文档库 最新最全的文档下载
当前位置:文档库 › 参数方程总结

参数方程总结

参数方程总结
参数方程总结

知识回顾:

曲线的参数方程的定义:

在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即

?

?

?==)()

(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. 一、直线的参数方程

考点一:直线参数方程求法

其中: 为直线恒过的点, 为直线的倾斜角, 为直线的参数。

例一:设直线 过点 ,倾斜角为 :求直线 的参数方程.

00cos sin x x t y y t αα

=+??

=+?(1)直线参数方程的标准式:

322142x t y t

?=-????=-+??52cos 654sin

6

x t y t ππ?

=+???

?=-+??

解: 即 其中: 为直线恒过的点,向量 为直线的方向向量, 为直线的参(2)直线参数方程的一般式:

00x x lt y y mt =+??

=+?解:

1234x t

y t

=+??=-?l

例二:设直线 过点 ,且与向量 共线,求直线 的参数方程. 考点二:标准的直线参数方程 的几何意义。 所以,直线的参数方程为 00cos sin x x t M y y t α

α

?=+?=+?0

0cos sin x x t y y t αα

=+??

=+?0'0cos sin

x x t M y y t α

α

?=-?=-

?

二、圆的参数方程

所以:圆心为(a,b)、半径为r 的圆的参数方程为 x =a+rcos θ

y =b+rsin θ (θ为参数)

例1、如图,已知点P 是圆O:x2+y2=16上的一个动点 ,点A 是x 轴上的定点 ,坐标为(12,0).当点P 在圆上运动时,求线段PA 中点M 的轨迹方程,并说明点M 的轨迹图形是什么?

例二、 已知点P(x,y)是圆

03222

2=-++y x y x 上的一个动点,求:x+y 的最小值。

x

y

r y r x =

==αααtan ,sin ,cos 则设(终边上任意一点角,),,r OP y x P =α(x-a)2+(y-b)2=r2,表示圆心坐标为 (a,b),半径为r 的圆。 1.圆的标准方程是什么?它表示怎样的圆? 我们把方程组(1)叫做圆心为原点、半径为r 的圆的参数方程。 其中参数θ表示OP0到OP 所成旋转角, (cos ,sin ).

P r r θθ∴ cos ,sin .

x r y r θθ=?∴?

=? sin ,cos .y x

r r θθ==根据三角函数的定义得 (1) 解

则圆的参数方程为:

取,θ=∠xOP 为参数)θθθ(.sin 2,

cos 2??

?==y x 由中点公式可得:)为(的坐标则点的坐标为(设点,sin 2,cos 2),,θθP y x M θ

θθθsin 2

sin 2,3cos 26cos 2==+=+=y x 所以,点M 的轨迹的参数方程是 为参数)(θθθ??

?=+=.sin ,

3cos y x 注意:本题说明了参数方程在求点的运动轨迹方面的应用

轨迹是指点运动所成的图形;轨迹方程是指表示动点所成图形所满足的代数等式。

θ

θθθθθθsin 23cos 21sin 23cos 21(.sin 23,

cos 214

)3()103222222+++-=+∴++-???+=+-==-++=-++y x P y x y x y x y x ),(则为参数)

其参数方程为(可化为解:圆

说明:本例说明了圆的参数方程在求最值时的应用; 练习:

1.写出下列圆的参数方程: (1)圆心在原点,半径为

:____ __________; (2)圆心为(-2,-3),半径为1: ____ __________; 2.若圆的参数方程为 x =5cos θ+1

y =5sin θ-1 ,则其标准方程为: ____ __________

三、椭圆的参数方程

复习:

焦点在x 轴上的椭圆的标准方程:22

221(0)x y a b a b +=

>>

焦点在y 轴上的椭圆的标准方程:22

221(0)y x a b a b

+=>>

1. 焦点在x 轴上的椭圆的参数方程

因为22()()1x y

a b +=,又22cos sin 1??+=

cos ,sin x y

a b ??==,即ac o s y b s

i n x ??=??=? ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。

2.焦点在y 轴上的椭圆的参数方程

2222

y 1,b a x += 例1.把下列普通方程化为参数方程.

解:

例2. 已知椭圆22

221(0)x y a b a b

+=>>,求椭圆内接矩形面积的最大值.

解:设椭圆内接矩形的一个顶点坐标为(cos ,sin )a b θθ

4cos sin 2sin 22S a b ab ab θθθ=?=≤矩形

2213)(1)4

sin(min --=+-=+∴y x 时,当π

θ3cos y a sin x b ?

