文档库 最新最全的文档下载
当前位置:文档库 › 数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法

数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法
数值分析求解非线性方程根的二分法、简单迭代法和牛顿迭代法

实验报告一:实验题目

一、 实验目的

掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。

二、 实验内容

1、编写二分法、牛顿迭代法程序,并使用这两个程序计算

02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。

2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。

3、由中子迁移理论,燃料棒的临界长度为下面方程的根

,用牛顿迭代法求这个方程的最小正根。

4、用牛顿法求方程

的根,精确至8位有效数字。比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。

三、 实验程序

第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。

画图函数:

function Test1()

% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0

r = 0:0.01:1;

y = r + exp(r) - 2

plot(r, y);

grid on 二分法程序:

计算调用函数:[c,num]=bisect(0,1,1e-4)

function [c,num]=bisect(a,b,delta)

%Input –a,b 是取值区间范围

% -delta 是允许误差

%Output -c 牛顿迭代法最后计算所得零点值

% -num 是迭代次数

ya = a + exp(a) - 2;

yb = b + exp(b) - 2;

if ya * yb>0

return ;

end

for k=1:100

c=(a+b)/2;

yc= c + exp(c) - 2;

if abs(yc)<=delta

a=c;

b=c;

elseif yb*yc>0

b=c;

yb=yc;

else

a=c;

ya=yc;

end

if abs(b-a)

num=k; %num为迭代次数

break;

end

end

c=(a+b)/2;

err=abs(b-a);

yc = c + exp(c) - 2;

牛顿迭代法程序:

计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:

function [y] = func1(x)

y = x + exp(x) - 2;

end

迭代算法:

function[c,num]=newton(func,p0,delta)

%Input -func是运算公式

% -p0是零点值

% -delta是允许误差

%Output -c牛顿迭代法最后计算所得零点值

% -num是迭代次数

num=-1;

for k=1:1000

y0=func(p0);

dy0=diff(func([p0 p0+1e-8]))/1e-8;

p1=p0-y0/dy0;

err=abs(p1-p0);

p0=p1;

if(err

num=k;%num为迭代次数

break;

end

end

c=p0;

第2题:

由题意得到算式:

计算调用函数:[c,num]=newton(@func2,0.02,1e-8) 程序:先用画图法估计出大概零点位置在0.02附近。画图程序:

function Test2()

% f(x) 示意图, f(x) = 200000*(1+x).^10-2160*12*10; f(x) = 0 r = linspace(0,0.06, 100);

y = 200000*(1+r).^10-2160*12*10;

plot(r, y);

grid on

调用函数:

function[y]=func2(r)

y=200000*(1+r).^10-2160*12*10;

end

牛顿迭代法算法程序:

function [c,num] =newton(func,p0,delta)

%Input -func是运算公式

% -p0是零点值

% -delta是允许误差

%Output -c牛顿迭代法最后计算所得零点值

% -num是迭代次数

num=-1;

for k=1:1000

y0=func(p0);

dy0=diff(func([p0 p0+1e-8]))/1e-8;

p1=p0-y0/dy0;

err=abs(p1-p0);

p0=p1;

if(err

num=k;

break;

end

end

c=p0;

第3题:求最小正数解

计算调用函数:[c,num]=newton(@func3, 1 ,1e-8) 程序:先用画图法估计出最小正解位置在1到2之间画图程序:

function Test3()

% f(x) 示意图, f(x) = cot(x)-(x.^2-1)./(2.*x); f(x) = 0 ezplot('cot(x)-(x.^2-1)./(2.*x)',[-6,6]);

grid on

调用函数:

function[y]=func3(x)

y=cot(x)-(x.^2-1)./(2.*x);

end

牛顿迭代法算法程序:

function [c,num] =newton(func,p0,delta)

