文档库 最新最全的文档下载
当前位置:文档库 › 改方电路

改方电路

改方电路
改方电路

改变运行方向电路:

应用于单线自动闭塞和双线双向自动闭塞,需防护列车尾部外,还须防护列车头部因此要求自动闭塞两个方向的通过信号机和区间两端的车站联锁设备之间建上一定的联锁关系。

一、四线制改方电路的组成

方向继电器:监督区间继电器电路、局部电路、表示灯电路、辅助电路等组成。

FJ:方向继电器、FGFJ辅助改方继电器

在区间每一信号点及连接区间两端的车站分别设置两个方向继电器。

FGFJ是当监督区间电路故障使其吸起来改方

JQJ:监督区间继电器

证明区间是否空闲,占用和发车进路是否锁闭。

因为其缓放继电器,转换电源极性时仍吸起,只有切断线路电源才落下。

GFJ:改方继电器。记录发车按纽继电器的动作。

GFFJ:改方辅助继电器。使两站的方向电源短时间正向串联,使FJ可靠转极。

JQJF:监督区间复示继电器JQJ2F

FFJ:发车辅助继电器。吸起以切断原接车站向发车站的供电电路(接车站)

JFJ:接车辅助继电器。吸起向原接车站送电,使方向继电器FJ转极。

DJ:短路继电器:用以短路辅助改变运行方向FGFJ。

二、工作原理

1、正常办理

发车站:初始状态吸起有:SFSJ、XFSJ 、XJQJF 、XJQJ2F 、XGFFJ 、XFJ 、XJD (黄)

条件:当下行列车发车继电器XLFJ、进路选择继电器吸起,使上行发车按钮继电器SFAJ 吸起,由乙站改变送电极性,向区间和甲站发送反极性电流,使区间的方向和甲站的方向继电器转极。

当甲站的方向继电器SFJ转极,利用其第二组反位接点切断SGFJ电路,SGFJ 落下SGFFJ SJQJF SJQJ2F 。对乙站,由于XGFJ XGFFJ ,利用其缓放,使甲站的方向电源与乙站的方向电源短时正向串联,形成两路的线路供电电源,使方向电路中的方向继电器可靠转极。

此时,区间上行方向的FJ及甲站进站口的FJ转极,甲站的SFJ不吸起,区间下行方向的各FJ处于反位状态,区间开通上行方向。

当XGFFJ缓放落下,切断乙站的方向电源,由甲站一方供电,同时利用XGFFJ的第三组前接点切断XJQJF XJQJ2F,其经短时缓放落下,才接通XFJ线圈与外线联系,XFJ 开始转极,

在乙站办理改过程中,当SFAJ ,使乙站XGFJ ,接通乙站的电源,向甲站供电,由于甲站SFJ ,使SGFJ ,利用其第一、二组接点接通甲站的方向电源,向乙站送电,使表示乙站为发车站,在列车占用区间或出站信号机开放后JQJ 。

(接车站方向继电器吸起,提供电源)

三、辅助办理改方

1、监督电路发生故障,方向电路正常时

甲站发车站,乙站为接车站

JQJ因故障而落下JQJF、JQJ2F,此时控制台上的监督区间占用灯XJQD为红灯。

此时需甲乙两站共同完成改方手续。

(1)、乙站按下发车辅助按钮SFFA、使发车辅助继电器SFFJ经JQJ2F、GFJ、DJ吸起并自闭,它吸起后切断乙站向甲站的供电电路,此时由于SFFJ、XJQJ、SFSJ 使SDJ经0.3~0.5S的缓吸时间后吸起。

在SFFJ吸起、SDJ的缓吸时间内,利用SDJ的第一组后接点短路方向电路外线,使外线通过短路线而,SDJ后并自闭,使辅助办理表示灯点白灯,表示正在进行辅助办理,同时SFFA仍需继续按压。

