文档库 最新最全的文档下载
当前位置:文档库 › 波长与色坐标对照表

波长与色坐标对照表

波长与色坐标对照表
波长与色坐标对照表

波长与色坐标对照表

各种波长及其颜色

1、芯片发光颜色(COLW) 红(Red):R(610nm-640nm)黄(Yellow):Y(580nm-595nm)兰(Blue):B(455nm-490nm)兰绿(Cyan):C(490nm-515nm)绿(Green):G(501nm-540nm)紫(Purple):P(380nm-410nm)琥珀(Amber):A(590nm-610nm)白(White):W2 黄绿(Kelly):K(560nm-580nm)暖白(Warm white)W3 2、颜色波长 ★红: R1:610nm-615nm R2:615nm-620nm R3:620nm-625nm R4:625nm-630nm R5:630nm-635nm R6:635nm-640nm ★黄: Y1:580nm-585nm Y2:585nm-590nm Y3:590nm-595nm ★琥珀色: A1:600nm-605nm A2:605nm-610nm ★兰绿: G1:515nm-517.5nm G2:517.5-520nm G3:520nm-525nm G4:525nm-530nm G5:530nm-535nm G6:535nm-540nm ★兰: B1:455nm-460nm B2:460nm-462.5nm B3:462.5nm-465nm B4:460nm-465nm B5:465nm-470nm B6:470nm-475nm B7:475nm-480nm B8:480nm-485nm B9:485nm-490nm ★黄绿: K1:560nm-565nm K2:565nm-570nm K3:570nm-575nm K4:575nm-580nm ★纯绿: C1:490nm-495nm C2:495nm-500nm C3:500nm-515nm

波长与发光颜色知识汇总

白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。 红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。 绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。 蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出时的后台工作灯色。 蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。 红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。 紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm - 1600nm --不可见光 低红外线红光 1300nm - 870nm --不可见光 850nm - 810nm -几乎不可见光 近红外线光 780nm -当直接观察时可看见一个非常暗淡的樱桃红色光 770nm -当直接观察时可看见一个深樱桃红色光 740nm -深樱桃红色光 红色光 700nm - 深红色 660nm - 红色 645nm - 鲜红色 630nm - 橘红 620nm - 橙红 橙色光

光的各个波长区域-nm

光的各个波长区域 光是一种电磁波,它的波长区间以几个nm(1nm=10-9m)到1mm左右。这些光并不是都能看得见的,人眼所能看见的只是其中的一部分,我便把这部分光称为可见光。在可见光中,波长最短的是紫光,稍长的是蓝光,以后的顺序是青光、绿光、黄光、橙光和红光,其中红光的波长最长,在不可见光中,波长比紫光短的光称为紫外线,比红光长的光叫做红外线。下表列出紫外可见光和红外区的大致的波长范

围。波长小于200nm的光之所以称为真空紫外,是因为这部分光在空气中很快被吸收,因此它只能在真空中传播。 现在常用的光波波长单位是μm,nm和?(埃),它们之间的关系是:1μm=103nm=104?。光除具有波动性之外,还具有粒子性。量子论认为,光是由许多光量子组成的,这些光量子具有的能量为hυ,其中h=×10-34J·S是普朗克常数,υ=c/λ是光的频率,c=3×10-8m/s 是真空中的光速。量子论较好地反映了光的波粒二象性。 在光辐射中的一部分是人眼能够看得见的。人眼怎么会感到这部分光的呢原来在人眼的视网膜上面布满了大量的感光细胞。感光细胞有两种:柱状细胞和锥状细胞。前者灵敏度高,能感觉极微弱的光;后者灵敏度较低,但能很好的区别颜色。在柱状细胞和锥状细胞里都会有一种感光物质,当光线照到视网膜上时,感光物质发生化学变化,刺激神经细胞,最后由神经传到大脑,产生视觉。如同感光片对各种颜色光的灵敏度也不一样,它对绿光的灵敏度最高,可对红光的灵敏度低得多。也就是说,相同能量的绿光和红光,前者在人眼中引起的视觉强度要比后者大得多。实践表明,不同的观察者的眼睛对各种波长的光的灵敏度稍有不同,而且还随着时间、观察者的年龄和健康状况而变。因此,只能以许多人的大量观察结果中取平均。现在大家公认的视觉函数曲线是国际照明委员会(简称CIE)根据平均人眼对各种波长的光的相对灵敏度值画成的曲线。