%Input -func是运算公式

% -p0是零点值

% -delta是允许误差

%Output -c牛顿迭代法最后计算所得零点值

% -num是迭代次数

num=-1;

for k=1:1000

y0=func(p0);

dy0=diff(func([p0 p0+1e-8]))/1e-8;

p1=p0-y0/dy0;

err=abs(p1-p0);

p0=p1;

if(err

num=k;

break;

end

end

c=p0;

第4题:精确至8位有效数字

根据画图图像可得函数有一个重根在区间[1,3]和另一个根在区间[6,8]。

计算调用函数:重根:[c,num]=newton(@func4, 1 ,1e-8)

另外的单根:[c,num]=newton(@func4, 6 ,1e-8)

画图程序:

function Test4()

% f(x) 示意图, f(x) = x.^3-11.*x.^2+32.*x-28; f(x) = 0

r = 0:0.01:8;

y = r.^3-11.*r.^2+32.*r-28;

plot(r, y);

grid on

调用函数:

function func4(x)

y=x.^3-11.*x.^2+32.*x-28;

end

牛顿迭代法算法程序:

function[c,num]=newton(func,p0,delta)

%Input -func是运算公式

% -p0是零点值

% -delta是允许误差

%Output -c牛顿迭代法最后计算所得零点值

% -num是迭代次数

num=-1;

for k=1:100

y0=func(p0);

dy0=diff(func([p0 p0+1e-8]))/1e-8;

if(dy0==0)

c= vpa(p0,8);

num=k;

break;

else

p1=p0-y0/dy0;

err=abs(p1-p0);

p0=p1;

if(err

num=k;

break;

end

end

end

c= vpa(p0,8);

改进的牛顿算法程序:

function[c,num]=newton(func,p0,delta)

%Input -func是运算公式

% -p0是零点值

% -delta是允许误差

%Output -c牛顿迭代法最后计算所得零点值

% -num是迭代次数

num=-1;

for k=1:100

y0=func(p0);

dy0=diff(func([p0 p0+1e-8]))/1e-8;

if(dy0==0)

c= vpa(p0,8);

num=k;

break;

else

p1=p0-2*y0/dy0;%根据重根计算时,改进Newton法的收敛速度,可以采用在迭代函数中乘上重根数的方法进行改善。

err=abs(p1-p0);

p0=p1;

if(err

num=k;

break;

end

end

end

c=vpa(p0,8);

四、实验结果分析

第1题:

MAAB计算方法迭代法牛顿法二分法实验报告

姓名 实验报告成绩 评语: 指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点 2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。否则,继续判断是否0)()(

+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(') (00x f x f 。取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。迭代公式为:=+1 k x -0x )(')(k k x f x f 。 三、 实验设备:MATLAB 软件 四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超 过3105.0-?。 (2)、取初值00=x ,用迭代公式=+1 k x -0x )(') (k k x f x f ,求方程0210=-+x e x 的近似根。要求误差不超过3105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误差 不超过3105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 软件,建立一个实现二分法的MATLAB 函数文件如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

数值分析报告-二分法和牛顿法方程求根

《数值分析》实验报告一 姓名: 周举 学号: PB09001046

实验一 一、实验名称 方程求根 二、实验目的与要求: 通过对二分法和牛顿法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点; 比较二者的计算速度和计算精度。 三、实验内容: 通过对二分法和牛顿迭代法作编程练习和上机运算,进一步体会它们在方程求根中的不同特点 。 (一)二分法 算法:给定区间[a,b],并设f (a )与f (b )符号相反,取δ为根的容许误差,ε为值的容许误差。 (1)令c=(a+b)/2 (2)如果(c-a)< δ或)(c f <ε,则输出c ,结束;否则执行(3) (3)如果f(a)f(c)<0,则令)()(,c f b f c b ←←;否则,则令 )()(,c f a f c a ←←,重复(1),(2),(3)。 (二)牛顿迭代法:给定初值0x ,ε为根的容许误差,η为)(x f 的容 许误差,N 为迭代次数的容许值。 (1)如果)(x f <η或迭代次数大于N ,则算法结束;否则执行(2)。

