文档库 最新最全的文档下载
当前位置:文档库 › 高考大题专项突破一导数与函数的零点及参数范围

高考大题专项突破一导数与函数的零点及参数范围

高考大题专项突破一导数与函数的零点及参数范围
高考大题专项突破一导数与函数的零点及参数范围

1.3导数与函数的零点及参数范围

1.已知函数f(x)=e x(sin x+cos x)+a,g(x)=(a2-a+10)e x(a∈R,且a为常数). (1)若曲线y=f(x)在点(0,f(0))处的切线过点(1,2),求实数a的值;

+1+ln x(b>1)在(0,+∞)内的零点个数,并说(2)判断函数φ(x)=

-

明理由.

2.(优质试题山西第四次五校联考,理21)已知函数f=ln x-ax∈

(1)求曲线y=f在点A处的切线L的方程,并证明:除点A外,曲线y=f都在直线L的下方;

(2)若函数h=e x+f在区间内有零点,求a的取值范围.

?优质试题21500800?

-a(a<0).

3.(优质试题江西八校联考,理21)已知函数f(x)=

-

(1)当x∈(0,1)时,求f(x)的单调性;

(2)若h(x)=(x2-x)·f(x),且方程h(x)=m有两个不相等的实数根x1,x2.求

证:x1+x2>1.

4.(优质试题北京东城一模)已知函数f(x)=x3-x2+ax,a∈R.

(1)若x=2是f(x)的极值点,求a的值,并讨论f(x)的单调性;

(2)已知函数g(x)=f(x)-ax2+,若g(x)在区间(0,1)内有零点,求a的取值范围.

?优质试题21500801?5.(优质试题湖南长郡中学临考冲刺)已知函数f(x)=(2-a)(x-1)-2ln x(a∈R). (1)若曲线g(x)=f(x)+x在点(1,g(1))处的切线过点(0,2),求函数g(x)的单调减区间;

(2)若函数y=f(x)在上无零点,求a的最小值.

6.(优质试题河南豫南九校质量考评八,理21)已知函数f=ln x+

(1)若函数f有零点,求实数a的取值范围;

(2)证明:当a,b>1时,f

?优质试题21500802?

参考答案

1.3导数与函数的零点及

参数范围

1.解 (1)f'(x)=e x(sin x+cos x)+e x(cos x-sin x)=2e x cos x.

, 由曲线y=f(x)在点(0,f(0))处的切线过点(1,2),得f'(0)=-

-

即2=1-a,解得a=-1.

+1+ln x=0(x>0),

(2)零点个数为0.理由如下:由φ(x)=

-

得+1+ln x=0,化为=1-x-x ln x.

令h(x)=1-x-x ln x,则h'(x)=-2-ln x.

由h'(x)=-2-ln x=0,得x=-,

故h(x)在内递增,在内递减,

所以h(x)max=h=1+.再令t(x)==b e x, 因为b>1,所以函数t(x)=b e x在(0,+∞)内递增,

t(x)>t(0)=b e0=b>1+.

故t(x)>h(x)max,由此判断函数φ(x)在(0,+∞)内没有零点,

故φ(x)在(0,+∞)内的零点个数为0.

2.解 (1)∵f'(x)=-a,∴f'(1)=1-a.

∵f(1)=-a,∴L的方程为y+a=(1-a)(x-1),即y=(1-a)x-1.

设p(x)=f(x)-(1-a)x+1=ln x-x+1,则p'(x)=-.

若x>1,p'(x)<0;若00.

∴p(x)max=p(1)=0,∴p(x ≤0

∴f(x ≤ 1-a)x-1,当且仅当x=1时,取等号.

故除点A外,曲线y=f(x)都在直线L的下方.

(2)h(x)=e x+f(x)在区间(1,3)内有零点,

即a=在x∈(1,3)内有实数解.

设F(x)=,则F'(x)=--,设g(x)=e x(x-1)+1-ln x,则

g'(x)=x-.