LED特性和白光LED的基础知识与驱动色坐标和波长与电流的关系

LED特性和白光LED的基础知识与驱动  很多年来,发光二极管(LED)广泛的应用于状态显示与点阵显示板。现在,不仅可以选择近期刚刚研发出来的蓝光和白光产品(普遍用于便携设备),而且也能在已有的绿光、红光和黄光产品中选择。例如,白光LED被认为是彩色显示器的理想背光源。但是,必须注意这些新型LED产品的固有特性,需要为其设计适当的供电电源。本文描述了新、旧类型LED的特性,以及对驱动电源的性能要求。 标准红光、绿光和黄光LED 使LED工作的最简单的方式是,用一个电压源通过串接一个电阻与LED相连。只要工作电压(V B)保持恒定,LED就可以发出恒定强度的光(尽管随着环境温度的升高光强会减小)。通过改变串联电阻的阻值能够将光强调节至所需要的强度。 对于5mm直径的标准LED,图1给出了其正向导通电压(V F)与正向电流(I F )的函数曲线。[1]  注意LED的正向压降随着正向电流的增大而增加。假定工作于10mA正向电流的绿光LED应 该有5V的恒定工作电压,那么串接电阻R V 等于(5V -V F,10mA )/10mA = 300。如数据表中所 给出的典型工作条件下的曲线图(图2)所示,其正向导通电压为2V。 图1. 标准红光、绿光和黄光LED具有1.4V至2.6V的正向导通电压范围。当正向电流低于10mA时,正向导通电压仅仅改变几百毫伏。  图2. 串联电阻和稳压源提供了简单的LED驱动方式。

这类商用二极管采用GaAsP (磷砷化镓)制成。易于控制,并且被绝大多数工程师所熟知,它们具有如下优点:  ?所产生的色彩(发射波长)在正向电流、工作电压以及环境温度变化时保持相当的稳定性。标准绿光LED发射大约565nm的波长,容差仅有25nm。由于色彩差异非常小,在同时并联驱动几个这样的LED时不会出现问题(如图3所示)。正向导通电压的正常变化会使光强产生微弱的差异,但这是次要的。通常可以忽略同一厂商、同 一批次的LED之间的差异。 ?正向电流高至大约10mA时,正向电压变化很小。红光LED的变化量大约为200mV,其它色彩大约为400mV (如图1所示)。 ?相比之下,对于低于10mA的正向电流,蓝光和白光LED的正向电压变化更小。可以直接使用便宜的锂电池或三节NiMH电池驱动。 图3. 该图给出了同时并联驱动几个红光、黄光或者绿光LED的结构,具有很小的色彩差异或亮度差异。  因此,驱动标准LED的电流消耗非常低。如果LED的驱动电压高于其最大的正向电压,则并不需要升压转换器或者复杂昂贵的电流源。  LED甚至可以直接由锂电池或者3节NiMH电池来驱动,只要因电池放电而导致的亮度减弱可以满足该应用的要求即可。  蓝光LED  在很长的一段时间内都无法提供发射蓝光的LED。设计工程师仅能采用已有的色彩:红色、绿色和黄色。早期的“蓝光”器件并不是真正的蓝光LED,而是包围有蓝色散射材料的白炽灯。 几年前,使用纯净的碳化硅(SiC)材料研制出了第一个“真正的蓝光”LED,但是它们的发光效率非常低。下一代器件使用了氮化镓基料,其发光效率可以达到最初产品的数倍。当前制造蓝光LED的晶体外延材料是氮化铟镓(InGaN)。发射波长的范围为450nm至470nm,氮化铟镓LED可以产生五倍于氮化镓LED的光强。