?

=??

=?()?为参数()?为参数22(1)1

49x y +=22(2)116y x +={

2cos (1)

3sin x y θ

θ=={

cos (2)4sin x y θ

θ

==

()224

k k Z S ab ππ

θ∴=

+∈=矩形当时,最大。

所以椭圆内接矩形面积的最大值为2ab 练习

44

(2,3),(5,15)55

A B 、、 (23,3),(4,3)

C D 、

、 222

4c o s 2s i n

3c o s 0,()

____________________?

2.x y x y θθθθ+--+=已知圆的方程为为参数,

那么圆心的轨迹的普通方程为

2212100

94

x y M M x y +=+-=在椭圆上求一点,使点到直线的距离最小,并求出3、最小距离

四、抛物线的参数方程

?

)0(22的参数方程方程为抛物线设抛物线的普通的定义选取参数,建立思考:怎样根据抛物线>=p py x

4cos {()23sin ()3

1x P y OP O P θ

θθπ

==是椭圆为参数上一点,且在第一象限,

为原点的倾斜角、为,则点的坐标为

的参数方程不包括顶点这就是抛物线为参数),得到解出由定义可得数的的终边上,根据三角函在因为点设抛物线的普通方程为))(5((tan 2tan 2,)6(),5()6....(..............................tan )5.(..........222ααααα??????

?

====p y p x y x x y M px y 的倒数。一点与原点连线的斜率的任意表示抛物线上除顶点外示抛物线。参数时,参数方程就表因此当的顶点点正好就是抛物线时,由参数方程表示的当为参数则有如果令t t t t pt y pt x t t ),()0,0(0)(22),,0()0,(,tan 12+∞-∞∈=???

==+∞-∞∈= α

【解析】如图,(0,

)(,)2

2

ππαπ∈,根据三角函数的定义

得,tan y t x

α==,即y xt =,联立2

2x py =,得

2

22x pt

y pt =??=?

(t 为参数). 所在直线的斜率是?则弦

所对应的参数分别是,上异于原点的不同两点为参数、若曲线例2121212,,)(221M M t t M M t pt y pt x ?

??==

2

12

221212222212112121211

2222)

2,2(),2,2(,1t t pt pt pt pt k pt pt M pt pt M M M t t M M M M +=--=

∴的坐标分别为和,则可得点和别是两点对应的参数方程分解:由于

练习:

1. 若点(3,)P m 在以点F 为焦点的抛物线2

4()4x t t y t

?=?

=?为参数上,则PF 等于( C ) A .2 B .3 C .4 D .5 2. 抛物线2

2x m

y m

=??=-?(m 为参数)的焦点坐标是 ( B ) A .(1,0)- B .(0,1)- C .(0,2)- D .(2,0)-

3. 已知曲线2

2()2x pt t p y pt

?=?=?为参数为正常数,上的两点,M N 对应的参数分别为12t t 和,

120t t +=且,那么MN = ( C )

A .1p t

B .12p t

C .14p t

D .18p t

4. 若曲线2

22x pt y pt

?=?=?(t 为参数)上异于原点的不同的两点1M 、

2M 所对应的参数分别是1t 、2t ,求12M M 所在直线的斜率.

五、双曲线的参数方程 M(x,y)

O

x

y

α

A 2a 22

2x y 双曲线的一般方程:-=1,这是中心在原点,焦点在x 轴上的双曲线。b 3[,2)22

o ππ?π??∈≠≠通常规定且,。

(或 θ

θ

ec a y b x s tg ==)

例1:

参数方程(α为参数)化为普通方程,则这个方程是().

解析:分析:根据1+tan 2α=sec 2

α,消去参数方程(α为参数)中的参数α,

化为普通方程.

解答:解:由参数方程

(α为参数),可得 tan α=y ,sec α=x-1,

代入 1+tan 2

α=sec 2

α,消去参数α,可得 1+y 2

=(x-1)2

即 (x-1)2-y 2

=1, 练习:

1. 2.

3. 直线和曲线相交于A 、B 两点.求线段AB 的

长.

4.

练习:

1、已知一条直线上两点()111,y x M 、()222,y x M ,以分点M (x ,y )分21M M 所成的比λ

为参数,写出参数方程。

2、直线???

???

?+=-=t y t x 211233(t 为参数)的倾斜角是( ) A .

