文档库 最新最全的文档下载
当前位置:文档库 › 课堂教学中逐步渗透数学建模思想(案例)

课堂教学中逐步渗透数学建模思想(案例)

课堂教学中逐步渗透数学建模思想(案例)
课堂教学中逐步渗透数学建模思想(案例)

————?二元一次方程?课例研讨

一、课题提出的背景:

数学是研究现实世界数量关系和空间形式的科学,其最显著的特点在于应用的广泛性,应用数据解决各类实际问题,那建立数学模型就是十分关键的一步。建立数学模型的过程就是把错综复杂的问题简化,抽象为合理的数学结构的过程。作为教师,特别要注意的是在数学建模的活动设计中,应把学生当作活动的主体,不要只把问题解决的过程展示给学生看,而要看到,活动的设计过程会更有利于发挥学生的主动性、创造性,让学生能把学习知识、应用知识、探索发现更好地结合起来,使学生在数学建模的过程中学数学、用数学,从而达到学好数学、提高素质的目的,并且要支持大胆提出各种突破常规,超越习惯的想法,要充分肯定学生的正确的、独特的见解,珍惜学生的创新成果和失败价值,使他们保持敢于作出各种新颖、大胆的尝试的热情。在实际教学活动中,教师应收集、改编适合学生自身使用,贴近学生生活实际的数学建模问题,同时注意问题的开放性与可发展性。教学中应尽可能地创设一些合理、新颖、有趣的问题情境来激发学生的好奇心和求知欲。

义务教育阶段的?数学课程?应突出体现基础性、普及性和发展性,是数学教育面向全体学生,实现:①人人学有价值的数学,②人人都能获得必需的数学,③不同的人在数学上得到不同的发展。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他学科提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力,抽象能力,想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。在教学过程中,一部分老师往往只注重教会每道题怎么做,而忽视了数学思想,数学建模思想的渗透,只有教会学生方法,才算真正教会了学生。我们教学的目的是培养学生的创造能力和应用能力,把学生从纯理论解题的题海中解放出来,把学生应用数学的意识贯穿于数学的始终,让学生学得活泼

生动,是数学素质教育跃上一个新的台阶。同时也为了适应当前数学课程改革中

加强应用性,创新性,重视联系学生生活和社会实践的要求,因此,我们应大力

提倡开展中学教育建模教学的研究和实践。

二、研究过程的描述

新课程改革强调培养学生进行自主探究的能力。在初中数学教学中,数学建模是学习的一种方式,数学建模是培养学生探究性学习能力的一个重要途径,为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的关系,帮助学生认识到:数学与我有关,与实际生活有关,数学是有用的,我要用数学,我能用数学。数学建模能力的培养是一个渐进的过程。因此,从初一开始,我就有意识地逐步渗透建模思想。

例如:七年级下册数学课本中“二元一次方程”一课,我听了外国语学校杨老师的课后,很受感动,杨老师在讲授新课的过程中不仅仅教给学生怎么做,还把建模的理念和类比的思想教给学生,把学生当作活动的主体,活动的设计过程有利于发挥学生的主动性、创造性,让学生能把学习知识、应用知识、探索发现更好地结合起来,使学生明确对遇到的实际问题进行抽象和假设之后,运用数学工具得到一个数学模型。在数学建模的过程中学数学,用数学,从而达到学好数学、提高素质的目的。通过教研活动后,我对自己所备的课进行了修改,在自己所教的班级进行讲授时注意了以下几点:

?一?问题感知,情景切入:(生活中的简单问题)

?二?知识回顾,能力升级:(为解决新问题铺垫)

?三?探究示例,潜能发展:

①对实际问题的题目,首先引导学生认真审题。

②引导学生用正确的数学语言表述已知和未知。

③将已知与未知联系起来正确地建立数学模型。

④调动学生参与意识,充分发挥学生的主体性。

通过这样的教学,这节课取得了较好的教学效果。

三、关键事件讨论:(包括实录片段)