白光LED封装 色坐标分析

白光LED封装 由于高辉度蓝光LED的问世,因此利用荧光体与蓝光LED的组合,就可轻易获得白光LED。目前白光LED已成为可携式信息产品的主要背光照明光源,未来甚至可成为一般家用照明光源。此外最近几年出现高功率近紫外LED,同样的可利用荧光体变成白光LED,LED的特点是小型、低耗电量、寿命长,若与具备色彩设计自由度、稳定、容易处理等特点的荧光体组合时,就可成为全新的照明光源。 通常LED与荧光体组合时,典型方法是将荧光体设于LED附近,主要原因是希望荧光体能高效率的将LED产生的光线作波长转换,而将荧光体设于光线放射密度较高的区域,对波长转换而言是最简易的方法。此外荧光体封装方法决定白光LED的发光效率与色调,因此接着将根据白光化的观点,深入探讨LED与荧光体的封装技术。 蓝色LED+YAG荧光体的白光化封装 图1是目前已商品化白光LED,具体而言它是将可产生黄光的YAG:Ce荧光体分散于透明的环氧树脂内,再用设于碗杯内的蓝色LED产生的光线激发转换成白光,这种方式的白光发光机制是利用LED产生蓝色光线,其中部份蓝光会激发YAG荧光体变成黄色发光,剩余的蓝光则直在外部进行蓝光与黄光混色进而变成白光,这种方式的特点是结构简单,只需在LED的制作过成中追加荧光体涂布工程即可,因此可以大幅抑制制作成本,此外另一特点是色度调整非常单纯。 图1 蓝光LED+YAG荧光体 图2是改变树脂内YAG荧光体浓度之后,LED色坐标plot的结果,由图可知只要色坐标是在LED与YAG荧光体两色坐标形成的直线范围内,就可任意调整色调,依此可知YAG荧光体浓度较低时,蓝色穿透光的比率较多,整体就会呈蓝色基调白光;相对的如果YAG荧光体浓度较高时,黄色转换光的比率较多,整体呈黄色基调白光。 如上所述将部份蓝色LED当作互补色的方式,不需要高密度(与树脂的百分比)的荧光体涂布,因此可以有效降低荧光体的使用量。一般而言荧光体与树脂的百分比,虽然会随着YAG荧光体的转换效率,与碗杯的形状而改变,不过10~20wt%左右低配合比就能获得白光。此外由于蓝光LED放射的光强度,在中心轴与周围的分布并不相同,即使LED芯片周围的YAG荧光体的密度完全相同,仍然会造成轴上与周围的光线不均等问题,这也是今后必需克服的课题之一。 图3是蓝光LED+YAG荧光体白光LED制作流程;图4典型的发光频谱,由图可知Lead Frame Type与Chip Type都是将蓝光LED设于碗杯内,再用混有定量YAG荧光体的树脂涂布封装。由于LED具备小型、省电、长寿等特征,因此已经广泛应用于行动电话、PDA等可携式信息产品的背光照明光源,以及步道引导灯等领域。 图2 蓝光LED+YAG荧光体的色度调整方法

每种颜色的光与波长的对应值

每种颜色的光与波长的对应值 紫光 400~450 nm 蓝光 450~480 nm 青光 480~490 nm 蓝光绿 490~500 nm 绿光 500~560 nm 黄光绿 560~580 nm 黄光 580~595 nm 橙光 595~605 nm 红光 605~700 nm

根据光子能量公式:E=hυ 其中,h为普朗克常数,υ为光子频率 可见光的性质是由其频率决定的。 另外,在不同折射率的介质中,光的波长会改变而频率不变。

色温 色温(colo(u)r temperature)是表示光源光色的尺度,单位为K(开尔文)。色温在摄影、录象、出版等领域具有重要应用。光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。 一.概述 基本定义 色温是表示光源光谱质量最通用的指标。一般用Tc表示。色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量

