旋(相对于H而言),直至磁光介质的终端,偏振面右旋了某一角度!。 法拉第效应可分为右旋和左旋两种:当线偏振光沿着磁场方向传播时,振动面向左旋;当光束逆着磁场方向传播时,振动面将向右旋。 磁光克尔效应磁光克尔效应指的是一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而以椭圆的长轴为标志的“ 偏振面”相对于入射偏振光的偏振面旋转了一定的角度。这个角度通常被称为克尔转角,记作"k,如图2所示。 按照磁化强度取向磁光克尔效应又大致分为三种情况:(1)极向克尔效应,即磁化强度M与介质表面垂直时的克尔效应;(2)横向克尔效应,即M与介质表面平行,但垂直于光的入射面时的克尔效应;(3)纵向克尔效应,即M既平行于介质表面又平行于光入射面时的克尔效应。在磁光存储技术中主要应用的是极向克尔效应。 塞曼效应1886年,塞曼(Zeeman)发现当光源放在足够强的磁场中时,原来的一条谱线分裂为几条具有完全偏振态的谱线,分裂的条数随能级的类别而不同,后人称此现象为塞曼效应。 塞曼效应证实了原子具有磁矩和在磁场空间取向量子化,从塞曼效应的实验结果可以推断能级分裂的情况,根据光谱线分裂的数目可以知道量子数 J的数值,根据光谱线分裂的间隔可以测量g因子 的数值,因此,塞曼效应是研究原子结构的重要方法之一。 磁致线双折射效应磁致线双折射在磁光晶体 的光学研究中也会经常遇到。构成介质的分子有各 磁光效应及其应用 周静 王选章 谢文广 图1法拉第效应 图2 克尔效应 ?45 ?

信号隔离器应用场合及使用原理

信号隔离器应用场合及使用原理 2008/3/6/09:04 1.信号隔离器的作用 (1)地环流干扰 在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,他们之间的信号传输既有微弱到毫伏级、毫安级的小信号;又有几十伏,数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间传输相互干扰,造成系统不稳定甚至误操作,出现这种情况除了每个仪器、设备本身的性能原因如抗电磁干扰影响,还有一个十分重要的原因就是各种仪器设备根据要求和目的都需要接地,例如为了安全,机壳需要接大地;为了使电路正常工作,系统需要有公共参考点;为了抑制干扰加屏蔽罩,屏蔽罩也需要接地,但是由于仪表和设备之间的参考点之间存在电势差(也就是各设备的共地点不同)因而形成“地环流”、“接地环流”问题是在系统处理信号过程中必须解决的问题。 (2)自然干扰 雷电是一种主要的自然干扰源,雷电产生的干扰可以传输到数千公里以外的地方。雷电干扰的时域波形是叠加在一串随机脉冲背景上的一个大尖峰脉冲。宇宙噪音是电离辐射产生的,在一天中不断变化。太阳噪音则随着太阳活动情况的剧烈变化。自然界噪声主要会对通讯产生干扰,而雷电能量尖蜂脉冲可以对很多设备造成损坏,应该加以避免或降低损坏程度,减少损失。 (3)人为干扰 电磁干扰产生的根本原因是导体中有电压或电流的变化,即较大dv/dt或di/dt.dv/dt或di/dt能够使导体产生电磁波辐射。一方面,人们可以利用这一特点实现特定功能,例如,无限通信、雷达或其他功能,另一方面,电子设备在工作时,由于导体中的dv/dt或di/dt会产生伴随电磁辐射。无论主观上出于什么目的,客观上对电磁环境造成了污染。还有工厂企业在生产过程中会经常有一些大型的设备(电机、变频器)频繁开关,他们也会造成一些容性、感性的干扰,也将影响仪器仪表正常显示或采集。凡是有电压电流突变的场合,肯定会有电磁干扰存在。数字脉冲电路就是一种典型的干扰源,随着电子技术的广泛应用,电磁污染情况会越来越严重. 2.解决各种干扰的方法 首先干扰的三要素是干扰源、敏感源和耦合路径,这三要素缺少一个,电磁兼容问题都不会存在。因此要从这三要素入手。找出最方便的解决方法,一般干扰源和敏感源是没办法解决的,通常是从耦合路径想办法,也是最常用的方法。如加屏蔽、加滤波等手段。而处理环流最常见也最为麻烦,现在以此为探讨话题。 (1)第一种方法;所有现场设备不接地,使所有过程环路只有一个接地点,不能形成回路,这种方法看似简单,但实际应用中往往很难实现,因为某些设备要求必须接地才能保证测量精度或人身安全,某些设备可能因为长期遭到腐蚀和磨损后或气候影响而形成新的接地点。