(2)计算)('/)(0001x f x f x x -= (3)若 < 或 < ,则输出 ,程序结束;否则执行(4)。 (4)令 = ,转向(1)。 四、实验题目与程序设计 1、二分法 3.1.1、用二分法求方程 a. f(x)= x x tan 1--在区间[0,π/2]上的根, c. f(x)=6cos 22-++-x e x x 在区间[1,3]上的根。 源程序: 3.1.1.a #include #include void main() { float a,b;double c,y,z; printf("plese input two number a and b:\n"); scanf("%f%f",&a,&b); c=(a+b)/2; y=1/c-tan(c); printf("a=%f,b=%f,b-a=%f,c=%f,f(c)=%f\n",a,b,b-a,c,y); while(fabs(b-a)>0.00001|| fabs(y)>0.00001) { z=1/a-tan(a); if(z*y<0) b=c; else a=c; c=(a+b)/2; y=1/c-tan(c); printf("a=%f,b=%f,b-a=%f,c=%f,f(c)=%f\n",a,b,b-a,c,y); } } x x 01-ε)(1x f ηx 1x 0x 1

牛顿法非线性方程求解

《MATLAB 程序设计实践》课程考核 ---第37-38页 题1 : 编程实现以下科学计算算法,并举一例应用之。(参考书籍《精 通MAT LAB科学计算》,王正林等著,电子工业出版社,2009 年) “牛顿法非线性方程求解” 弦截法本质是一种割线法,它从两端向中间逐渐逼近方程的根;牛顿法本质上是一种切线法,它从一端向一个方向逼近方程的根,其递推公式为: - =+n n x x 1) ()(' n n x f x f 初始值可以取)('a f 和)('b f 的较大者,这样可以加快收敛速度。 和牛顿法有关的还有简化牛顿法和牛顿下山法。 在MATLAB 中编程实现的牛顿法的函数为:NewtonRoot 。 功能:用牛顿法求函数在某个区间上的一个零点。 调用格式:root=NewtonRoot )(```eps b a f 其中,f 为函数名; a 为区间左端点; b 为区间右端点 eps 为根的精度; root 为求出的函数零点。 ,

牛顿法的matlab程序代码如下: function root=NewtonRoot(f,a,b,eps) %牛顿法求函数f在区间[a,b]上的一个零点%函数名:f %区间左端点:a

%区间右端点:b %根的精度:eps %求出的函数零点:root if(nargin==3) eps=1.0e-4; end f1=subs(sym(f),findsym(sym(f)),a); f2=subs(sym(f),findsym(sym(f)),b); if (f1==0) root=a; end if (f2==0) root=b; end if (f1*f2>0) disp('两端点函数值乘积大于0 !'); return; else tol=1; fun=diff(sym(f)); %求导数 fa=subs(sym(f),findsym(sym(f)),a); fb=subs(sym(f),findsym(sym(f)),b); dfa=subs(sym(fun),findsym(sym(fun)),a); dfb=subs(sym(fun),findsym(sym(fun)),b); if(dfa>dfb) %初始值取两端点导数较大者 root=a-fa/dfa; else root=b-fb/dfb; end while(tol>eps) r1=root; fx=subs(sym(f),findsym(sym(f)),r1); dfx=subs(sym(fun),findsym(sym(fun)),r1); %求该点的导数值 root=r1-fx/dfx; %迭代的核心公式 tol=abs(root-r1); end end 例:求方程3x^2-exp(x)=0的一根 解:在MATLAB命令窗口输入: >> r=NewtonRoot('3*x^2-exp(x)',3,4) 输出结果: X=3.7331

数值方法C++代码大全上(包括二分法迭代法牛顿法等等)