∵函数y=e x-(x>0)的零点在(0,1)内,且y>0在(1,3)内恒成立,

∴g'(x)>0,即g(x)在(1,3)内单调递增,∴g(x)>g(1)=1,则F'(x)>0在(1,3)内恒成立,

∴F(x)在(1,3)内递增,∴F(x)∈,∴a∈.

3.(1)解f'(x)=--

,

-

设g(x)=x-1-ln x,则g'(x)=1-,

∴当x∈(0,1)时,g'(x)<0,

∴g(x)>g(1)=0,∴f'(x)>0,

∴f(x)在(0,1)上单调递增.

(2)证明∵h(x)=x2ln x-ax2+ax(a<0),

∴h'(x)=2x ln x+x-2ax+a,设g(x)=2x ln x+x-2ax+a,

∴g'(x)=2ln x-2a+3.

∵y=g'(x)在(0,+∞)上单调递增,

当x→0时,g'(0)<0,g'(1)=3-2a>0,

∴必存在t∈(0,1),使得g'(t)=0,即2ln t-2a+3=0,

∴y=h'(x)在(0,t)上单调递减,在(t,+∞)上单调递增.

又当x→0时,h'(0)<0,h'(1)=1-a>0.

设h'(x0)=0,则x0∈(0,1),

∴y=h(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增, 又h(1)=0,不妨设x1

由(1)知--

∴f(x0)(-x2)>h(x2)=h(x1)>f(x0)(-x1),

∴(-x2)-(-x1)=(x2-x1)·(x2+x1-1)>0,

∴x1+x2>1.

4.解 (1)f(x)=x3-x2+ax,f'(x)=x2-x+a.

∵x=2是f(x)的极值点,

∴f'(2)=4-2+a=0,解得a=-2.

代入f'(x)=x2-x-2=(x+1)(x-2),令f'(x)=0,

解得x=-1或x=2.

令f'(x)>0,解得x>2或x<-1,

∴f(x)在x∈(-∞,-1),(2,+∞)时单调递增;

令f'(x)<0,解得-1

∴f(x)在x∈(-1,2)时单调递减.

(2)g(x)=f(x)-ax2+x3-(1+a)x2+ax+,g'(x)=x2-(1+a)x+a=(x-1)(x-a).

①当a≥1时,x∈(0,1),

g'(x)>0恒成立,g(x)单调递增,又g(0)=>0,

因此此时函数g(x)在区间(0,1)内没有零点.

②当00,g(x)单调递增,

x∈(a,1)时,g'(x)<0,g(x)单调递减,

又g(0)=>0,因此要使函数g(x)在区间(0,1)内有零点, 必有g(1)<0,∴(1+a)+a+<0,解得a<-1.舍去.

③当a≤0时,x∈(0,1),g'(x)<0,g(x)单调递减,

又g(0)=>0,因此要使函数g(x)在区间(0,1)内有零点, 必有g(1)<0,解得a<-1.满足条件.

综上可得,a的取值范围是(-∞,-1).

5.解 (1)∵g(x)=(3-a)x-(2-a)-2ln x,

∴g'(x)=3-a-,

∴g'(1)=1-a.

又g(1)=1,

∴1-a=-

=-1,得a=2.

-

由g'(x)=3-2--<0,得0

∴函数g(x)的单调减区间为(0,2).

(2)∵f(x)<0在区间上恒成立不可能,

高考数学(理)总复习:利用导数解决函数零点问题

题型一 利用导数讨论函数零点的个数 【题型要点解析】 对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是: (1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图; (4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )= ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=????? f (x ),f (x )≥ g (x ),g (x ),f (x )0)的零点个数. 【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1 =0或x 2=2 a ,∈a >0,∈x 1

