文档库 最新最全的文档下载
当前位置:文档库 › 线性与非线性调制系统的抗噪声性能分析

线性与非线性调制系统的抗噪声性能分析

线性与非线性调制系统的抗噪声性能分析
线性与非线性调制系统的抗噪声性能分析

线性与非线性调制系统的抗噪声性能分析

摘要:本文主要是通过对线性调制系统的不同调制方式在大信噪比条件下抗噪声性能的分析,分析了解不同的解调方法下,系统的抗噪声性能。

关键词:线性调制系统性能分析抗噪声性能系统

引言

所谓调制就是使基带信号(调制信号)控制载波的某个(或几个)参数,使这一个(或几个)参数按照基带信号的变化规律而变化的过程。调制后所得到的信号为已调信号或频带信号,载波是一种不含任何有用信号用来搭载基带信号的高频信号。调制信号m(t)为连续变化的模拟量叫模拟调制,其系统称为模拟调制系统。其调制分为幅度调制和角度调制,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化的过程,分为标准调幅(AM)、抑制载波双边带调制(DSB)、单边带调制(SSB)和残留边带调制(VSB)等。幅度调制属于线性调制,它通过改变载波的幅度,以实现调制信号频谱的搬移,一个正弦载波有幅度、频率、相位3个参量,因此,不仅可以把调制信号的信息寄托在载波的幅度变化中,还可以寄托在载波的频率和相位变化中。这种使高频载波的频率或相位按照调制信号规律的变化而振幅恒定的调制方式,称为频率调制(FM)和相位调制(PM),分别简称为调频和调相。因为频率或相位的变化都可以看成是载波角度的变化,故调频和调相又统称为角度调制。

在分析抗噪声性能时,主要考虑的是加性高斯白噪声对系统的影响,同时也是最基本的噪声和干扰模型,又因为加性高斯白噪声被认为只对信号的接受产生影响,所以调试系统的抗噪声性能是通过解调器的抗噪声性能来衡量。

1. 线性调制系统的抗噪声性能分析

1.1.AM的相干解调和非相干解调系统抗噪声性能对比分析

AM信号的解调非为相干解调和非相干解调,两种解调的模型不同,所以抗噪声性能也随之不同,即分开进行讨论,先讨论相干解调系统的抗噪声性能。AM相干解调模型框图如图1所示。

若解调器的输入信号为式中则解调器输入信号的平均功率为,解调器输入信号的平均功率为,所以AM的输入信噪比。解调器输出信号功率,输出噪声功率,所以输出信噪比。所以调制制度增益。由于A一般比调制信号幅度大,所以信噪比增益小于1,表明AM信号经相干解调后,即使在最好的条件下,也不能改善其信噪比,反而使信噪比恶化。AM信号的非相干解调模型框图如图2所示。图2 AM信号非相干解调模型框图

对于AM系统,解调器输入信号为,式中,为外加的直流分量;为调

毕设论文几种典型非线性系统的稳定性研究与仿真

****大学 毕业设计(论文) 题目:几种典型非线性系统的稳定性 研究与仿真 专业:电气工程及其自动化 学生姓名: ********* 班级学号: ************* 指导教师: *********** 指导单位:自动化学院电气信息工程系 日期:*************************

摘要 论文对MATLAB软件进行了简单的介绍,详细介绍了非线性系统的特点,并且对它的稳定性进行了简要的分析。另外,论文对非线性系统的非线性环节的特性进行了介绍。接下来,论文详细讲解了描述函数的定义和求法,而且给出了两种非线性环节的描述函数。在第四章里面,论文对继电器型非线性系统和滞环非线性系统进行了仿真分析,并且运用nyquist定理对系统的稳定性进行了判定。关键词:非线性系统;稳定性;描述函数;非线性环节;

ABSTRACT The article simple introduced MATLAB software and the characteristics of non-linear system, also the article analysis its stability in detail. In addition, the article introduced the characteristics of the nonlinear system links. the article explained in detail the definition and solution of the Description function and also the article gave the Description function of two nonlinear links. In the fourth chapter there, the article simulated the relay nonlinear system and hysteresis nonlinear systemand use nyquist theorem finding the stability of the system. Key words: nonlinear systems, stability, Description function, nonlinear system link;