1.二分法 #include #include #include //调用fabs函数。 double f(double x) //定义函数F(x)。 { return 2*x*x*x-x-1; } void main() { double a,b,w,x; cout<<"请输入方程根的区间[a,b]及误差w:"; cin>>a>>b>>w; x=(a+b)/2; while(fabs(f(x))>w&&fabs(a-b)>w){ //用while循环控制中值折算的条件。if(f(x)*f(b)<0) a=x; //进行二分,缩小求值范围。else if(f(a)*f(x)<0) b=x; x=(a+b)/2; } cout< #include #include #include using namespace std; typedef double (*pFun)(double x); double getIterativeValue(double x) {

return pow((x+1)/2,(double)1.0/3); } double Solve(pFun f,double x,double e,int n) { double res; while(n--) { res = f(x); if(fabs(res - x) < e) { outPrint("第%d次次迭代以后返回值为:%0.7lf \n",10-n,res); break; } else x = res; outPrint("第%d次迭代以后x值为:%0.7lf\n ",10-n,x); } return res; } int main() { cout << setprecision(7); double x,e; cout << "输入初值和精度:" << endl; cin >> x >> e; cout << Solve(getIterativeValue,x,e,10) << endl; system("pause"); return 0; } 3.牛顿法 #include #include #include #include using namespace std;

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间 [-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与 f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。

开始 输入x0,e X1=f(x0)|x1-x0|

牛顿法求非线性方程的根

学科前沿讲座论文 班级:工程力学13-1班姓名:陆树飞

学号:02130827

牛顿法求非线性方程的根 一 实验目的 (1)用牛顿迭代法求解方程的根 (2)了解迭代法的原理,了解迭代速度跟什么有关 题目:用Newton 法计算下列方程 (1) 013=--x x , 初值分别为10=x ,7.00=x ,5.00=x ; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时 给出结果并分析现象,当6510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k ()x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法。

三 程序设计 (1)对于310x x --=,按照上述数学原理,编制的程序如下 program newton implicit none real :: x(0:50),fx(0:50),f1x(0:50)!分别为自变量x ,函数f(x)和一阶导数f1(x) integer :: k write(*,*) "x(0)=" read(*,*) x(0) !输入变量:初始值x(0) open(10,file='1.txt') do k=1,50,1 fx(k)=x(k-1)**3-x(k-1)-1 f1x(k)=3*x(k-1)**2-1 x(k)=x(k-1)-fx(k)/f1x(k) !牛顿法 write(*,'(I3,1x,f11.6)') k,x(k) !输出变量:迭代次数k 及x 的值 write(10,'(I3,1x,f11.6)') k,x(k) if(abs(x(k)-x(k-1))<1e-6) exit !终止迭代条件 end do stop end (2)对于32943892940x x x +-+=,按照上述数学原理,编制的程序如下 program newton implicit none

求一个整数开根号--二分法和牛顿迭代法(求根)

求一个整数开根号--二分法和牛顿迭代法(求根) 问题叙述 求解1232cos 0x x -+=的解;通过编写matlab 程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。 一、问题分析 由matlab 画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001)的情况下,得出matlab 迭代次数,通过次数的比较得出二者求解速度快慢比较。 二、实验程序及注释 (1)、二分法程序: clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)'); format long %数据显示格式设为长型; a=2;b=4; %求解区间; er=b-a;ya=f(a);k=0;er0=0.00001; %误差分析; while er>er0 x0=.5*(a+b); y0=f(x0); if ya*y0<0 b=x0; %二分法求解程序; else a=x0; ya=y0; end disp([a,b]);er=b-a;k=k+1 %显示各个区间值和求解次数; end disp([a,b]); %显示最后一个区间值; (2)、牛顿迭代法程序: clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)'); format long %数据显示格式设为长型; b=3;a=4;k=0; %求解区间; y0=f(b);y=f(a); while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0); b=a;y0=y; %牛顿迭代法求解程序; a=t;y=f(a); k=k+1; disp([b,a]);k %显示各个区间值和求解次数; end disp([b,a]); %显示最后一个区间值;

matlab程序设计实践-牛顿法解非线性方程

中南大学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出保存界面,文件名默认不要修改,保存)→结果。第一题需要把数据文本文档和m文件放在一起。全部测试无误,放心使用。本文档针对做牛顿法求非线性函数题目的同学,当然第一题都一样,所有人都可以用。←记得删掉这段话 班级: ? 学号: 姓名:

一、《MATLAB程序设计实践》Matlab基础 表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散 空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。 由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一 个matlab程序画出如下的几种图形来分析其取向分布特征: (1)用Slice函数给出其整体分布特征; " ~ (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。 (

备注:数据格式说明 解: (1)( (2)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如 下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); [ while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1;数据说明部分,与 作图无关此方向表示f随着 φ1从0,5,10,15, 20 …到90的变化而 变化 此方向表示f随着φ 从0,5,10,15, 20 … 到90的变化而变化 表示以下数据为φ2=0的数据,即f(φ1,φ,0)

数值分析——二分法和牛顿法

二分法和牛顿法的比较 二分法的基本思想是对有根区间[a,b]逐次分半,首先计算区间[a,b]的中间点x0,然后分析可能出现的三种情况:如果f(x0)f(a)<0,则f(x)在区间[a,x0]内有零点;如果f(x0)f(b)<0,则f(x)在区间[x0,b]内有零点;如果f(x0)=0,则x0是f(x)在区间[a,b]内所求零点。但是二分法的缺点是收敛速度慢且不能求复根。牛顿迭代法的基本思想是将方程f(x)=0中函数f(x)线性化,以线性方程的解逼近非线性方程的解其迭代函数为) (') ()(x f x f x x -=?。牛顿迭代法的缺点是可能发生被零除错误,且可能出现死循环。 用二分法和牛顿法分别计算多项式02432 3 =-+-x x x 的解。该多项式的解为1、1+i 和1-i ,使用二分法计算时,区间为(-1,2),使用牛顿法计算时取初始值为0。误差都为0.0001。 编程如下 二分法(erfen.m): syms x ; fun=x^3-3*x^2+4*x-2; a=-1; b=2; d=0.0001; f=inline(fun); e=b-a; k=0; while e>d c=(a+b)/2; if f(a)*f(c)<0 b=c; elseif f(a)*f(c)>0 a=c; else a=c;b=c; end e=e/2; k=k+1; end k x=(a+b)/2 牛顿法(newton.m): function [k,x,wuca] = newton() k=1; x0=0; tol=0.0001; yx1=fun(x0); yx2=fun1(x0); x1=x0-yx1/yx2; while abs(x1-x0)>tol x0=x1; yx1=fun(x0); yx2=fun1(x0); k=k+1; x1=x1-yx1/yx2; end k x=x1 wuca=abs(x1-x0)/2 end function y1=fun(x) y1=x^3-3*x^2+4*x-2; end function y2=fun1(x) y2=3*x^2-6*x+4; end 分析结果得知,在相同的误差精度下,二分法需要计算15次,而牛顿法只需计算5次,得知牛顿法比二分法优越。

二分法和牛顿法求解非线性方程(C语言)

(1)二分法求解非线性方程: #include #include #define f(x)((x*x-1)*x-1) void main() {float a,b,x,eps; int k=0; printf("intput eps\n");/*容许误差*/ scanf("%f",&eps); printf("a,b=\n"); for(;;) {scanf("%f,%f",&a,&b); if(f(a)*f(b)>=0)/*判断是否符合二分法使用的条件*/ printf("二分法不可使用,请重新输入:\n"); else break; } do {x=(a+b)/2; k++; if(f(a)*f(x)<0)/*如果f(a)*f(x)<0,则根在区间的左半部分*/ b=x; else if(f(a)*f(x)>0)/*否则根在区间的右半部分*/ a=x; else break; }while(fabs(b-a)>eps);/*判断是否达到精度要求,若没有达到,继续循环*/ x=(a+b)/2;/*取最后的小区间中点作为根的近似值*/ printf("\n The root is x=%f,k=%d\n",x,k); } 运行结果: intput eps 0.00001 a,b= 2,-5 The root is x=1.324721,k=20 Press any key to continue 总结:本题关键在于两个端点的取值和误差的判断,此程序较容易。二分法收敛速度较快,但缺点是只能求解单根。 (2)牛顿法求解非线性方程: #include #include float f(float x)/*定义函数f(x)*/ {return((-3*x+4)*x-5)*x+6;} float f1(float x)/*定义函数f(x)的导数*/