分布中,蓝辐射的比例增加,通常称为“冷光”。一些常用光源的色温为:标准烛光为1930K (开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5600K;电子闪光灯为6000K;蓝天为12000-18000K。 显示器指标 色温(ColorTemperature)是高档显示器一个性能指标。我们知道,光源发光时会产生一组光谱,用一个纯黑体产生出同样的光谱时所需要达到的某一温度,这个温度就是该光源的色温。15英寸以上数控显示器肯定带有色温调节功能,通过该功能(一般有9300K、6500K、5000K三个选择)可以使显示器的色彩能够满足高标准工作要求。高档产品中有些还支持色温线性调整功能。 光源颜色 光源的颜色常用色温这一概念来表示。光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。在黑体辐射中,随着温度不同,光的颜色各不相同,黑体呈现由红——橙红——黄——黄白——白——蓝白的渐变过程。某个光源所发射的光的颜色,看起来与黑体在某一个温度下所发射的光颜色相同时,黑体的这个温度称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。例如,白炽灯的光色是暖白色,其色温表示为2700K,而日光色荧光灯的色温表示方法则是6000K。 某些放电光源,它发射光的颜色与黑体在各种温度下所发射的光颜色都不完全相同。所以在这种情况下用“相关色温”的概念。光源所发射的光的颜色与黑体在某一温度下发射的光的颜色最接近时,黑体的温度就称为该光源的相关色温。

光的各个波长区域-nm

光的各个波长区域 波长区域(单位:nm)区域名称 1~200 真空紫外区 200~300 远紫外区紫外区 300~380 近紫外区 380~420 紫光 420~450 蓝光 450~490 青光 490~560 绿光可见光区 560~590 黄光 590~620 橙光 620~780 红光 780~1500 近红外区 1500~10000 中红外区红外区 10000~1000000 远红外区 光是一种电磁波,它的波长区间以几个nm(1nm=10 -9 m)到1mm左右。这些光并不是都能看得见的,人眼所能看见的只是其中的一部分,

我便把这部分光称为可见光。在可见光中,波长最短的是紫光,稍长的是蓝光,以后的顺序是青光、绿光、黄光、橙光和红光,其中红光的波长最长,在不可见光中,波长比紫光短的光称为紫外线,比红光长的光叫做红外线。下表列出紫外可见光和红外区的大致的波长范

围。波长小于200nm的光之所以称为真空紫外,是因为这部分光在空 气中很快被吸收,因此它只能在真空中传播。 现在常用的光波波长单位是μm,nm和?(埃),它们之间的关系 是:1μm=103nm=104?。光除具有波动性之外,还具有粒子性。量子论 认为,光是由许多光量子组成的,这些光量子具有的能量为hυ,其 中h=6.626 × 10-34 J〃S是普朗克常数,υ=c/ λ是光的频率, c=3×10-8 m/s 是真空中的光速。量子论较好地反映了光的波粒二象性。 在光辐射中的一部分是人眼能够看得见的。人眼怎么会感到这 部分光的呢?原来在人眼的视网膜上面布满了大量的感光细胞。感光 细胞有两种:柱状细胞和锥状细胞。前者灵敏度高,能感觉极微弱的 光;后者灵敏度较低,但能很好的区别颜色。在柱状细胞和锥状细胞 里都会有一种感光物质,当光线照到视网膜上时,感光物质发生化学 变化,刺激神经细胞,最后由神经传到大脑,产生视觉。如同感光片 对各种颜色光的灵敏度也不一样,它对绿光的灵敏度最高,可对红光 的灵敏度低得多。也就是说,相同能量的绿光和红光,前者在人眼中 引起的视觉强度要比后者大得多。实践表明,不同的观察者的眼睛对 各种波长的光的灵敏度稍有不同,而且还随着时间、观察者的年龄和 健康状况而变。因此,只能以许多人的大量观察结果中取平均。现在 大家公认的视觉函数曲线是国际照明委员会(简称CIE)根据平均人 眼对各种波长的光的相对灵敏度值画成的曲线。

LED波长与对应颜色

一些发光二极管产品,尤其是手电筒上的发光二极管有不同的光束颜色。这可不是使用了什么暗藏机关来使它们看上去漂亮,不同的光颜色有着不同的应用。下面就简单介绍一下最常见颜色和它的实际用途。 白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。 红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。 绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。 蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出时的后台工作灯色。 蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。 红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。 紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm-1600nm--不可见光 低红外线红光 1300nm-870nm--不可见光 850nm-810nm-几乎不可见光 近红外线光