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

简单非线性电阻电路的分析

第五章 简单非线性电阻电路的分析 5-1 含一个非线性元件的电阻电路的分析 一、含一个非线性元件的电阻电路都可用电源等效定理来等效 N 为含源线性网络。 二、非线性电路的一般分析方法 1、图解法 2、代数法 3、分段分析法 4、假定状态分析法 1、图解法 设非线性电阻的V AR 为 在如上图所示u 和i 的参考方向如下,线形部分的V AR 为 将 代入上式得 通常,用图解法求解u 和i 如图5-2 两曲线的交点Q 是所求解答。直线称为负载线 在求出端口电压 u Q 和 i Q 后。就 可用置换定理求出线性单口网络内部的电 ) (u f i =i R u u oc 0-=)(u f i =oc oc u u u f R u f R u u =+-=)()(00

压电流。 例5-1 电路如图5-3(a)所示,二极管特性曲线如图(d)所示,输入电压随时间变化。 (1)试求所示电路输出电压u0对输入电压u i的曲线,即u0-u i转移特性; (2)若输入电压的波形如图(e)所示,试求输出电压u0的波形。 解戴维南等效电路 由电路可知 2 i oc u u= i u u30 0 + =

若 u i 变化时(交流),戴维南等效电压源也是时变的。但Ro 是定值,所以 线性网络的负载线具有不变的斜率 -1/Ro ,在 u-i 平面上作平行移动,每一时 刻负载线在电压轴的截距总是等于等效电压源在该时刻的瞬时值,负载线与二极管特性曲线的交点也在移动,即二极管的电压、电流都随时间而变。 求u 0-u i 转移特性曲线 由图(a )可得 当 时,0u 由 确定。 当 时,0i =, 可得转移特性曲线如图5-4所示 2、代数法 若i=f(u)中的f(u)可用初等函数表示,那么可利用节点法或回路法求解。 例5-2 如图5-5所示电路中,已知非线性电阻的V AR 为 试求电流i 。 030u u i =+0>i u i u u o 30+=0

分析非线性系统的方法

非线性系统稳定性问题的判定方法和发展趋势 任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。所以,当系统承受干扰之后,能否稳妥地保持预订的运动轨迹或者工作状态,即系统的稳定性是首要考虑的。一个系统的稳定性,包括平衡态的稳定性问题和任一运动的稳定性问题。而对于给定运动的稳定性可以变换成关于平衡点的稳定性问题。 对平衡点的稳定性进行分析可将平衡点的稳定性定义为李雅普诺夫稳定、一致稳定、渐进稳定、一致渐近稳定、按指数渐进稳定和全局渐进稳定,除了全局渐进稳定,其他都是局部的概念。 非线性系统的数学模型不满足叠加原理或其中包含非线性环节。包括非本质非线性(能够用小偏差线性化方法进行线性化处理的非线性)和本质非线性(用小偏差线性化方法不能解决的非线性)。它与线性系统有以下主要区别: 1.线性控制系统只能有一个平衡点或无穷多的平衡点。但非线性系统可以有一个、二个、多个、以至无穷多个平衡点。非线性系统与线性定常系统明显不同,其稳定性是针对各个平衡点而言的。通常不能说系统的稳定性如何,而应说那个平衡点是稳定的或不稳定的。2.在线性系统中,系统的稳定性只与系统的结构和参数有关,而与外作用及初始条件无关。非线性系统的稳定性除了与系统的结构和参数有关外,还与外作用及初始条件有关。 由于非线性控制系统与线性控制系统有很大的差异,因此,不能直接用线性理论去分析它,否则会导致错误的结论。对非线性控制系统的分析,还没有一种象线性控制系统那么普遍的分析、设计方法。 现代广泛应用于非线性系统上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。而计算机技术的迅速发展为分析和设计复杂的非线性系统提供了有利的条件。另外,在工程上还经常遇到一类弱非线性系统,即特性和运动模式与线性系统相差很小的系统。对于这类系统通常以线性系统模型作为一阶近似,得出结果后再根据系统的弱非线性加以修正,以便得到较精确的结果。摄动方法是处理这类系统的常用工具。而对于本质非线性系统,则需要用分段线性化法等非线性理论和方法来处理。目前分析非线性控制系统的常用方法如下: 1、线性化方法 采用线性化模型来近似分析非线性系统。 这种近似一般只限于在工作点附近的小信号情况下才是正确的。这种线性化近似,只是对具有弱非线性(或称非本质非线性)的系统。 常用线性化方法,有正切近似法和最小二乘法。 此外,对一些物理系统的非线性特性比较显著,甚至在工作点附件的小范围内也是非线性的,并且不能用一条简单的直线来代表整个非线性系统特性的系统,可采用分段线性化方法。2、相平面法 相平面法是一种基于时域的分析方法,一种用图解法求解一、二阶非线性常微分方程的方法。 该方法通过图解法将一阶和二阶系统的运动过程转化为位置和速度平面上的相轨迹,从而比较直观、准确地反映系统的稳定性、平衡状态和稳态精度以及初始条件及参数对系统运动的影响。相轨迹的绘制方法步骤简单、计算量小,特别适用于分析常见非线性特性和一阶、二阶线性环节组合而成的非线性系统 对于分段线性的非线性系统来说,相平面分析法的步骤为: (1)用n条分界线(开关线,转换线)将相平面分成n个线性区域;(2)分别写出各个线性区域的微分方程;(3)求出各线性区的奇点位置并画出相平面图;