教学过程:

a)问题感知,情景切入:

同学们喜欢邮票吗?邮票既是一种邮资凭证,又是一种很有价值的收藏品,方寸之间记录着祖国的历史足迹,展示美丽山河和多彩的风情,给人以丰富的知

识和美的享受,陶冶人们的精神世界。下面我们就来看看一个和邮票有关的问题:设计意图:通过欣赏美丽的邮票引出数学问题,吸引学生的注意力,进一步加强探究的兴趣。

①小红到邮局寄挂号信,需要邮资3元8角,小红有票额为6角和8角的邮票若干张,问各需多少张这两种面额的邮票?

师问:这个问题中,有几个未知数?能列一元一次方程求解吗?

生答:两个未知数,不能列一元一次方程求解。

师问:如果设需要票额为6角的邮票X张,8角的邮票Y张,你能列出方程吗?

生答:能。0.6X+0.8Y=3.8

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米∕时,卡车的速度是b千米∕时,你能列出怎样的方程?

生答:2a=3b+20

设计意图:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。

b)知识回顾,能力升级:

议一议:

老师:什么是一元一次方程?

学生:方程两边都是整式,只含有一个未知数,并且未知数的次数是一次,这样的方程叫做一元一次方程

老师:一元一次方程特征:

学生:①方程两边是整式;②含有一个未知数;③未知数的次数是一次。

老师:观察方程0.6X+0.8Y=3.8和2a=3b+20有什么共同特征?

学生:①方程两边是整式;②含有两个未知数;③未知数的次数是一次。

老师:请同学们观察XY+X=8是二元一次方程吗?为什么部分同学回答是,部分同学回答不是呢?下面让我来解释一下。因为上述方程中的XY,X的次数是一次,Y的次数也是一次,但XY整个项是两次,所以上述这个方程不是二元一次方程,因此特征③应该为:未知数的项的次数是一次。由此可知二元一次方程的

特征是:①方程两边是整式;②含有两个未知数;③未知数的项的次数是一次。

总结:像这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

解一解:请你判断下列各式是否为二元一次方程

① xy-x=1 ,②x+y=0, ③2x-y=1, ④x 2-3x=2, ⑤121=+y x , ⑥3x-42=y , ⑦y+x 2

1 做一做:课本第48页。

设计意图:通过议一议,解一解,做一做,培养学生数学语言的表达能力和数学的严密性。

想一想:把x=2,y=4代入方程3x+y=10,能否使其左右两边相等?

类比方程解的概念,得出x=2,y=4是二元一次方程3x+y=10的一个解, 记作

归纳:使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。例如,把x=1,y=4代入方程

右边,所以x=1,y=4就

是方程3x+4y=19的一个解,记作

思考:1、x=0,y=1和x=5,y=1

2、方程3x+4y=19的解有多少个?

设计意图:通过思考题使学生了解二元一次方程的解具有不定性和相关性。

3、探究示例,潜能发展:

例1、已知方程3x+2y=10.

①用关于x 的代数式表示y ;

②求当x=-2,0,3时,对应的y 的值,并写出方程3x+2y=10的三个解.

合作探究:①怎样理解用x 的代数式表示y._____就是要建立y=x 的代数式的数学模型思想。

②怎样理解用y 的代数式表示x.____就是要建立x=y 的代数式的数

学建模思想。

设计意图:①让学生会把二元一次方程化为用一个未知数的代数式表示

另一个未知数的形式。

通过先确定x 的值,再来确定y 的值的方法,巩固二元一次方程解的不唯一性后,可以让学生试着先去确定y 的值,然后再来确定x 的值,理解二元一次方程解的相对性,并让学生尝试用关于的y 代数式来表示x.

练一练:已知二元一次方程3x+2y=6.

①用含x 的代数式表示y.