色坐标软件使用说明

色坐标软件使用说明 1、 CIE介绍 国际照明协会法国语的缩写,相关网站为:http://www.cie.co.at/ 2、色坐标介绍 色坐标也叫色品坐标或色度坐标。CIE色度系统中,三刺激值各值与他们之和的比。在XYZ色品系统中,由三刺激值X、Y、Z可算出色品坐标x、y、z。 x=X/(X+Y+Z),y=Y/(X+Y+Z),z=Z/(X+Y+Z)。XYZ表示任何一种特定颜色所具有的三种理论原色刺激的量。X表示红原色刺激的量、Y表示绿原色刺激的量,而Z表示蓝原色刺激的量。 简单的就是某个光源发光的颜色在色坐标图中的位置,代表颜色的成分。 纯白光色坐标为(0.33±0.05, 0.33±0.05) 3、软件介绍 ColorCoordinate.exe:计算色坐标的软件,目前为1.0版本,台湾人编写,228K大小。CIE1931.exe:色坐标图,976K大小。 4、使用说明 1、准备含波长和发光强度两栏的文本文件(.txt)。波长范围为300–800之间。实际测量往 往不是在此范围,那么把测量范围外的强度设为0。前提当然是要求发射谱包含所有发出的光。文本制作参见例子Em349.txt。 2、打开ColorCoordinate.exe,依次点击“打开文件–“线性内插”–“计算”,就可得到色 坐标值。如例子Em349.txt的色坐标为(0.3260834, 0.3439385)。该软件同时计算出该色坐标对应的色温Tc。如例子Em349.txt的色温为5784.23060774796 3、打开CIE1931.exe,输入x和y值,点击ENTER,就会在色坐标图中标出位置。该软件 可同时标出无数个位置,只要反复输入x和y值即可。最后点击SA VE就可保存结果。 例子:

每种颜色的光与波长的对应值

每种颜色的光与波长的对应值 紫光400~450nm蓝光450~480nm青光480~490nm 蓝光绿490~500nm绿光500~560nm黄光绿560~580nm 黄光580~595nm橙光595~605nm红光605~700nm 根据公式:E=hυ 其中,h为,υ为频率 可见光的性质是由其频率决定的。 另外,在不同的介质中,光的波长会改变而频率不变。 色温 色温(colo(u)rtemperature)是表示光源的尺度,单位为K(开尔文)。色温在摄影、录象、出版等领域具有重要应用。光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克相联系。 一.概述 基本定义 色温是表示光源光谱质量最通用的指标。一般用Tc表示。色温是按来定义的,的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。一些常用光源的色温为:为1930K(开尔文);为2760-2900K;为3000K;为3800K;中午为5600K;为6000K;为K。

显示器指标 色温(ColorTemperature)是高档显示器一个性能指标。我们知道,光源发光时会产生一组光谱,用一个纯产生出同样的光谱时所需要达到的某一温度,这个温度就是该光源的色温。15英寸以上数控显示器肯定带有色温调节功能,通过该功能(一般有9300K、6500K、5000K三个选择)可以使显示器的色彩能够满足高标准工作要求。高档产品中有些还支持色温线性调整功能。 光源颜色 光源的颜色常用色温这一概念来表示。光源发射光的颜色与在某一温度下辐射相同时,的温度称为该光源的色温。在中,随着温度不同,光的颜色各不相同,黑体呈现由红——橙红——黄——黄白——白——蓝白的渐变过程。某个光源所发射的光的颜色,看起来与黑体在某一个温度下所发射的光颜色相同时,黑体的这个温度称为该光源的色温。“”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。例如,白炽灯的光色是暖白色,其色温表示为2700K,而日光色荧光灯的色温表示方法则是6000K。 某些放电光源,它发射光的颜色与在各种温度下所发射的光颜色都不完全相同。所以在这种情况下用“相关色温”的概念。光源所发射的光的颜色与黑体在某一温度下发射的光的颜色最接近时,黑体的温度就称为该光源的相关色温。 色温与亮度:高色温光源照射下,如亮度不高则给人们有一种阴冷的气氛;低色温光源照射下,亮度过高会给人们有一种闷热感觉。光色的对比:在同一空间使用两种光色差很大的光源,其对比将会出现层次效果,光色对比大时,在获得亮度层次的同时,又可获得光色的层次。 二.原理 认为,假定某一纯黑物体,能够将落在其上的所有热量吸收,而没有损失,同时又能够将热量生成的能量全部以“光”的形式释放出来的话,它产生辐射最大强度的波长随温度变化而变化。例如,当黑体受到的热力相当于500—550℃时,就会变成暗红色(某红色波长的辐射强度最大),达到1050一1150℃时,就变成黄色……因而,光源的颜色成分是与该黑体所受的温度相对应的。色温通常用温度(K)来表示,而不是用摄氏温度单位。打铁过程中,黑色的铁在炉温中逐渐变成红色,这便是黑体理论的最好例子。通常我们所用灯泡内的钨丝就相当于这个黑体。色温计算法就是根据以上原理,用K来对应表示物体在特定温度辐射时最大波长的颜色。 根据这一原理,任何光线的色温是相当于上述黑体散发出同样颜色时所受到的“温度”。