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

非线性系统稳定性问题的判定方法和发展趋势

非线性系统的概念及稳定性问题的判定方法和发展趋势 姓名:查晓锐 学号:121306060006 线性系统理论自20世纪50年代以来不仅已在理论上逐步完善,也已成功的应用于各种国防和工业控制问题。随着现代工业对控制系统性能的要求不断提高,传统的线性反馈控制已很难满足各种实际需要。这是因为大多数实际控制系统往往是非线性的,采用近似的线性模型虽然可以使我们更全面和容易的分析系统的各种特性,但是却很难刻画出系统的非线性本质,线性系统的动态特性已不足以解释许多常见的实际非线性现象。另一方面,计算机及传感器技术的飞速发展,也为我们实现各种复杂非线性控制算法奠定了硬件基础。因此自20世纪80年代以来,非线性系统的控制问题受到了国内外控制界的普遍关注。 非线性科学是当今世界科学的前沿与热点,涉及自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。但迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。 一、 非线性的概念 非线性是相对于线性而言的,对线性的否定,线性是非线性的特例。所以要弄清非线性的概念,明确什么是非线性,首先必须明确什么是线性;其次对非线性的界定必须从数学表述和物理意义两个方面阐述,才能较完整地理解非线性的概念。 对线性的界定,一般是从相互关联的两个角度来进行的。其一:叠加原理成立“ 如果1Φ,2Φ 是两个那么21Φ+Φβα也是它的一个解,换言之,两个态的叠加仍然是一个态。”原理成立意味着所考查系统的子系统间没有非线性相互作用。其二,物理变量间的函数关系是直线,变量间的变化率是恒量,这意味着函数的斜率在其定义域内处处存在且相等,量间的比例关系在变量的整个定义域内是对称的。 在明确了线性的含义后,相应地非线性概念就易于界定。其一 :“定义非线性算符()ΦN 为对一些 a ,b 或Φ,ψ不满足)()()(ψ+Φ=ψ+ΦbL aL b a L 的算符 即叠加原理不成立。”这意味着Φ与ψ之间存在藕合,对ψ+Φb a 的操作,等于分别对Φ,ψ操作外,再加上对Φ与ψ的交叉项(耦合项)操作,或者Φ、ψ是不连续有突变或断裂、不可微有折点的。其二:作为等价的另一种表述,我们可以从另一个角度来理解非线性在用于描述一个系统的一套确定的物理变量中,一个系统的一个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的。换言之:变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方。概括地说:物理变量间的一级增量关系在变量的定义域内是不