②写出当x=-1,6时方程的解;

例2

是方程2x+ay=5的一个解。

①求a

的值;

②写出方程2x+ay=5的两个解。

例3、若是方程ax+y=9的一组解,求出此方程的所有正整数解。

练一练:1、下列各方程哪些是二元一次方程( )

①3x-1=

2

1 ②x 2+y=0 ③x+y=0 ④x+y-z=0 ⑤x+y=0 ⑥y+21x=0 2、若ax-4y=3x-7是二元一次方程,则a 必须满足 ( )

①a ≠-2 ②a ≠0 ③a ≠3 ④a ≠-1.

3、方程x+y=2的自然数解有 ( )

①1个 ②3个 ③5个 ④7个

3若3x m-3m=________

4、已知是二元一次方程my-3x=1的一个解,则m=_____.

5、小明要把1张50元的人民币兑换成面额为5元和10元的人民币,你认为有几种不同的兑换方案?如果要求在换成的若干张人民币中刚好有3张5元人民币,你能办到吗?

设计意图:①巩固二元一次方程的解的意义。

②通过学生对这些问题的思考,加深对二元一次方程解的概念的理解。

课堂小结:由学生谈一谈这节课的收获:①学会了二元一次方程的意义及二元一次方程的解的概念(注意书写格式)。②二元一次方程解的不定性和相关性。③会把二元一次方程化为用一个未知数的代数式表示另一个未知数形式。

四、评析与反思:

通过对上述几个例题的剖析,学生初步学会把一些实际问题转化为数学问题。问题感知和知识回顾这一环节的设计不仅仅是帮助学生复习一元一次方程的知识,而主要是使学生能够通过类比思想来理解二元一次方程的感念。例题的讲解过程中不断启发、引导,使学生感受到把实际问题转化为数学问题,建立数学模型的过程,再利用方程的知识解决了实际问题。同时,加强对数学思想方法,特别是数形结合、化未知为已知的转化思想的渗透和训练提高了学生数学建模能力。整节课的教学环节安排较合理,达到了预期的教学效果。教学中存在的问题:教学过程中总怕时间不够用,教学任务完不成,因此,给学生读题的时间,讨论时间不够充分,如果在引导学生讨论后及时小结,充分让学生总结方法,哪怕学生仅说对了一部分,教师都要加以肯定,并通过师生讨论,使之完善,效果会更好;在授课过程中,应尽量让学生自己读题,自己分析,自己建模,自己解题。另外,讲与练应不能同步进行,学生听会了并不代表他们一定能计算对,这一点在今后的教学中自己还应引起注意。学生讨论、做题时,教学一定要巡视,巡视时注意两点:一是引导学习有困难的个别学生,二是对部分学生的解题过程是否规范给予指点,对于这两点做的还不够。

一节课的教学目的不仅仅使学生掌握如何解题,更重要的是知道对于实际问题如何分析,如何建立数学模型模。教学过程中应注意的问题:一个题目给出后,一定要给学生充分的时间读题,找已知条件,未知的结论。在很多次的听课中,我都发现老师们急于多讲一个题,而忽视了给学生充分读题的时间,造成了一部分学生跟不上老师的思路,久而久之,这部分学生变为学习上的差生。在教学过程中一定要培养学生的能力,使他们形成良好的学习习惯。

数学建模经典案例:最优截断切割问题复习进程

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.