光的C波段L波段及DWDM波长换算

光的C波段L波段及DWDM波长换算 如下内容大都摘抄自网络,仅此备忘,尤其是光速299792458m/s,和C=λ*f 这个公式。 雷达波段(radar frequency band) 雷达发射电波的频率范围。其度量单位是赫兹(Hz)或周/秒(C/S)。大多数雷达工作在超短波及微波波段,其频率范围在30~300000兆赫,相应波长为10米至1毫米,包括甚高频(VHF)、特高频(UHF)、超高频(SHF)、极高频(EHF)4个波段。第二次世界大战期间,为了保密,用大写英文字母表示雷达波段。将230—1000兆赫称为P波段、1000—2000兆赫称为L波段、2000—4000兆赫称为S波段、4000~8000兆赫称为C波段、8000—12500兆赫称为x波段、12.5~18千兆赫称Ku波段、18~26.5千兆赫称K波段、26.5~40千兆赫称Ka波段。上述波段一直沿用至今。随着超视距雷达和激光雷达的出现,新波段的开辟,雷达采用的工作波长已扩展到从大于166 米的短波至小于10-7米的紫外线光谱。 技术文章中经常提及80波DWDM系统,这里的80波指的是单根光纤可以支持80波不同波长的光信号进行传输,如80波100G就是8.8T容量。但是为什么是80波,具体如何而来,今天有空研究一下,总结如下: 1)DWDM系统之前是CWDM系统,这个是粗(稀)波分,CWDM从1260nm 到1620nm波段,间隔为20nm,可复用16个波长通道,其中1400nm波段由于损耗较大,一般不用。主要在DWDM技术成熟前期应用较多,有点是成本低。随着DWDM技术的成熟和成本降低,CWDM应用较少。 2)DWDM采用100GHz或者50GHz间隔,可以支持40波或者80波。这里的100GHz或者50GHz间隔是与相关波长对应的。光纤有两个长波长的低损耗窗口,1310nm窗口和1550nm窗口,均可用于光信号传输,但由于目前常用的掺铒光纤放大器的工作波长范围为192.1~196.1THz。就在1550nm窗口附近。因此,光波分复用系统的工作波长区为192.1~196.1THz。具体参照 ITU-TG.692规定,一般有C波段或者L波段最常用,C-Band1530 to 1565nm,L-Band 1565 to 1625nm。这里解释一下,标称中心频率指的是光波分复用系统中每个通路对应的中心波长。在G.692中允许的通路频率是基于参考频率为193.1THz、最小间隔为200GHz、100GHz或50GHZ的频率间隔系列。 DWDM的中心波长是算出来的,基频是F=193.1THz,光速是 C=299792458m/s,则193.1T对应的波长就是