光隔离器

光隔离器的基本原理 光隔离器又称光单向器, 是一种光非互易传输的光无源器件。在光纤通信系统中总是存在许多原因产生的反向光。光源所发出的信号光, 以活动连接器的形式耦合到光纤线路中去, 活动接头处的光纤端面间隙会使约4% 的反射光向着光源传输。 一.光隔离器的类型 1.1光隔离器按其外部结构可分为型、连接器端口型(也称在线安装型)和微型化型(自由空间隔离器)。前两种也称为在线型, 可直接插入光纤网络中。微型化光隔离器则常用于半导体激光器及其他器件中。 自由空间隔离器 1.2 .隔离器按其性能可分为偏振灵敏型( 也称偏振相关) 和偏振无关型。一般情况下, 偏振灵敏型的光隔离器常做成微型化的, 偏振无关型光隔离器则常做成在线型的。 1.3.偏振无相关光隔离器的结构包括空间型和光纤型。由于不论入射是否为偏振光, 经 过这种光隔离器后的出射光均为线偏振光, 因而称之为偏振无相关光隔离器, 主要用于DFB激光器中。 1.4.偏振无关光隔离器是一种对输入光偏振态依赖性很小( 典型值 0. 2dB) 的光隔离器。一般来说, 偏振无关光隔离器的典型结构、工作原理都更复杂一些。它采用有角度的分离光束的原理来制成, 可起到偏振无关的目的。 1.5 根据光纤类型分为保偏隔离器和普通隔离器。

由于通过偏振相关型光纤隔离器的光功率依赖于输入光的偏振态,因此要求使用保偏光纤作尾纤。这种光纤隔离器将主要用于相干光通信系统。目前光纤隔离器用的最多的仍然是偏振无关型的。 1.6 保偏光纤:保偏光纤传输线偏振光,偏振光在光纤中传输的时候,其偏振态在很长一端光纤内几乎保持不变的光纤。广泛用于航天、航空、航海、工业制造技术及通信等国民经济的各个领域。在以光学相干检测为基础的干涉型光纤传感器中,使用保偏光纤能够保证线偏振方向不变,提高相干信躁比,以实现对物理量的高精度测量。 保偏光纤的使用:保偏光纤作为一种特种光纤,主要应用于光纤陀螺,光纤水听器等传感器和DWDM、EDFA等光纤通信系统。由于光纤陀螺及光纤水听器等可用于军用惯导和声呐,属于高新科技产品,而保偏光纤又是其核心部件,因而保偏光纤一直被西方发达国家列入对我禁运的清单。 保偏光纤的类型:熊猫型、椭圆型、领结型和类矩形