一个数学建模案例的教学设计

一个数学建模案例的教学设计 ——二次函数在给定区间的最值 一、教学目标 1.知识与技能目标:领会函数的最值及其几何意义,会用函数的单调性求一些函数的最值,逐步培养学生的数学建模能力。 2.过程与方法目标:引导学生进行数学建模,提高应用知识去发现问题、分析问题和解决问题的能力。 3.情感、态度与价值观目标:培养学生的数学应用意识,认识到数学在现实世界中有着广泛的应用,数学来源于生活,又服务于生活。 二、学情分析 首先从学生的知识结构来看,高中学生在新课的学习中已掌握二次函数的定义,图像及性质等基本知识,学生的分析,理解能力较学习新课时有明显提高,学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力,学生能力差异较大,两极分化明显. 其次是从知识系统来看,数形结合和分类讨论思想是数学最基本的思想方法,渗透于高中教学的全过程,但却是学生不易接受的内容。在几何画板的帮助下,可以让学生经历直观感知、观察发现、归纳类比、抽象概括、运算求解、演绎证明、反思与构建等思维过程,这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。 求函数的最大(小)值的常用方法很多,有配方法、判别式法、不等式法、换元法、数形结合法、单调性法等,建立函数模型的应用题,常常是求最值的问题。新课程引入了导数后,利用单调性求函数的最值成了非常常规的方法,是学习函数必须掌握的重要知识内容。二次函数是重要的基本初等函数,引入参数后,其内容千姿百态,丰富多彩,是倡导学生自主探索、动手实践、合作交流的良好题材,有助于发挥学生学习的主动性,使学生的学习过程成为教师引导下的“再创造”过程。

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

数学建模教学设计说明

《函数模型的应用实例--数学建模》教学设计说明 郑州市第九中学郑敏 本节课是数学建模的入门课.数学建模是高中数学新课程中新增的研究性学习的内容,《课程标准》中没有对数学建模的内容做具体安排,只是建议将数学建模穿插在相关模块的教学中,要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.而以函数为模型的应用题是中学数学中最重要的内容之一,从应用题中抽象出问题的数学特征,找出函数关系,解决实际问题也是中学数学教学的重要任务之一.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,综合分析对比一次函数、二次函数、指数函数、对数函数、幂函数在实际生活中应用的优缺点,为以后的数学建模打基础,但未能使学生全面认识数学建模的全过程,于是又在本题的基础上有所改编,从实际问题出发,通过分析探究、交流合作、小组展示、总结归纳、深化反思等数学活动引导学生建立完整的数学模型解决实际问题,从而深化数学建模思想.因此本节课是从函数出发,综合运用数学知识、思想和方法,尝试数学建模,让学生从不同的角度理解数学的魅力. 高一下学期的学生学习过一次函数、二次函数、指数函数、对数函数、幂函数各自的函数特点,基于学校的支持,学生对于图形计算器已经有一定的基础,知道数形结合、转化化归、由特殊到一般的思想方法,但对于如何建立数学模型尚不明确.从数学活动经验上来说,学生具备了一定的数学活动经验,有主动参与数学活动的意识和小组合作学习的经验,好奇心强,学习比较积极主动. 本节课是数学建模的基础课,对学生来说是一个全新的认识,在认知方式和思维难度上对学生有较高的要求,而学生的抽象概括能力比较薄弱,学生在建立数学模型及优化数学模型的过程中会比较困难. 在领会以上精神后,我在设计本节课时注意了以下问题: 从主导思想上:本节课依据“教评学一致性”的理念进行课堂教学设计,实施目标导引教学.基于学习目标创设学习问题,激发学生的学习兴趣,基于目标设计与之匹配的评价设计和教学方案,引导学生主动参与学习过程,动手动脑动口,在学习过程中逐步锻炼分析问题、抽象概括的能力. 从内容上:本节课是数学建模的基础课,数学建模是高中数学新课程中研究性学习的内容,《课程标准》中要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,对于选择数学模型这一难点,通过分析探究、交流合作、小组展示、师生释疑等环节,设计一系列环环相扣的问题,引导学生思考、讨论、对比各自函数的特点,得出符合题意的数学模型,从而突出本节课的重点.但在实际生活中,符合题意的数学模型不一定符合实际情况,于是在题目的基础上加以修改,用实际问题去检验数学模型,不断拟合出最优的数学模型,让学生体会数学

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时, 只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

多元线性回归 数学建模经典案例

多元线性回归 黄冈职业技术学院数学建模协会胡敏 作业: 在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。 x1 x2 x3 x4 x5 y 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 编写程序如下: data ex; input x1-x5 y@@; cards; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 ; proc reg; model y=x1 x2 x3 x4 x5/cli; run; 运行结果如下: (1)回归方程显著性检验. Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 5 2.25207 0.45041 11.63 0.0170 Error 4 0.15497 0.03874 Corrected Total 9 2.40704