C++实现 牛顿迭代 解非线性方程组

C++实现牛顿迭代解非线性方程组(二元二次为例) 求解{0=x*x-2*x-y+0.5; 0=x*x+4*y*y-4; }的方程 #include #include #define N 2 // 非线性方程组中方程个数、未知量个数#define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 // 最大迭代次数 using namespace std; const int N2=2*N; int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]); //计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量x0 计算近似解向量x1 float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘x读入初始近似解向量for( i=0;i>x0[i]; cout<<"初始近似解向量:"<

二分法 牛顿迭代法

2014级硕士研究生数值分析上机实习 (第一次) 姓名:乔永亮 学号:14S030125 学院:船舶与海洋工程学院 实习题目:分别用二分法和Newton 迭代法求方程02010223=-++x x x 的根. 实习目的:掌握两种解法,体会两种解法的收敛速度. 实习要求:用C 程序语言编程上机进行计算,精确到8位有效数字. 报告内容: 1. 确定实根的个数以及所在区间. 解:对函数3 2 ()21020f x x x x =++-求导,得2 ()34100f x x x '=++=。 易知()0f x '>恒成立,所以函数(x)f 没有极值,只有一个实根。又可以知道(1)0f <,(2)0f >方程在区间(1,2)有一个实根,且为奇数重根,可以二分法和Newton 求解 2. 将最后两次计算结果填入下表(保留8位数字): 3. 实习过程中遇到哪些问题?如何解决?有何心得体会? 在编程的过程中由于对基本计算原理的理解有一定不足,同时对编程语言的不熟悉,导致在编程过程中错误百出,耗费了大量时间。但是通过课本以及网络对所需知识的不断学习,通过尝试不同的方法,最终还是得到了几种不同的思路与方法。通过这次编程,深深的感受到自己的不足,同时也明白了数学与计算机编程的紧密结合,不努力提高自己在当今社会就要被淘汰。

4. 两种解法的计算程序(此页写不下时可以加页): 二分法(Fortran 语言) program Analysis1 real::a,b,c,m real::fa,fc a=1. b=2. m=0.0001 !-------------------- do while(abs(b-a)>=m) c=(a+b)/2 fa=a**3+2.*a*a+10.*a-20 fc=c**3+2.*c*c+10.*c-20 if(fa*fc<0) then b=c else a=c end if write(*,"(f10.7)")c end do pause end program Anslysis1 牛顿迭代法(Fortran语言) program Analysis2 implicit none !定义变量---------------------------------------------------------------external f,df real m,x0,x1,f,df integer i !初始化变量-------------------------------------------------------------m=0.0001 x0=1.5 !牛顿迭代法-------------------------------------------------------------do while(abs(f(x0))>=m) x1=x0-f(x0)/df(x0) x0=x1 i=i+1 write(*,"(i4,f10.7)")i,x0 end do

二分法和牛顿迭代法求解方程的比较

二分法和牛顿迭代法求解方程的比较 200822401018 徐小良 一、问题叙述 求解1232cos 0x x -+=的解;通过编写matlab 程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。 二、问题分析 由matlab 画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001)的情况下,得出matlab 迭代次数,通过次数的比较得出二者求解速度快慢比较。 三、实验程序及注释 (1)、二分法程序: clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)'); format long %数据显示格式设为长型; a=2;b=4; %求解区间; er=b-a;ya=f(a);k=0;er0=0.00001; %误差分析; while er>er0 x0=.5*(a+b); y0=f(x0); if ya*y0<0 b=x0; %二分法求解程序; else a=x0; ya=y0; end disp([a,b]);er=b-a;k=k+1 %显示各个区间值和求解次数; end disp([a,b]); %显示最后一个区间值; (2)、牛顿迭代法程序: clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)'); format long %数据显示格式设为长型; b=3;a=4;k=0; %求解区间; y0=f(b);y=f(a); while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0); b=a;y0=y; %牛顿迭代法求解程序; a=t;y=f(a); k=k+1; disp([b,a]);k %显示各个区间值和求解次数; end disp([b,a]); %显示最后一个区间值;