2ASK 系统的抗噪声性能分析要点

2ASK 系统的抗噪声性能分析 作者:郭帅 指导老师:金中朝 摘要:2ASK 是利用载波的幅度变化来传递数字信息的,而其频率和初始相位保持不变。在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息“0”或“1”。有载波输出时表示发送“1”,无载波输出时表示发送“0”。 2ASK 信号解调的常用方法主要有包络检波法和相干检测法。虽然2ASK 信号中确实存在着载波分量,原则上可以通过窄带滤波器或锁相环来提取同步载波,但这会给接收设备增加复杂性。因此,实际中很少采用相干解调法来解调2ASK 信号。但是,包络检波法存在门限效应,相干检测法无门限效应。所以,一般而言,对2ASK 系统,大信噪比条件下使用包络检测,即非相干解调,而小信噪比条件下使用相干解调。 关键字:2ASK,数字调制,system view 1 引言 通信就是克服距离上的障碍, 从一地向另一地传递和交换消息。 消息有模拟消息 (如 语音、图像等)以及数字消息(如数据、文字等)之分。所有消息必须在转换成电信号 (通常简称为信号)后才能在通信系统中传输。 相应的信号可分为模拟信号和数字信号, 模拟信号的自变量可以是连续的或离散的;但幅度是连续的,如电话机、电视摄像机输 出的信号就是模拟信号。数字信号的自变量可以是连续的或离散的,但幅度是离散的, 如电船传机、计算机等各种数字终端设备输出的信号就是数字信号。 通信系统可分为数字通信系统和模拟通信系统。 数字通信系统是利用数字信号来传 递消息的通信系统。 数字通信系统较模拟通信系统而言, 具有抗干扰能力强、 便于加密、 易于实现集成化、便于与计算机连接等优点。因而,数字通信更能适应对通信技术的越 来越高的要求。近二十年来,数字通信发展十分迅速,在整个通信领域中所占比重日益 增长,在大多数通信系统中已代替模拟通信,成为当代通信系统的主流。本文主要分析2ASK 数字通信的工作原理,并给出同步检测法和包络检波法的分析模型及系统性能分析。 2 2ASK 调制原理 数字幅度调制又称幅度键控(ASK ),二进制幅度键控记作2ASK 。2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。有载波输出时表示发送“1”,无载波输出时表示发送“0”。借助于幅度调制的原理,2ASK 信号可表示为 t t s t e c o ωcos )()(= (2-1) 式中,c ω为载波角频率,)(t s 为单极性NRZ 矩形脉冲序列 ∑-=n b n nT t g a t s )()( (2-2) 其中,)(t g 是持续时间为b T 、高度为1的矩形脉冲,常称为门函数;n a 为二进制数字

非线性电路的分析方法研究

高频电子线路 课程论文 论文题目:非线性电路的分析方法研究 专业:08电子信息工程本科 小组成员: DZU Joecindy 指导老师:王丽 完成时间:2011年12月22日 非线性电路的分析方法研究 【摘要】我们要将电路元件的范围及其相应的分析方法进行拓展,引入对非线性二端元件的分析和总结。非线性二端元件就是接线端自变量和接线端的函数具有非线性关系的元件。

下面我们将对非线性电路的分析方法进行研究,从而对其分类和总结。 【关键词】非线性电路 直接分析法 数值分析法 图形分析法 分段线性分析法 小信号分析法 前 言 到目前为止,我们已经学习过若干种线性元件的电路,也学习过这些元件构成的线性电路分析法。本文将就非线性问题进行分类和归纳总结。 1.直接分析法 此方法一般应用于对非线性二端元件的函数关系较简单时使用,结合并运用线性元件电路的分析方法和一些定理,同时列写出非线性的补充方程,最后通过求解数学问题并结合电路实际解答的方法。 我们首先用直接分析法求解图1.1所示的简单非线性电阻电路。假设图中非线性电阻的特性可表示为下列v-i 关系: 2,00,0 D D D D Kv v i v ?>=?≤? 常熟K 大于零。 D i 图1.1 该电路的求解过程:

(D v -E )/R +D i = 0 (1.1) 补充方程: D i = K D v 2 (1.2) 注意该元件在D v 大于零的时候才能工作。如果D v <0 则 D i = 0 用原件的非线性v-i 关系替换式(1.1)中的D i 就得到了用节点电压表示的节点方程: (D v -E )/R + Kv D 2 = 0 (1.3) 化简式(1.3),得到下列二次方程: RK D v 2 + D v – E = 0 求出D v 并选择正解,即: D v = (1.4) 对应的i D 表达式可通过将上式替换式(1.2)得到,即: D i = 12K RK ?-+ ?? 小结:这类分析方法很有局限性,通常只适用于函数关系较简单的非线性求解问题,对于较复杂的问题,下面我们将讨论到。 2.数值分析法 当所求非线性的函数关系不是简单的函数关系时,已经不能用已有的公式去求解,这是就需要在误差精度允许的范围内,运用计算方法学的知识寻求所需的解,下面介绍常用到的计算方法: 在《电路基理论基础》一书中给出的3种方法: ① 前向欧拉法(Forward Euler method ): (以后本文均以(,)dy f y x dx =表示dy dx ) 1k y + = k y + h f (k y , k x ) 其中h 为积分步长 ② 后向欧拉法 (Backward Euler method )

实验五 线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定性, 并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下: dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens 是系统的特征多项式,接着输入如下MATLAB 程序代码: den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000

自动控制原理-第8章 非线性控制系统教案

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

基于蒙特卡罗法2ASK系统抗噪声性能仿真介绍

通信原理 课程设计报告 题目:基于蒙特卡罗法2ASK系统抗噪声性能仿真院系:自动化学院与信息工程学院 专业:通信工程 班级: 学号: 姓名: 指导教师: 职称: 2015年12月27日-2015年12月31日

一、实验要求 编写MATLAB的M文件,用该文件的采用包络检测法解调的 2ASK系统的抗噪性能进行1000个符号的蒙特卡罗法仿真,画出误码率与信噪比之间的关系曲线,其中信噪比的取值为r=0dB、2dB、4dB、6dB…20dB,同时画出误码率与信噪比的理论曲线,其中信噪比的取值为r=0dB、0.1dB、0.2dB…20dB。 分步实施: 1)熟悉2ASK系统调制解调,熟悉蒙特卡洛法;熟悉误码率计算; 2)编写主要程序; 3)画出系统仿真误码率曲线的系统理论误码率曲线。

二、实验原理 1、蒙特卡罗思想概述 蒙特卡罗方法也称为随机模拟方法,有时也称为随机抽样技术或统计实验方法。它的基本思想是:为了求解数学、物理、工程技术以及生产管理等方面的问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。而解得精确度可用估计值的标准误差来表示。 蒙特卡罗方法可以解决各种类型的问题,但总的来说,视其是否涉及随机过程的性态和结果,该方法处理的问题可以分为两类:第一类是确定性的数学问题,首先建立一个与所求解有关的概率模型,使所求的解就是我们所建立模型的概率分布或数学期望;然后对其进行随机抽样观察,即产生随机变量;最后用其算术平均值作为所求解的近似估计值。第二类是随机性问题,被考察的元素更多的受到随机性的影响,一般情况下采用直接模拟方法,即根据实际物理情况的概率法则,用电子计算机进行抽样试验。 在应用蒙特卡罗方法解决实际问题的过程中,大体有如下几个内容: (1)对求解的问题建立简单而又便于实现的概率统计模型,使所求的解恰好是所建立模型的概率分布或数学期望。 (2)根据概率统计模型的特点和计算实践的需要,尽量改进模型,以便减小方差和费用,提高计算效率。 (3)建立对随机变量的抽样方法,其中包括建立产生伪随机数的方法和建立对所遇到的分布产生随机变量的随机抽样方法。 (4)给出获得所求解的统计估计值及其方差或标准误差的方法。 2、2ASK系统调制解调原理 在幅度键控中载波幅度随调制信号而变化,也就是载波的幅度随着数字信号1和0在两个电平之间转换。 设信源发出的是二进制符号0、1组成的序列,且假定0符号的出现概率是P,1符号出现的概率是1-P,则一个二进制的振幅键控信号可以表示成一个单极性矩