6

π B .

3

π C .

6

5π D .

3

2π 3、方程?

?

?+=+-=αα

sin 3cos 1t y t x (t 为非零常数,α为参数)表示的曲线是 ( )

A .直线

B .圆

C .椭圆

D .双曲线

4、已知椭圆的参数方程是???==θ

θsin 4cos 5y x (θ为参数),则椭圆上一点 P (25

,32-)的

离心角可以是 A .

3π B .32π C .34π D .3

5、把曲线的参数方程

??

?

??-?=?=,21sin ,cos 200gt t v y t v x αα )2()1(化成普通方程. 6.已知圆的方程是x2+y2-2x+6y+6=0,则它的参数方程为_______________.

7、直线3x -2y +6=0,令y = tx +6(t 为参数).求直线的参数方程.

8、在圆x 2+2x +y 2

=0上求一点,使它到直线2x +3y -5=0的距离最大.

9、在椭圆4x 2+9y 2

=36上求一点P ,使它到直线x +2y +18=0的距离最短(或最长).

10.已知点P 是圆O:x2+y2=16上的一个动点 ,点B 是平面上的定点 ,坐标为(12,2).当点P 在圆上运动时,求线段PB 中点M 的轨迹方程,并说明点M 的轨迹图形是什么?

11、已知直线;l :?

??+=--=t y t x 4231与双曲线(y-2)2-x 2

=1相交于A 、B 两点,P 点坐标P(-1,

2)。求:

(1)|PA|.|PB|的值; (2)弦长|AB|; 弦AB 中点M 与点P 的距离。

12、已知A (2,0),点B,C 在圆x 2+y 2=4上移动,且有π3

2=∠BAC 求ABC ?重心G 的轨迹

方程。

13、已知椭圆

18

322

2=+y x 和圆x 2+(y-6)2=5,在椭圆上求一点P 1,在圆上求一点 P 2,使|P 1P 2|达到最大值,并求出此最大值。

15、椭圆)0(122

22>>=+b a b

y a x 上是否存在点P ,使得由P 点向圆x 2+y 2=b 2所引的两条切

线互相垂直?若存在,求出P 点的坐标;若不存在,说明理由。

16、在同一极坐标系中与极坐标M (-2, 40°)表示同一点的极坐标是( )

(A )(-2, 220°) (B )(-2, 140°) (C )(2,-140°) (D )(2,-40°) 17.在极坐标系中和圆ρ=4sin θ相切的一条直线方程是( )

(A )ρsin θ=2 (B )ρcos θ=2 (C )ρsin θ=4 (D )ρcos θ=4

18、在直角坐标系中,已知点M (-2,1),以原点O 为极点,x 轴正半轴为极轴建立极坐标

系,当极角在(-π,π] 内时,M 点的极坐标为( )

(A )(5,π-argtg(-

21)) (B )(-5,argtg(-21

) (C )(-5,π-argtg 21) (D )(5,-π+argtg 2

1

19、把点)4

,3(),6,5(π

π--B A 的极坐标化为直角坐标。

20、把点)0,2(),3,0(),1,3(P N M ---的直角坐标化为极坐标。

21、已知正三角形ABC 中,顶点A 、B 的极坐标分别为)2

,3(),0,1(π

B A ,试求顶点

C 的极坐标。

22、讨论下列问题:

(1)在极坐标系里,过点M (4,30°)而平行于极轴的直线 的方程是( )

(A )θρsin =2 (B )θρsin =-2 (C )2cos =θρ (D )2cos -=θρ

(2)在极坐标系中,已知两点M 1(4,arcsin 3

1

),M 2(-6,-π-arccos(-322)),则线

段M 1M 2的中点极坐标为( ) (A )(-1,arccos 322) (B )(1, arcsin 3

1

)

(C )(-1,arccos(-322)) (D )(1,-arcsin 3

1

)

(3)已知P 点的极坐标是(1,π),则过点P 且垂直于极轴的直线的极坐标方程是( )。 (A )ρ=1 (B )ρ=cos θ (C )ρcos θ=-1 (D )ρcos θ=1 23、讨论下列问题;

(1)圆的半径是1,圆心的极坐标是(1, 0),则这个圆的极坐标方程是( )。 (A )ρ=cos θ (B )ρ=sin θ (C )ρ=2cos θ (D )ρ=2sin θ (2)极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是( )。