即不等式2a ≤1x 3+3 x 在x ∈[1,2]上有解. 设y =1x 3+3x =3x 2+1 x 3(x ∈[1,2]), ∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∈y =1x 3+3 x 在x ∈[1,2]上单调递减, ∈当x =1时,y =1x 3+3 x 的最大值为4, ∈2a ≤4,即a ≤2. (3)由(1)知,f (x )在(0,+∞)上的最小值为f ?? ? ??a 2=1-4a 2, ∈当1-4 a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+ ∞)上无零点. ∈当1-4 a 2=0,即a =2时,f (x )min =f (1)=0. 又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4 a 2<0,即00, ∈存在唯一的x 0∈?? ? ??1,1e ,使得φ(x 0)=0, (∈)当0

导数与函数的切线及函数零点问题专题

导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2 x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t ·4 t =4(当且仅当t =2时等号成立), ∴m ≤? ? ???t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2,

g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点, ∴g(x)为先减后增且有唯一极值点. 由题意g(x)有且仅有一个零点, 则g(x)的极值一定为0, 而g(0)=a0+b0-2=0,故极值点为0. ∴g′(0)=0,即ln a+ln b=0,∴ab=1. 考点整合 1.求曲线y=f (x)的切线方程的三种类型及方法 (1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率 f ′(x ),由点斜式写出方程. (2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f ′(x )解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x ,再由点斜式或两点式写出方程. 2.三次函数的零点分布 三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下: 3.(1)研究函数零点问题或方程根问题的思路和方法 研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

数学高考导数难题导数零点问题导数整理2017

含参导函数零点问题的几种处理方法方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 1)因式分解求零点(1123)?Rx?1(?(a?)x)f(x?a?2ax 例1 讨论函数的单调区间232)?2?1)(x?1)x?2?(axf'(x)?ax?(2a)(xf'可以因式分的符号问 题。由解析:即求 方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 112x3ax1)x??x(a?f(x)?(x?a?1)e?R?a,讨论函数,的极值情况例4 23x2x)1e?x?a?(x?a)(?(x?a)ex?(a?1)x?f'(x)?a)f'(x其它的零点就的一个零点为,解析:,只能解 出x0?1?e?x的根,不能解。是 2Ra?x?a)ln x,f(x)?(例5(2011高考浙江理科)设函数a?ex)xy?f(的极值点,求实数(Ⅰ)若为2exf()?4ea],3e(0,x?为自然对数),(Ⅱ)求实数恒有的取值范围,使得对任意的成立(注:方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,2e)?0?4f(xa e1?1?x?30?x 有实时,对于任意的数题,恒有意,首②当先①当,由立成a e22e22,?e?a) 4e ln(3e)f(3e)?(3)1???a)(2ln xf'(x)?(x?e?e?3?a3,但这时解得由 x)e3ln(ln(3e)a??12ln x ax?0?'(x)f=0外还有会发现的解除了的解,显然无法用特殊值猜出。 xa??(x)2ln x?1h h(1)?1?a?0h(a)?2ln a?0,,令,注意到x2e?3e ln(3e)1a)f02(ln3e?h(3e)?2ln(3e?2ln(3e)?1?)?1?且。= e33e)e3ln(3f'(x)?0(1,a)h(x)h(x)(1,3e]内,及(13e在)至少还有一个零点,又在故+∞)内 单调递增,所以函数0在(,x1?x?a。,则有唯一零点,但此时无法求出此零点怎么办。我们 可以采取设而不求的方法,记此零点为从 00x?(x,a)(0,x))x?x(0,)x f x)0f()x f0f,x)f'(x f a?(a??)'('(f在时,;当而,当时,,即;当时, 000?2e?x(1,3)xa(ef?)(x4)a(??,恒成立,只要内单调递增,在对内单调递增。所以要使内单调递减,在0,. 22?f(x)?(x?a)ln x?4e,(1)?000成 立。?22f(3e)?(3e?a)ln(3e)?4e,(2)??a2320??2ln x?1?)h(xx f1a?2ln x?xe ln4xx?4,注意到函1)得, 又(,知3)将(3)代入(0000000x0231p x?exx ln2x ln x?x在(1.+ +∞)。再由()内单调递增,故数3)以及函数内单调递增,可得在[1,+∞02e2e2e?a?3e??a?3e3e3e??e13p a?。所以的取值范围为)解得,综上,a。由(2ln(3e)ln(3e)ln(3e23ea??3?。