初中数学建模案例

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

数学核心素养之数学建模教学案例

数学核心素养之数学建模教学案例 1引言:新修订的高中数学课程提出,数学核心素养是数学课程目标的集中体现,是具有数学基本特征、适应个人终身发展和社会发展需要的必备品格与关键能力。高中数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。 其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。 在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。 特级教师张思明提出“我们通过数学建模的教与学要为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、自主解决问题的机会。近年来,数学建模应用题的数量和分值在高考中逐步增加,可见在命题中已经在转变传统的数学学科体系观念,旨在引导学生关心社会、关心未来,实现高考命题改革与中学教育、教学观念改革的结合。 2.中学数学模型的教学 2.1中学数学中常见的数学模型分类: (1)与函数的最值相关问题。工程中的用料最省、利润最大,列出所求量的函数解析式,利用代数工具解函数最大值。 (2)线性回归直线、非线性回归直线;如中学生身高和体重的关系,红铃虫产卵数与温度的关系。 (3)与周期有关的三角函数模型建立。电路信号,音频震动,潮水涨落周期。 (4)线性规划问题。关于求解含有多个约束条件的,目标函数的最有解问题。 (5)抽样统计调查类,独立性假设检验。 2.2数学建模的课堂陷入几个误区。 (1)数学建模课堂,教师陷入了对数学建模理论的讲解,而数学建模的基本步骤是什么,介绍集中常见的数学建模工具,里面有大量的数学公式推到,学生对数学建模的思想领会很少。

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

小学数学建模案例

小学数学建模案例 相遇问题。①创设问题情境,激发学生的求知欲。先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。接着可以问同学们看到了什么。学生的回答会有很多,如:他们在中间碰到了;两个人面对面在走;两个人背对背在走……此时就可以引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。例如:甲乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即返回,第二次在距A地60千米处相遇。求A、B两地间的路程。②抽象概括,建立模型,导入学习课题。此题可以将整个过程用线段图来形象地描述,这就是这个相遇问题建立的数学模型。③研究模型,形成数学知识。 总结出一般规律之后可以举个例子让学生做,看看学生是否已经掌握,是否会应用这个规律来解决实际问题。如:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,它们在距离甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客

上船下船,然后返航。这两艘在距离乙岸4OO米处又重新相遇。问:该河的宽度是多少?可以请两位同学到黑板上来做,其他同学做在作业本上,然后讲解,并充分肯定学生的表现,增强学生的学习积极性。案例二:小学高年级数学教学时会遇到“牛吃草问题”,牛吃草问题又称消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。 由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断变化。例:牧场上一片青草,每天牧草都匀速生长,这片草地可供l0头牛吃20天,或者可以供l5头牛吃10天,问:可供25头牛吃几天?分析:这类题目难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新长出来的草两部分。牧场上原有的草是不变的,新长出来的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面就要设法计算出原有的草量和每天新长出的草这两个不变的量。

数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.

由此准则,只需考虑 P 6 6 222 90 !!! ?? =种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况 为简单起见,先考虑e=0 的情况.构造如图9-13的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z. 图9-13 G(V,E) 图G(V,E)的含义为: (1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.

初中数学建模案例

初中数学建模案例 2011年3月10日,云南盈江县发生里氏5.8级 地震。萧山金利浦地震救援队接到上级命令后立即 赶赴震区进行救援。救援队利用生命探测仪在某建筑 物废墟下方探测到点 C 处有生命迹象,已知废墟一侧 地面上两探测点A 、B 相距3米,探测线与地面的夹角 分别是30°和60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:2 1.41,3 1.73) 解:如图,过点C 作CD ⊥AB 交AB 于点D. ∵探测线与地面的夹角为30°和60° ∴∠CAD=30°,∠CBD=60° 在Rt △BDC 中,BD CD 60tan ∴3 60tan CD CD BD 在Rt △ADC 中,AD CD 30tan ∴3 330tan CD CD AD ∵3 BD AD AB ∴33 33CD CD ∴) (6.2273 .13233米CD 答:生命所在点C 的深度大约为 2.6米。