信号隔离器的原理以及分类

信号隔离器的原理以及常见分类 浅谈关于隔离器的一些常见以及常用的知识: 首先将变送器或仪表的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间绝对独立。 功能: 一:保护下级的控制回路。 二:消弱环境噪声对测试电路的影响。 三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。 KLG系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。 隔离器: 工业生产中为增加仪表负载能力并保证连接同一信号的仪表之间互不干扰,提高电气安全性能。需要将输入的电压、电流或频率、电阻等信号进行采集、放大、运算、和进行抗干扰处理后,再输出隔离的电流和电压信号,安全的送给二次仪表或plc\dcs使用。 配电器: 工业现场一般需要采用两线制传输方式,既要为变送器等一次仪表提供24V配电电源,同时又要对输入的电流信号进行采集、放大、运算、和进行抗干扰处理后,再输出隔离的电流和电压信号,供后面的二次仪表或其它仪表使用。 安全栅: 一些特殊的工业现场(如燃气公司和化工厂)不但需要两线制传输,既提供配电电源又有信号隔离功能,同时还需要具有安全火花防爆的性能,可靠地遏制电源功率、防止电源、信号及地之间的点火,限流、降压双重限制信号及电源回路,把进入危险场所的能量限制在安全定额范围内。 由于生产厂家不同,对隔离器的生产工艺、接线定义也不都相同,但使用场合基本相同,所以对产品的防护要求及维护基本相同。 1.使用前应详细阅读说明书。 2.作为信号隔离使用时,应将输入端串入环路电路中,输出端接取样回路。 3.作为隔离配电使用时,应将输入端并入电源电路中,输出端接变送器。 4.若不正常工作应先检查接线是否正确,注意电源有无及极性反正。 在平常的生产过程中你是否经常使用隔离器呢?你能区别有源与无源隔离器的特点么?你能做出好的决定:在哪里是使用有源的?在哪里使用无源的?现在就给大家讲解一下关于信号隔离器的问题。在工业现场,在距离较远的电气设备、仪表、PLC控制系统、DCS 系统之间进行信号传输时,往往存在干扰,造成系统不稳定甚至误操作。除系统内、外部干扰影响外,还有一个十分重要的原因就是各种仪器设备的接地处理问题。一般情况下,设备外壳需要接大地,电路系统也要有公共参考地。但是,由于各仪表设备的参考点之间存在电势差,因而形成接地环路,由于地线环流会带来共模及差模噪声及干扰,常常造成系统不能正常工作。一个理想的解决方案是,对设备进行电气隔离,这样,原本相互联接的地线网络

光隔离器的功能和基本原理

光隔离器的功能和基本原理 光隔离器的功能是让正向传输的光通过而隔离反向传输的光,从而防止反射光影响系统的稳定性,与电子器件中的二极管功能类似。光隔离器按偏振相关性分为两种:偏振相关型和偏振无关型,前者又称为自由空间型(Freespace),因两端无光纤输入输出;后者又称为在线型(in-Line),因两端有光纤输入输出。自由空间型光隔离器一般用于半导体激光器中,因为半导体激光器发出的光具有极高的线性度,因而可以采用这种偏振相关的光隔离器而享有低成本的优势;在通信线路或者 EDFA 中,一般采用在线型光隔离器,因为线路上的光偏振特性非常不稳定,要求器件有较小的偏振相关损耗。 光隔离器利用的基本原理是偏振光的马吕斯定律和法拉第(Farady)磁光效应,自由空间型光隔离器的基本结构和原理如下图所示,由一个磁环、一个法拉第旋光片和两个偏振片组成,两个偏振片的光轴成45°夹角。正向入射的线偏振光,其偏振方向沿偏振片 1 的透光轴方向,经过法拉第旋光片时逆时针旋转45°至偏振片 2 的透光轴方向,顺利透射;反向入射的线偏振光,其偏振方向沿偏振片 2 的透光轴方向,经法拉第旋光片时仍逆时针旋转45°至与偏振片 1 的透光轴垂直,被隔离而无透射光。自由空间型光隔离器相对简单,装配时偏振片和旋光片均倾斜一定角度(比如4°)以减少表面反射光,搭建测试架构时注意测试的可重复性,其他不赘述。下面详细介绍在线式光隔离器的发展情况。 最早的在线式光隔离器是用Displacer晶体与法拉第旋光片组合制作的,因体积大和成本高而被Wedge型光隔离器取代;在线式光隔离器因采用双折射晶体而引入 PMD,因此相应出现 PMD 补偿型 Wedge 隔离器;某些应用场合对隔离度提出更高要求,因此出现双级光隔离器,在更宽的带宽内获得更高隔离度。 下面依次介绍这些在线式光隔离器的结构和原理。 1) Displacer 型光隔离器 Displacer型光隔离器结构和光路如下图所示,由两个准直器、两个Displacer晶体,一个半波片、一个法拉第旋光片和一个磁环(图中未画出)组成。正向光从准直器 1入射在Displacer1 上,被分成o光和e光传输,经过半波片和法拉第旋光片后,逆时针旋转45 +45 =90 ,发生o光与e光的转换,经Displacer2合成一束耦合进入准直器 2;反向光从准直器 2 入射在Displacer2 上,被分成o光和e光传输,经过法拉第旋光片和半波片后,逆时针旋转45 -45 =0 ,未发生o光和e光的转换,经Displacer1 后两束光均偏离准直器1 而被隔离。 Displacer 型光隔离器的缺点是,为了满足隔离度要求,反向光路中的两束光需偏移较大距离,可参考图 2(a),而双折射特性较好的钒酸钇 Displacer 晶体,其长度与偏移量