(2)、甲站按下接车辅助按钮SJFA,使XDJ经缓吸后吸起并自闭,辅助办理表示灯SFZD 亮白灯,这时甲站松开SJFA,接车辅助SJFJ依靠

二线制三线制四线制仪表接线区别

浅谈仪表的两线制、三线制、四线制 我们讨论的两线制、三线制、四线制,是指各种输出为模拟直流电流信号的变送器,其工作原理和结构上的区别,而并非只指变送器的接线形式。否则热电偶配毫伏计测量温度可称为是两线制的鼻祖了! 几线制的称谓,是在两线制变送器诞生后才有的。这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。因此最先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。DDZ-Ⅱ型电动单元组合仪表的出现,供电为220V.AC,输出信号为0--10mA.DC的四线制变送器得到了广泛的应用,目前在有些工厂还可见到它的身影。 七十年代我国开始生产DDZ-Ⅲ型电动单元组合仪表,并采用国际电工委员会(IEC)的:过程控制系统用模拟信号标准。即仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。采用4-20mA.DC 信号,现场仪表就可实现两线制。但限于条件,当时两线制仅在压力、差压变送器上采用,温度变送器等仍采用四线制。现在国内两线制变送器的产品范围也大大扩展了,应用领域也越来越多。同时从国外进来的变送器也是两线制的居多。 因为要实现两线制变送器必须同时满足以下条件: 1.V≤Emin-ImaxRLmax 变送器的输出端电压V等于规定的最低电源电压减去电流在负载电阻和传输导线电阻上的压降。 2. I≤Imin 变送器的正常工作电流I必须小于或等于变送器的输出电流。 3. P<Imin(Emin-IminRLmax) 变送器的最小消耗功率P不能超过上式,通常<90mW。 式中:Emin=最低电源电压,对多数仪表而言Emin=24(1-5%)=22.8V,5%为24V电源允许的负向变化量;

64D改方电路

第五章四线制改变运行方向电路 对于双线单向自动闭塞区段,由于每条线路上只允许一个方向列车运行,故只需要防护列车的尾部,控制信息可以始终按一个方向传输。而对于单线自动闭塞和双线双向自动闭塞,既要运行上行列车,又要运行下行列车,所以除了防护列车尾部外,还必须防护列车的头部。 为了对列车头部进行防护,就要求单线自动闭塞两个方向的通过信号机和车站连锁设备之间建立一定的连锁关系,只允许列车按所建立的运行方向依靠通过信号机的显示来运行。例如准许上行方向的列车运行时,下行的通过信号机和出站信号机均不能开发,反之亦然。 在单线自动闭塞区段,我国目前采用平时规定运行方向的方式。既平时规定方向的通过信号机开放,而反方向的通过信号机灭灯,反方向的出站信号机也不能开放。只有在区间空闲时,经过办理一定手续,改变了运行方向后,反方向的出站信号机和通过信号机才能开放,此时规定方向的通过信号机不能开放。 在双线自动闭塞区段,反方向不设通过信号机,凭机车信号机的显示运行。反方向运行时,通过改变运行方向,转换区间的发送和接收设备,并使规定方向的通过信号机灭灯。改变运行方向的任务由改变运行方向电路完成。 改变运行方向电路的作用是:确定列车的运行方向,即确定接车站和发车站。转换区间的发送和接收设备,控制区间通过信号机的点灯电路。 一、技术条件: 1、电路应能监督区间的空闲及占用和相邻车站的接车、发车状态。当确认整个区间空闲及对方站未建立发车进路时方能改变运行方向的办理而自动改变运行方向。 2、改变运行方向应由处于接车状态的车站办理,随发车进路的办理而改变运行方向。 3、电路应防止当区间轨道电路瞬时分路不良时,错误改变运行方向。 4、电路应符合故障导向安全的原则,保证不出现敌对发车的可能。 5、电路应适用于各种制式的自动闭塞。 6、因故不能改变运行方向时,可使用辅助方式办理。按辅助方向改变运行方向后,第一次出站信号的开放必须检查该相邻站间区间的空闲。 7、使用该电路的车站,应有相应的表示,可在控制台上分别设置接车、发车方向,接发车区间占用及辅助办理表示灯。并设置相应的接车、发车辅助按钮。 二、四线制方向电路特点: 1、当一站为接车方向、另一站为发车方向时,接车站的FJ1、FJ2吸起(正极性),发车站的FJ1、FJ2落下(反极性)。 2、方向电路的1线(FQ)、2线(FQH)为方向回路线,如断线,正常情况下没反映,只有需改变方向电路动作时才有反映,3线(JQ)、4线(JQH)为监督回路线,如断线,控制台显示器显示区间监督红灯(同理区间有车时,不能反映其问题),这时并不影响正常的列车运行。 3、室内方向电路和区间电缆的接口不在分线盘,在区间接口架QZH。 4、方向电路的方向回线应保证回路电流大于35mA(JYXC-270转极值20~32 mA),调整FZG(方向电路用整流器)及RF电阻即可调整回路电流,由于采用的是滑线电阻,存在两个隐患,易刮断或接触不良,应选用固定电阻为宜(施工时针对实际站间用原滑线电阻调整,达到标准后测量其阻值,再换成同阻值固定电阻)。 5、方向电路的3线、4线应保证接收端电压24V(JWXC-H340工作值11.5V),调整FZG或RJ电阻即可,注意FZG可分两路不同电压输出。 三、设备构成: 1、为改变运行方向所设的按钮和表示灯 为改变运行方向,控制台上对应每一接车方向,设一组改变运行方向用的按钮和表示灯。对于双线双向自动闭塞,每一咽喉设一个允许改变运行方向按钮和表示灯,如图—1所示。允许改变运行方向按钮,二位非自复式,带铅封。只有登记、破封按下本咽喉的允许改变运行方向按钮YGFA,该咽喉才能办理改变运行方向。此时,允许改变运行方向表示灯YGFD点亮红灯。接车方向表示灯JD,黄色,点亮表示本站该方向为接车站。发车方向表示灯FD,绿色,点亮表示本站该方向为发车站。监督区间表示灯JQD,红色,点亮表示对方站已建立发车进路或列车正在区间运行。辅助办理表示灯FZD,白色,点亮表示正在辅助办理改变运行方向。接车辅助办理按钮JFA和发车辅助办理按钮FFA,均为二位自复式带铅封按钮,辅助办理改变运行方向时用。计数器用来记录辅助办理改变运行方向的次数。