(A )2 (B )2 (C )1 (D )2

2

参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: ) 0(ta ≠= x x y θ? ?? 图1

高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0. 2.圆锥曲线的参数方程 (1)圆 圆心在(a,b),半径为r 的圆的参数方程是?? ?+=+=? ? sin cos r b y r a x (φ是

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

极坐标与参数方程知识点总结归纳

欢迎阅读第一部分:坐标系与参数方程 【考纲知识梳理】 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换 () () ? ? ? > ? =' > ? =' , , : μ μ λ λ ? y y x x 的作 用下,点()y x P,对应到点()y x P' ',,称?为平面直角坐标系中的坐标伸缩变换, 2. (1) 如图(1) 单位,. 注:; (2) 设M OM , ()(∈ θ θ,0 ρ0,0≤ > 标()θ ρ, 3. (1) (2) 在一般情况下,由

, ??????? ?θρ=. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()???==t g y t f x ①, 并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条

曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与 参数的关系()t g y =,那么()() ???==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使() y x ,注:3设M (y x ,θ的 2, 4? ? ?==b y a x 2 2 22+b x a y ?的范围为[)π?2,0∈。 注:椭圆的参数方程中,参数?的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角α区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在0到π2的范围内),在其他任何一点,两个角的数值都不相等。但当2 0π α≤≤时,相应地也有2 0π ?≤ ≤,在其他象限内类似。 5.双曲线的参数方程

(完整版)极坐标与参数方程知识点、题型总结(可编辑修改word版)

?y ' = ? y,(> 0). 0 ? 极坐标与参数方程知识点、题型总结 一、伸缩变换:点 P (x , y ) 是平面直角坐标系中的任意一点,在变换 : ?x ' = ? x,(> 0), 的作用下,点 P (x , y ) 对应到点 P '(x ', y ') ,称伸缩变换 ? 一、 1、极坐标定义:M 是平面上一点, 表示 OM 的长度,是∠MOx ,则有序实数实 数对(,) , 叫极径,叫极角;一般地,∈[0, 2) , ≥ 0 。,点 P 的直角坐标、 极坐标分别为(x ,y )和(ρ,θ) ?x = cos ? ?2 = x 2 + y 2 ? 2、直角坐标? 极坐标 y = sin 2、极坐标? 直角坐标?tan = y (x ≠ 0) ? ?? x 3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点 M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为: ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为 M (ρ0,θ0),半径为 r 的圆方 程为ρ2-2ρ0ρcos(θ-θ0)+ρ 2-r 2=0 二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的 ?x = f (t ), 坐标 x , y 都是某个变数t 的函数? y = g (t ), 并且对于t 的每一个允许值,由这个方程所确 定的点 M (x , y ) 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x , y 的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方 程叫做普通方程。 (二).常见曲线的参数方程如下:直线的标准参数方程 x = x 0 + t cos 1、过定点(x 0,y 0),倾角为α的直线: (t 为参数) y = y 0 + t sin (1) 其中参数 t 的几何意义:点 P (x 0,y 0),点 M 对应的参数为t ,则 PM =|t| (2)直线上 P 1 , P 2 对应的参数是t 1, t 2 。|P 1P 2|=|t 1-t 2|= t 1+t 2 2-4t 1t 2.

高中数学选修4-4知识点清单

高中数学选修4-4 坐标系与参数方程知识点总结 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系. (2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P 2.

设点P(x,y)是平面直角坐标系中的任意一点,在变换φ 点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示 2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ). (1)极坐标化直角坐标 =ρcosθ, =ρsinθW. (2)直角坐标化极坐标 2=x2+y2, θ=y x(x≠0). 三简单曲线的极坐标方程 1.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 2.圆的极坐标方程 (1)特殊情形如下表:

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

数学参数方程知识点总结

数学参数方程知识点总结 参数方程和函数很相似,它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。下面数学参数方程知识点总结是为大家整理的,在这里跟大家分享一下。 数学参数方程知识点总结 参数方程定义 一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t) 并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。 参数方程 圆的参数方程 x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数 椭圆的参数方程x=acosθy=bsinθa为

长半轴长b为短半轴长θ为参数 双曲线的参数方程x=asecθ(正 割)y=btanθa为实半轴长b为虚半轴长θ为 参数 抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数 直线的参数方程 x=x+tcosa y=y+tsina,x,y和a表 示直线经过(x,y),且倾斜角为a,t为参数 参数方程的应用 一般在平面直角坐标系中,如果曲线上任意一点的 坐标x, y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。 圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数 椭圆的参数方程 x=a cosθ y=b sinθ a 为长半轴长 b为短半轴长 θ为参数 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准 线的距离 t为参数

高考数学:极坐标与参数方程知识点总结

高考数学:极坐标与参数方程知识点总结 极坐标与参数方程这部分题目比较简单,考法固定,同学们一定要掌握住,高考不失分啊! 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.