牛顿法和割线法

作业十(第五章):1. 在区间(0,1.5)上分别用二分法、牛顿法和割线法编程求下面的函数的零点,精度要求10-10。 22 ()=cos(2) f x x x 二分法 function [X]=bisection(fx,xa,xb,n,delta) % 二分法解方程 % fx是由方程转化的关于x的函数,有fx=0。 % xa 解区间上限 % xb 解区间下限 %解区间人为判断输入 % n 最多循环步数,防止死循环。 %delta 为允许误差 x=xa;fa=eval(fx); x=xb;fb=eval(fx); for i=1:n xc=(xa+xb)/2;x=xc;fc=eval(fx);

X=[i,xc,fc]; if fc*fa<0 xb=xc; else xa=xc; end if (xb-xa)

return end while k<=m x=x0;g=eval(diff(fx)); x1=x0-F/g; x=x1;F=eval(fx);k=k+1; if abs(F)<=e X=[x1 F k];return end if k>m fprintf('牛顿法迭代M次没有找到方程的根') return end x0=x1; end fprintf('\n%s%.4f\t%s%d','X=',X,'k=',k) %输出结果牛顿法结果: 迭代5次结果0.5149 割线法:function [X]=gx9(fx,x0,x1,m,e)

牛顿迭代法求解非线性方程组的代码

牛顿迭代法求解非线性方程组 非线性方程组如下: 221122121210801080 x x x x x x x ?-++=??+-+=?? 给定初值()00.0T x =,要求求解精度达到0.00001 1.首先建立函数()F X ,方程编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1),f(2)] ; 2.建立函数()DF X ,用于求方程的jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; %jacobi 矩阵是一阶偏导数以一定方式排列成的矩阵。 3.编程牛顿迭代法解非线性方程组,将newton.m 保存在工作路径中: clear,clc; x=[0,0]'; f=F(x);

df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break; else end end ezplot('x^2-10*x+y^2+8',[-6,6,-6,6]); hold on ezplot('x*y^2+x-10*y+8',[-6,6,-6,6]); 运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685

数值分析求解非线性方程根的二分法,简单迭代法和牛顿迭代法

实验报告一:实验题目 一、 实验目的 掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。 二、 实验内容 1、编写二分法、牛顿迭代法程序,并使用这两个程序计算 02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 4 10- ,比较两种方法收敛速度。 2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。 3、由中子迁移理论,燃料棒的临界长度为下面方程的根cot x =(x 2?1)/2x ,用牛顿迭代法求这个方程的最小正根。 4、用牛顿法求方程f (x )=x 3?11x 2+32x ?28=0的根,精确至8位有效数字。比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。 三、 实验程序 第1题: 02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。 画图函数: function Test1() % f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0 r = 0:0.01:1; y = r + exp(r) - 2 plot(r, y); grid on 二分法程序: 计算调用函数:[c,num]=bisect(0,1,1e-4) function [c,num]=bisect(a,b,delta) %Input –a,b 是取值区间范围 % -delta 是允许误差 %Output -c 牛顿迭代法最后计算所得零点值 % -num 是迭代次数

ya = a + exp(a) - 2; yb = b + exp(b) - 2; if ya * yb>0 return; end for k=1:100 c=(a+b)/2; yc= c + exp(c) - 2; if abs(yc)<=delta a=c; b=c; elseif yb*yc>0 b=c; yb=yc; else a=c; ya=yc; end if abs(b-a)

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

相关文档
相关文档 最新文档