导数中的零点问题(学生版)

专题2.3导数中的零点问题 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x ==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。所以21a e e =+(注意:有一个根转化为图像只有一个交点即可)二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可 例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e 上有两个不同零点,求实数b 的取值范围。

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

导数与函数的零点讲义(非常好,有解析)

函数的零点 【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x = 的图象有三个不同的交点, 求m 的取值范围。 变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则 1234_________. x x x x +++= 【答案】 -8 【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间 []8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知 1212 x x +=-, 344 x x +=. 所以12341248 x x x x +++=-+=-. 6

【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况 【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两个 相异的实根,求实数a 的取值范围(注:1n2≈0.69): 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即:

数学高考导数难题导数零点问题导数

含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用 对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 (1)因式分解求零点 例1 讨论函数)(12)2 1 (31)(23R a x x a ax x f ∈+++-= 的单调区间 解析:即求)('x f 的符号问题。由)2)(1(2)12()('2 --=++-=x ax x a ax x f 可以因式分 方法二:猜出特值,证明唯一 对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 例4 讨论函数ax x a x e a x x f x ++-+ --=23)1(2 1 31)1()(,R a ∈,的极值情况 解析:)1)(()1()()('2 -+-=++-+-=x e a x a x a x e a x x f x x ,只能解出)('x f 的一个零点为a ,其它的零点就是01=-+x e x 的根,不能解。 例5(2011高考浙江理科)设函数R a x a x x f ∈-=,ln )()(2 (Ⅰ)若e x =为)(x f y =的极值点,求实数a (Ⅱ)求实数a 的取值范围,使得对任意的],3,0(e x ∈恒有2 4)(e x f ≤成立(注:e 为自然对数), 方法三:锁定区间,设而不求 对于例5,也可以直接设函数来求, ①当10≤=a a h , 且(3)2ln(3)12ln(3)13a h e e e e =+-≥+- =2(ln 30e 。 故0)('=x f 在),1(a 及(1,3e )至少还有一个零点,又()h x 在(0,+∞)内单调递增,所以函数()h x 在]3,1(e 内有唯一零点,但此时无法求出此零点怎么办。我们可以采取设而不求的方法,记此零点为0x ,则a x <<01。 从

导数中两种零点问题解决方法

导数中的零点问题解决方法 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+ =,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。 解析:22()ln ()22g x x f x e a x ex x x =-?=-+,令2ln ()2x h x x ex x =-+,'21ln ()22x h x x e x -=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ 注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是 如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x = =-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。 所以21a e e =+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间

导数和函数零点问题

导数和函数零点问题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-= (1)求函数)(x f 的解析式;

第16讲-导数与函数的零点(解析版)

第16讲-导数与函数的零点 一、 经典例题 考点一 判断零点的个数 【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x -4ln x 的零点个数. 解 (1)∵ f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3. (2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2 ,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(x ),g (x )的取值变化情况如下表: X (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) + 0 - 0 + g (x ) 极大值 极小值 当03时,g (e 5)=e 5-3e 5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.

导数中两种零点问题解决方法

导数中的零点问题解决方法 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合 题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下 移动参数的值,看直线与函数交点个数即可。 例 1.已知函数 f (x) = x + a g ( x) x , g (x) = ln x ,若关于 x 的方程 x 2 = f (x) - 2e 只有 一个实数根,求 a 的值。 g ( x) ln x ln x 解析: x 2 = f (x) - 2e ? a = x - x 2 + 2ex ,令 h (x) = x - x 2 + 2ex , 1- ln x h ' (x) = - 2x + 2e ,令 h ' (x) = 0 ,则 x = e x 2 当 0 < x < e 时, h ' (x) > 0 , h (x) 单调递增;当 x > e 时, h ' (x) < 0 , h (x) 单调 1 递减, h (x) max = h (e ) = e + e 2 注意这里 h (x) 的单调性不是硬解出来的,因为你会发现 h ' (x) 的式子很复杂,但是如 ln x 果把 h (x) 当成两个函数的和,即 m (x) = x , n(x) =- x 2 + 2ex ,此时 m (x), n (x) 的 单调性和极值点均相同,因此可以整体判断出 h (x) 的单调性和极值点。 所以 a = 1 e + e 2 (注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函 数必定有两个极值点,且极大值和极小值之积为负数,例如 f (x) 在区间 (0,1) 上有零 点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调, 只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着 f (x) 在区间 (0,1) 上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是 求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一 下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间