分析:这是综合解直角三角形的问题,画出示意图,先计算出 360tan CD CD BD ,再计算出3330tan CD CD AD ,进而由关系式3BD AD AB 计算出CD 的长,最 后确定生命所在点 C 的深度。 设计说明与思路: 实际问题是复杂多变的,数学建模较多的是探索性和创造性,但是初中数学应用性问题常见的建模方法还是有规律可以归纳总结的, 本题涉及解直角三角形问题,常需要建立相应的几何模型,转化为几何或三角函数问题求解。 初中数学题源于实际问题,探讨这类问题的解法具有重要的现实意义,数学建模就是 将具有实际意义的应用问题,通过数学抽象转化为数学模型,以求得问题的解决,其基本思路是:实际问题----数学模型----数学问题的解决----抽象----解答----解释(检验)。 在应用性问题和数学建模的教学活动设计中,应把学生当作教学活动的主体,让学生 自己通过观察,只考虑去提问题,解决问题,是数学建模教学的重要环节。不要只把问题解决的过程展示给学生看,教学活动的设计应有利于发挥学生的主体性、创造性、协作精神,让学生能把学习知识、应用知识、探索发现、使用计算机工具和建模求解更好地结合起来,使学生在应用性问题与数学建模教学过程中学数学、 用数学、得到“微科研”的体验,从而达到学好数学,提高素质,增长才干的目的,达到“面向所有的学生,让所有的学生获得更 多可以广泛应用、与现实世界及其他学科密切相关的数学! 让所有的学生学到有价值的、富有挑战性的数学!让所有的学生学会数学地思考, 并积极地参与数学活动,进行自主探索!”的目的。

数学建模案例――最佳捕鱼方案.(优选)

最佳捕鱼方案 摘要: 本文解决的是一个最佳捕鱼方案设计的单目标线性规划问题,目的是制定每天的捕鱼策略,使得总收益最大。根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式: 212121 111i i i i i i i i W w p s q m =====?-?∑∑∑。 由于价格是关于供应量的分段函数(见图一所示),我们引入“0-1”变量法编写程序(程序见附录一),并用数学软件LINGO 求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。其中第1~16天,日捕捞量在1030~1070公斤之间,第17~21天的日捕捞量为1610~1670公斤之间(具体数值见正文)。由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。 关键词:“0-1”整数规划,单目标线性规划,离散型分布。 一. 问题重述 一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。 承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳? 二. 模型假设 1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕 捞过程中草鱼总量保持在25,000公斤不变。 2.第一天捕捞时水位为15m ,每天都在当天的初始水位捕捞草鱼,水库水位每 天按自然放水0.5m 逐渐降低,20天后刚好达到最低要求水位5m 。 3.在水库自然放水的21内将草鱼捕完。 4.在草鱼日供应量未达饱和的之前,市场供应量等于销售量。 5.每天草鱼的捕捞成本随着每天水位的降低呈等差数列递增分布。 6.随着水库水位的下降,草鱼的种群密度逐渐变大,存在着对空间、食物、氧 气的竞争,种群死亡率逐渐升高。题设中给定草鱼死亡及捕捞损失率随着水位的降低而升高,在这里我们假设草鱼损失率是一个统计学概念,即已经综合了因自然死亡和捕捞等其他原因共同造成的损失。 7.草鱼损失率与水库水位成反比关系,每天捕捞量的损失率与当天池塘总鱼量 的损失率是一致的,以每次捕捞时池塘总鱼数为当次基数。 8.捕捞上的草鱼中的死鱼将另行处理,不会放回水库也不会与活鱼一起出售。 9.日供应量在1000---1500公斤时,我们假定草鱼价格为20元每公斤这一常数。

相关文档