系统稳定性意义以及稳定性的几种定义

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

2FSK信号的解调与抗噪声的性能分析报告

通信原理实验报告 学院:信息科学与工程学院 专

电子信息工程专业课程设计任务书

目录 一.课程设计的目的和意义 (3) 1.1基本要求 (3) 1.2课程设计的目的及意义 (4) 二,2FSK的基本原理和实现 (4) 2.1 2FSK的产生 (5) 2.2 2FSK滤波器的调解及抗噪声性能 (7) 三.仿真设计步骤 (9) (1)首先要确定采样频率fs和两个载波f1,f2的值。 (9) 四.仿真程序 (10) 五.仿真结果及分析 (13) 5.1、仿真波形图如图5-1至图5-5所示: (13) 5.2、仿真结果的分析 (18) 六、课程设计总结 (19) 参考文献 (19)

2FSK信号的解调与抗噪声性能分析 一.课程设计的目的和意义 1.1基本要求 掌握2FSK的调制与解调的实现方法,探索并分析其抗噪声性能;遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。 1.2课程设计的目的及意义 本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。对一个实际课题的软件设计有基本了解,能进一步掌握高级语言程序设计基本概念,掌握基本的程序设计方法,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。 在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。 本课程设计旨在根据所学的通信原理知识,并基于MATLAB软件,仿真一2FSK 数字通信系统。2FSK数字通信系统,即频移键控的数字调制通信系统。频移键控是利用载波的频率变化来传递数字信息。在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。因此,一个2FSK信号的波形可以看成是两个不同载频的2ASK信号的叠加。可以利用频率的变化传递数字基带信号,通过调制解调还原数字基带信号,实现课程设计目标。

非线性时变系统的稳定性和鲁棒性

外文资料翻译 非线性时变系统的:稳定性和鲁棒性 概要:我们这里所叙述的是采样数据模型预测控制的框架,使用连续时间模型, 但采样的实际状况以及为计算控制的状态,进行了在离散instants的时间。在此框架内可以解决一个非常大的一类系统,非线性,时变的,非完整。 如同在许多其他采样数据模型预测控制计划,barbalat的引理一个重要的角色,在证明的名义稳定的结果。这是争辩这泛barbalat的引理,形容这里,可以有也类似的的作用,在证明的鲁棒稳定性的结果,也允许以解决一个很一般类非线性,时 变的,非完整系统,受到的干扰。那个的可能性的框架内,以容纳间断的意见是必要 的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。 1 引言 许多模型预测控制(MPC)计划描述,在文献上使用连续时间的模型和样本状态 的在离散的instants 时间。见例如[3,7,9,13] ,也是[6] 。有许多好处,在考虑 连续时间模型。不过,任何可执行的模型预测控制计划只能措施,状态和解决的优化问题在离散instants的时间。 在所有的提述,引用上述情况, barbalat的引理,或修改它,是用来作为一个 重要步骤,以证明稳定的MPC的计划。( barbalat的引理是众所周知的和有力的工具,以推断的渐近稳定性的非线性系统,尤其是时间变系统,利用Lyapunov样的办法; 见例如[17]为讨论和应用)。显示模型预测控制的一项战略是稳定(在名义如此),这表明,如果某些设计参数(目标函数,码头设置等),方便的选定,然后价值函数是单调递减。然后,运用barbalat的引理,吸引力该轨迹的名义模型可以建立(i.e. x(t) →0 as t →∞).这种稳定的状态可以推断,一个很笼统的类非线性系统:包括时变 系统的,非完整系统,系统允许间断意见,等此外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足够的密切开始向原产地)