导数和函数零点问题精选文档

导数和函数零点问题精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根? 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131 )(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间;

(2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(23>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++==5)(31)('与的图象有三个不同的交 点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-= (1)求函数)(x f 的解析式; (2)若函数)(x f y =在R 上恰有5个零点,求实数a 的取值范围。

导数零点不可求考点与题型归纳

导数零点不可求考点与题型归纳 导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢? 考点一 猜出方程f ′(x )=0的根 [典例] 设f (x )=1+ln x x . (1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围; (2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围. [解题观摩] (1)因为f ′(x )=-ln x x 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1, 所以????? a <1,a +1>1, 即0<a <1,故所求实数a 的取值范围是(0,1). (2)方程f (x )=x 2-2x +k 有实数解, 即f (x )-x 2+2x =k 有实数解. 设g (x )=f (x )-x 2+2x , 则g ′(x )=2(1-x )-ln x x 2. 接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解. 因为g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2]. [关键点拨] 当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0. 考点二 隐零点代换

高考数学导数与函数零点问题教师版

导数与函数零点问题 函数零点问题是高考中的热点,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论. 例题分类精讲 一、函数零点个数问题 用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值 结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的 对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数. 【例1】若函数f(x)=x3-3x+a 有三个不同的零点,则实数 a 的取值范围是___ . 【答案】(-2,2) 【分析】客观题中函数零点个数问题,可借组图象求解,先根据导函数的符号确定原函数的单调性,由单调性作出函数图象,再确定零点个数. 【解析】由f(x)=x3-3x+a,得f′x)(=3x2-3,由f′(x)=3x2-3=0,得x=±1,f(x)极大值=f(-1)=2+a,f(x)极小值=f(1)=a-2,要使函数f(x)=x3-3x+a有三个不同的零点,则有2+a>0,a-2<0,即- 21; f ′x)(>0 时,0

导数在函数零点中的应用

方程根的个数 图像法 1. 已知函数?(x )=2 -x e x (1)求?(x )的单调区间 增),3(+∞减)3,2()2,( -∞ (2)判断关于x 的方程e x =k(x-2)(k ∈R)的解的情况 2已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++= 利用单调性 1已知二次函数)(x f 的二次项系数为a ,且不等式)(x f >x 2的解集为(-1,3)。 (1)若方程a x f 7)(-=有两个相等的实数根,求)(x f 的解析式 34)(2++-=x x x f (2)若函数)()(x xf x g =在区间?? ? ??∞-3,a 内单调递减,求a 的取值范围 (]1,-∞- (3)当a =-1时,证明:方程12)(3 -=x x f 仅有一个实数根 2、已知a >0,l x n x ax x f ),1(112)(2+++-=是曲线)(x f y =在点))0(,0(f P 处的切线 (1)求l 的方程 1+-=x y (2)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值 2 1=a (3)证明:对任意的),(*N ∈=n n a 函数)(x f y =总有单调递减区间,并求出)(x f 的单调递减区 间的长度的取值范围(区间[]21,x x 的长度=12x x -) (] 2,1 分离参数求值域 1. 已知函数=)(x f log 4)()14(R x kx x ∈++是偶函数 (1)求k 的值 2 1-=k (2)若方程0)(=-m x f 有解,求m 的取值范围 m ≥ 21

相关文档
相关文档 最新文档