(2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:

二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O 引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示

2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M 的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).

电磁场理论知识点总结

电磁场与电磁波总结 第1章 场论初步 一、矢量代数 A ? B =AB cos A B ?=AB e AB sin A ?( B C ) = B ?(C A ) = C ?(A B ) A (B C ) = B (A ?C ) – C ?(A ?B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz 单位矢量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d dz ρ?ρρ?l 矢量面元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = d d d z 单位矢量的关系 ?=??=e e e e e =e e e e z z z ρ??ρρ? 3. 球坐标系 矢量线元 d l = e r d r + e r d e r sin d 矢量面元 d S = e r r 2sin d d 体积元 dv = r 2sin d r d d 单位矢量的关系 ?=??=e e e e e =e e e e r r r θ? θ??θ cos sin 0sin cos 0 001x r y z z A A A A A A ?? ?????? ??? ?=-?????????????????? ????? sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ???? ?????? ? ?=-????????????-?????? θ?θ?θ? θθ?θ?θ? ?

坐标系与参数方程_题型总结学生版 -文

坐标系与参数方程 题型一三类方程之间的互相转化 例1(15年陕西)在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为. (I )写出的直角坐标方程; (II )为直线上一动点,当到圆心的距离最小时,求的直角坐标. 例2(15年福建)在平面直角坐标系中,圆C 的参数方程为.在极坐标系(与平面直角坐标系取相同的长度单位,且以原点O 为极点,以轴非负半轴为极轴)中,直线l 的方程为 sin 4q m π? ?-= ?? ? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值. 例3(2014新课标I)(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;

(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 例4(2014新课标II)(本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为 2cos ρθ=,0,2πθ??∈???? . (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标. 练习1(2013年高考新课标1)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为(为参 数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为. (Ⅰ)把C 1的参数方程化为极坐标方程;

极坐标和参数方程知识点典型例题及其详解(供参考)

极坐标和参数方程知识点+典型例题及其详解 知识点回顾 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ???==) ()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆: θθ sin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆: θθsin cos b y a x == (θ为参数) (或 θ θsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(. sin ,cos 00???+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:

参数方程题型归纳

高考数学解答题分类-----参数方程 1.(2014全国新课标1)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与 最小值. 2.(十模)已知在平面直角坐标系x0y 内,点P (x,y )在曲线C:? ??=+=θθsin cos 1y x (θ为参数)上运动,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线L 的极坐标方程为 0)4 cos(=+πθρ. (1) 写出曲线C 和直线L 的普通方程; (2)若直线L 与曲线C 相交于A,B 两点,点M 在曲线C 上运动,求ABM ?面积的最大值。 3.(冲刺卷二)已知曲线C:???==θ θsin 2cos 3y x (θ为参数),在同一直角坐标系中,将曲线C 上的点按坐标变换??? ????='='y y x x 2131得到曲线C ' (1) 求曲线C '的普通方程。

(2)若点A 在曲线C '上,点B(3,0),当点A 在曲线C '上运动时,求AB 中点P 的轨迹方程。 4.(2014全国新课标二)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈???? . (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到 的参数方程,确定D 的坐标. 5.(白卷)已知曲线C 1的极坐标方程为:θθρsin 4cos 2+=,曲线C 2的参数方程为:

极坐标与参数方程知识点总结

第一部分:坐标系与参数方程 【考纲知识梳理】 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换()() ?? ?>?='>?='0,0,:μμλλ?y y x x 的作用下,点()y x P ,对应到点()y x P '',,称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图(1)所示,在平面取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。和直角坐标不同,平面一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示: (2)互化公式:设M 是坐标平面任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于是点M 直角坐标()y x , 极坐标()θρ, 互化公式 ?? ?==θ ρθ ρsin cos y x () 0tan 2 22≠=+=x x y y x θρ 在一般情况下,由θ确定角时,可根据点M 所在的象限最小正角. 曲线 图形 极坐标方程