自动控制试题九非线性

第九章 非线性控制系统 一、填空选择题(每题2分) 1.非线性系统的稳定性与下列( D )因素有关。 A . 系统结构和参数 B .初始条件 C .输入信号大小 D .A 、B 、C 、 2.非线性系统自持振荡是与-------有关。 A .系统结构和参数 B .初始条件 C .输入信号大小 D .A 、B 、C 、 3.非线性系统自持振荡中的振幅和频率是由-- 系统本身的特性-----决定的, 4.相平面法适用于---一、二----阶非线性系统,描述函数法适用于—任意-----阶非线性系统。 5.系统中有二个非线性元件串联,其描述函数分别为N 1、N 2,则合成的描述函数必是( D ) A .N 1/N 2 B .N 1*N 2 C .N 1+N 2 D .需重新分析计算 6.系统的-1/N 和G (jw )如图,在A 和B 处产生了自持振荡,分析其稳定性,A 点是---不稳定--的,B 点是---稳定---的 7.非线性系统的相轨迹在相平面的上半部,其走向是从—左--向—右--方向运动,而在相平面的下半部则从—右-向-左---运动。 8.相轨迹的对称性是指其曲线可能对称于----,-----,或-坐标原点----;正交性是指与-x----轴正交。 9.已知非线性系统的微分方程是:023. .. =++x x x ,则奇点位置是-------。 10.已知非线性系统的微分方程是:023. .. =++x x x ,则奇点性质是-------。 11.极限环把相平面分为内外二部分,相轨迹---不能-(填能或不能)从环内穿越极限环进入环外,---不能-----(填能或不能)从环外穿越极限环进入环内。 12.已知非线性系统的微分方程是:023. ..=++x x x , 则奇点性质是( A )。 A 、稳定节点 B 、稳定焦点 C 、鞍点 D 、中心点 1. D 2. A 3. 系统本身的特性 4. 一、二,任意 5. D 6. 不稳定,稳定 7. 左,右,右,左 8. X ,. x , 坐标原点,x 9. 坐标原点 10.稳定节点 11.不能 12.A

非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时 间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ),,,(2122 n X X X f dt dX (1.1.1) … ),,,(21n n n X X X f dt dX 其中 代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是 i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于 i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若 i f 明显地依赖时间t ,则称方程组为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x

线性与非线性调制系统的抗噪声性能分析

线性与非线性调制系统的抗噪声性能分析 摘要:本文主要是通过对线性调制系统的不同调制方式在大信噪比条件下抗噪声性能的分析,分析了解不同的解调方法下,系统的抗噪声性能。 关键词:线性调制系统性能分析抗噪声性能系统 引言 所谓调制就是使基带信号(调制信号)控制载波的某个(或几个)参数,使这一个(或几个)参数按照基带信号的变化规律而变化的过程。调制后所得到的信号为已调信号或频带信号,载波是一种不含任何有用信号用来搭载基带信号的高频信号。调制信号m(t)为连续变化的模拟量叫模拟调制,其系统称为模拟调制系统。其调制分为幅度调制和角度调制,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化的过程,分为标准调幅(AM)、抑制载波双边带调制(DSB)、单边带调制(SSB)和残留边带调制(VSB)等。幅度调制属于线性调制,它通过改变载波的幅度,以实现调制信号频谱的搬移,一个正弦载波有幅度、频率、相位3个参量,因此,不仅可以把调制信号的信息寄托在载波的幅度变化中,还可以寄托在载波的频率和相位变化中。这种使高频载波的频率或相位按照调制信号规律的变化而振幅恒定的调制方式,称为频率调制(FM)和相位调制(PM),分别简称为调频和调相。因为频率或相位的变化都可以看成是载波角度的变化,故调频和调相又统称为角度调制。 在分析抗噪声性能时,主要考虑的是加性高斯白噪声对系统的影响,同时也是最基本的噪声和干扰模型,又因为加性高斯白噪声被认为只对信号的接受产生影响,所以调试系统的抗噪声性能是通过解调器的抗噪声性能来衡量。 1. 线性调制系统的抗噪声性能分析 1.1.AM的相干解调和非相干解调系统抗噪声性能对比分析 AM信号的解调非为相干解调和非相干解调,两种解调的模型不同,所以抗噪声性能也随之不同,即分开进行讨论,先讨论相干解调系统的抗噪声性能。AM相干解调模型框图如图1所示。 若解调器的输入信号为式中则解调器输入信号的平均功率为,解调器输入信号的平均功率为,所以AM的输入信噪比。解调器输出信号功率,输出噪声功率,所以输出信噪比。所以调制制度增益。由于A一般比调制信号幅度大,所以信噪比增益小于1,表明AM信号经相干解调后,即使在最好的条件下,也不能改善其信噪比,反而使信噪比恶化。AM信号的非相干解调模型框图如图2所示。图2 AM信号非相干解调模型框图 对于AM系统,解调器输入信号为,式中,为外加的直流分量;为调

相关文档
相关文档 最新文档