光隔离器实验汇总

廿一、光隔离器 实验人:合作人: (物理科学与工程技术学院,光信息科学与技术2011 级 1 班,学号11343026)一、实验目的: 1.学习光隔离器的原理 2.了解光准直器的原理及其应用 3.学习测量光隔离器的主要技术参数 二、实验原理与器件: 光隔离器是一种只允许光沿光路正向传输的互易性光无源器件,主要用于抑制光通信网络中的反射波。光隔离器广泛应用于光信号的发射、放大、传输等过程中。因为许多光器件对来自连接器、熔接点、滤波器等的反射光非常敏感,若不消除这些反射光将导致器件性能的急剧恶化。这时就需要用光隔离器来阻止反射光返回系统。 1.法拉第磁光效应 光隔离器的工作原理需要是利用磁光晶体的法拉第效应。典型的光隔离器采用法拉第旋转器,转光转角为45度,其材料主要为钇铁石榴石(YIG),现在多采用高性能磁光晶体。高性能磁光晶体是一种采用液相外延技术在石榴石单晶上生成掺镱、镓、钬或铽等元素的薄膜材料,如:(YbTbBi)3Fe5O12石榴石单晶薄膜,其单位长度的法拉第旋转角是传统YIG晶体的5倍以上,而所需磁感应强度B却仅为传统材料的一半或者1/3。 法拉第效应(1945年):对于给定的磁光晶体材料,光振动面旋转的角度θ与光在该物质中通过的距离L和磁感应强度B成正比(α为光线与磁场的夹角,): θcosα(21.1) = VLB 式中,V是比例系数,它是材料的特性常数,称维尔德(Verdet)常数,单位是:分/高斯?厘米。进一步研究表明,法拉第效应旋转角是材料的介电常数、旋磁比和饱和磁场强度以及光波频率、外加磁场强度的函数。 值得注意的事,磁致旋光效应和材料的固有磁光效应不同。固有磁光效应的方向受光的传播方向影响,而与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去,光的偏振面总是朝同一方向旋转。因此,在材料的固有旋光效应中,如果光束沿着原光路返回时,其偏振面将转回到初始位置。而在法拉第磁光旋转效应中,磁场对此光材料产生作用,是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的方向取决于外加磁场的方向,与光的传播方向无关。迎着光看去,当线偏振光方向沿磁力线方向通过介质时,其振动面向右旋转;当线偏振光方向沿磁力线反方向通过介质时,其振动面向左旋转。旋转角θ的大小受磁光材料的旋磁特性、长度、工作波长及磁场强度的影响。材料介质越长、磁场强度越强、工作波长越短,旋转角度将越大。 不同介质,振动面的旋转方向不同。顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,V为正值。反之,则称为左旋或负旋介质,V为负值。 对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。这点是磁光介质和天然旋光介质之间的重要区别。就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,