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结 一、伸缩变换:点),(y x P 是平面直角坐标系中的任意一点,在变换 ???>?='>?='). 0(,y y 0),(x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称伸缩变换 一、 1、极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是M Ox ∠,则有序实数实 数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。,点P 的直角坐标、极坐标分别为(x ,y )和(ρ,θ) 2、直角坐标?极坐标 cos sin x y ρθρθ=??=?2、极坐标?直角坐标222 tan (0)x y y x x ρθ?=+??=≠?? 3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程 方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为: ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0 二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数???==), (),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确 定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 (二).常见曲线的参数方程如下:直线的标准参数方程 1、过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+=(t 为参数) (1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上12,P P 对应的参数是12,t t 。|P 1P 2|=|t 1-t 2|= t 1+t 2 2 -4t 1t 2.

极坐标与参数方程知识点总结大全72285

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.

如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是 (),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公式 在一般情况下,由确定角时,可根据点所在的象限最小正角.

4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为的圆 圆心为,半径为的圆 圆心为,半径为的圆 过极点,倾斜角为的直线 (1) (2) 过点,与极轴垂直的直线 过点,与极轴平行的直线

数学分析知识点总结(微分方程)

2.7.微分方程初步 2.7.1 概说 涉及到量的变化率满足的制约关系,通常是含有导数的方程——微分方程。 简单例子: (1)放射性物质,在每一时刻t ,衰变的速率dm dt - (由于是减少,因此0dm dt <,速率为标量,是正值)正比于该放射性物质尚存的质量,因此质量应满足一下微分方程。 dm km dt - = (2)质量为m 的物体自由落体,取坐标轴沿竖直方向指向地心,下落距离()y y t =应该满足牛顿第二定律F ma =,即 22d y mg m dt = (3)质量为m 的跳伞员下落,所受空气阻力正比下降的速度,取坐标轴沿竖直方向指向地心,则t 时刻下降距离()y y t =满足 22dy d y mg k m dt dt -= (1)如下图所示,钢球在以水平光滑杆上,受到弹力而来回整栋,原点位置为O ,钢球在 t 时刻的坐标()x x t =满足微分方程 ()22d x kx m dt -= 如果钢球还受到一个与速度成正比,方向与速度相反的阻尼力的作用,那么它所满足的微分方程是 22dx d x kx h m dt dt --= 总结:最简单的一阶微分方程是 ()dx f t dt = 其中t 是自变量,上述方程的一般解应该是 ()x f t dt C =+?

最简单的n 阶方程 ()n n d x f t dt = 它等价于说11n n d x dt --是()f t 的原函数,即 11()n n d x f t dt C dt --=+? 则再次积分,一直积分下去得到 1 11()(1)! n n n t x f t dt dt C C t C n --=++++-?? L L L

参数方程应用总结

参数方程应用专题 1、圆的参数方程的应用 圆222()()x a y b R -+-=的参数方程为cos sin x a R y b R θ θ =+??=+? ( 为参数 ) 一、求最值 ()y x P ,为圆上一点 (1)求22Cy Bxy Ax ++的最值(2)求By Ax +的最值 (3)A,B 为定点,求2 2 PB PA +的最值。 例1 已知点P (x ,y )在圆221x y +=上, (1)求2223x xy y ++的最大值和最小值。(2)求y x +2的最值 (3)()()()()2 2 2 2 0,24,10,121PD PC PB PA D C B A +++-求及和和, 点的最值。 练习1、已知实数y x ,满足()()25212 2 =-+-y x ,求y x y x ++2,22的最值。 2、在△ABC 中,∠A,∠B,∠C 所对的边分别为a 、b 、c ,且 c=10,34 cos cos = =a b B A ,P 为△ABC 的内切圆的动点,求点P 到顶点A 、B 、C 的 距离的平方和的最大值和最小值。

二、求轨迹 例2 在圆224x y +=上有定点A (2,0),及两个动点B 、C ,且A 、B 、C 按逆时针方向排列,∠BAC=3 π ,求△ABC 的重心G (x ,y )的轨迹方程。 三、求范围 例3 已知点P (x ,y )是圆22(1)1x y +-=上任意一点,欲使不等式x+y+c ≥0恒成立,求c 的取值范围。 四、求斜率 例4 求函数sin 1 ()cos 2 f θθθ-=-的最大值和最 小值。 C x y O A B 图 1 O x y (2,1) 图2

高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

相关文档
相关文档 最新文档