色度实验

色度实验 学生:陈振 学号:2009010335 【实验目的】 1. 了解色度学的基本原理。 2. 熟悉WSD-1A 型色度仪的实验装置及软件操作界面,并掌握使用方法。 3. 学会用透射或反射方法测量样品的主波长、纯度、色坐标等色度学量。 【实验原理】 色度学是研究颜色度量和评价方法的一门学科,现代色度学初步解决了对颜色作定量描述和测量的问题。 颜色可以分为黑白和彩色两个系列,黑灰白以外的所有颜色均为彩色系列。彩色可以用三个参数来表示:明度(亮度或纯度)、色调(主波长或补色主波长)和色纯度(饱和度)。明度表示颜色的明亮程度,颜色越亮明度值越大;色调反映颜色的类别,如红色、绿色、蓝色等。彩色物体的色调决定于在光照明下反射光的光谱成分。例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占优势,而其它成分被吸收掉了。对于透射光,色调由透射光的波长分布或光谱所决定。色纯度是指彩色光所呈现颜色的纯洁程度。对于同一色度的彩色光,其色纯度越高,颜色就越深,或越纯;反之颜色就越淡,纯度越低。色调和色纯度合称色度,它既说明彩色光的颜色类别,又说明颜色的深浅程度。 根据色度学原理,所有颜色均可由红、绿、蓝三种颜色匹配而成,这三种颜色称为三基色。为了定量地表示颜色,常用的方法是采用“三刺激值”,即红、绿、蓝三基色的量,分别用X 、Y 、Z 表示。在理论上,为了定量地表示颜色,采用平面直角色度坐标 Z Y X X x ++=, Z Y X Y y ++=, Z Y X Z z ++= x 、y 、z 分别是红、绿、蓝三种颜色的比例系数,1=++z y x 。用(C )代表一种颜色,(R)、(G)、(B)表示红、绿、蓝三基色,则)()()(B z G y R x C ++=,如一蓝绿色可以表示为: )(63.0)(31.0)(06.0)(B G R C ++= 所有的光谱色在色坐标上为一马蹄形曲线,该图称为CIE1931色坐标。在图 中红?、绿(G)、蓝(B)三基色坐标点为顶点,围成的三角形内的所有颜色的所有颜色可以由三基色按一定的量匹配而成。

最新可见光的波长与频率对照表

可见光的波长与频率对照表【化学】熟记化学 中的这些“不一定” [标签:化学熟记] 1. 原子核不一定都是由质子和中子构成的。如氢的同位素(11H)中只有一个质子。 2. 酸性氧化物不一定都是非金属氧化物。如Mn2O7是HMnO4的酸酐,是金属氧化物。 3. 非金属氧化物不一定都是酸性氧化物。如CO、NO等都不能与碱反应,是不成盐氧化物。 4.金属氧化物不一定都是碱性氧化物。如Mn2O7是酸性氧化物,Al2O3是两性氧化物。

5.电离出的阳离子都是氢离子的不一定是酸。如苯酚电离出的阳离子都是氢离子,属酚类,不属于酸。 6.由同种元素组成的物质不一定是单质。如金刚石与石墨均由碳元素组成,二者混合所得的物质是混合物;由同种元素组成的纯净物是单质。 7.晶体中含有阳离子不一定含有阴离子。如金属晶体中含有金属阳离子和自由电子,而无阴离子。 8.有单质参加或生成的化学反应不一定是氧化还原反应。如金刚石→石墨,同素异形体间的转化因反应前后均为单质,元素的化合价没有变化,是非氧化还原反应。 9. 离子化合物中不一定含有金属离子。如NH4Cl属于离子化合物,其中不含金属离子。 10.与水反应生成酸的氧化物不一定是酸酐,与水反应生成碱的氧化物不一定是碱性氧化物。如NO2能与水反应生成酸—硝酸,但不是硝酸的酸酐,硝酸的酸酐是N2O5,Na2O2能与水反应生成碱—NaOH,但它不属于碱性氧化物,是过氧化物。 11.pH=7的溶液不一定是中性溶液。只有在常温时水的离子积是1×10-14 ,此时pH=7 的溶液才是中性。 12.用pH试纸测溶液的pH时,试纸用蒸馏水湿润,测得溶液的pH不一定有误差。 13.分子晶体中不一定含有共价键。如稀有气体在固态时均为分子晶体,不含共价键。 14.能使品红溶液褪色的气体不一定是SO2,如Cl2、O3均能使品红溶液褪色。

相关文档