信号隔离器的作用

信号隔离器的作用 (1)地环流干扰 在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,他们之间的信号传输既有微弱到毫伏级、毫安级的小信号;又有几十伏,数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间传输相互干扰,造成系统不稳定甚至误操作,出现这种情况除了每个仪器、设备本身的性能原因如抗电磁干扰影响,还有一个十分重要的原因就是各种仪器设备根据要求和目的都需要接地,例如为了安全,机壳需要接大地;为了使电路正常工作,系统需要有公共参考点;为了抑制干扰加屏蔽罩,屏蔽罩也需要接地,但是由于仪表和设备之间的参考点之间存在电势差(也就是各设备的共地点不同)因而形成“地环流”、“接地环流”问题是在系统处理信号过程中必须解决的问题。 (2)自然干扰 雷电是一种主要的自然干扰源,雷电产生的干扰可以传输到数千公里以外的地方。雷电干扰的时域波形是叠加在一串随机脉冲背景上的一个大尖峰脉冲。宇宙噪音是电离辐射产生的,在一天中不断变化。太阳噪音则随着太阳活动情况的剧烈变化。自然界噪声主要会对通讯产生干扰,而雷电能量尖蜂脉冲可以对很多设备造成损坏,应该加以避免或降低损坏程度,减少损失。 (2)人为干扰 电磁干扰产生的根本原因是导体中有电压或电流的变化,即较大dv/dt 或di/dt.dv/dt 或di/dt 能够使导体产生电磁波辐射。一方面,人们可以利用这一特点实现特定功能,例如,无限通信、雷达或其他功能,另一方面,电子设备在工作时,由于导体中的dv/dt 或di/dt 会产生伴随电磁辐射。无论主观上出于什么目的,客观上对电磁环境造成了污染。还有工厂企业在生产过程中会经常有一些大型的设备(电机、变频器)频繁开关,他们也会造成一些容性、感性的干扰,也将影响仪器仪表正常显示或采集。凡是有电压电流突变的场合,肯定会有电磁干扰存在。数字脉冲电路就是一种典型的干扰源,随着电子技术的广泛应用,电磁污染情况会越来越严重. 2.解决各种干扰的方法 首先干扰的三要素是干扰源、敏感源和耦合路径,这三要素缺少一个,电磁兼容问题都不会存在。因此要从这三要素入手。找出最方便的解决方法,一般干扰源和敏感源是没办法解决的,通常是从耦合路径想办法,也是最常用的方法。如加屏蔽、加滤波等手段。而处理环流最常见也最为麻烦,现在以此为探讨话题。 (1)第一种方法;所有现场设备不接地,使所有过程环路只有一个接地点,不能形成回路,这种方法看似简单,但实际应用中往往很难实现,因为某些设备要求必须接地才能保证测量精度或人身安全,某些设备可能因为长期遭到腐蚀和磨损后或气候影响而形成新的接地点。 (2)第二种方法:使两接地点的电势相同,但由于接地的电阻受地质条件及气候变化众多因素的影响,这种方法在其实在实际中也无法完全能做到。 (3)第三种方法:在各个过程环节中使用信号隔离器,断开过程环路,同时又不影响过程信号的正常传输,从而彻底解决地环路的问题。 3.采用信号隔离器的优越性 在各个过程环路中使用信号隔离器办法可以用DCS 或PLC 等隔离卡件或者现场带的隔离的变送器(部分设备可以做到),也可以用信号隔离器来实现。比较起来,用信号隔离器有以下优点: ·绝大部分情况,采用信号隔离器+非隔离卡件比采用隔离卡件便宜 ·信号隔离器比隔离卡件在隔离能力、抗电磁干扰等方面性能更加优越 ·信号隔离器应用灵活,而且它还有信号转换和信号分配及接口转换等功能,使用起来更加方便 ·信号隔离器通常有单通道、双通道、通道间相互完全独立、构成系统的配置、日常维护更加方便。 1.隔离作用: w w w . c a 18 .n e t

相关文档
相关文档 最新文档