三相四线制照明电路

一、实习地点 行知楼13楼 二、实习目的 1、熟悉三相四线电度表的安装和使用。 2、掌握简单照明电路的基本接线方法。 3、了解三相四线制与三相三线制照明电路的区别。 三、实习内容 1、了解三相四线电度表的工作原理和接线要求。 2、利用三相四线电度表、漏电保护器(空气开关)、星三角启动器、三相异步电动机、 若干导线,模拟连接一个三相异步电动机电路。 3、利用三相四线电度表、漏电保护器、配电箱、双控开关、灯具座、单相插座,模拟 连接一个家用照明电路。 四、实习原理 1、电度表的工作原理 电度表是利用电压和电流在铝盘上产生的涡流与交变磁通相互作用产生电磁力,使铝盘转动,同时引入制动力矩,使铝盘转动与负载功率成正比,通过轴向齿轮转动,由电镀器计算出转盘转数而测出电能。电度表主要结构是电压线圈、电流线圈、转盘、转轴、制动磁铁、齿轮、计度器等组成。 图一、三相四线制电度表的接线图 2、三相异步电动机 当电动机的三项定子绕组(各相差120度电角度), 通入三项交流电后,将产生一个旋转磁场,该旋转磁场 切割转子绕组,从而在转子绕组中产生感应电流(转子 绕组是闭合通路),载流的转子导体在定子旋转磁场作用 下将产生电磁力,从而在电机转轴上形成电磁转矩,驱 动电动机旋转,并且电机旋转方向与旋转磁场方向相同。 3、星三角启动器 实现三相异步电动机“星型”连接与“三角形”连接之间的转换。

五、实习步骤 ㈠导线连接练习 这一项目里,我们首先学的是剥线,塑料护套线绝缘层分为外层的公共护套层和内部每根芯线的绝缘层。公共护套层一般用电工刀剖削,先按线头所需长度,将刀尖对准两股芯线的中缝划开护套层,并将护套层向后扳翻,然后用电工刀齐根切去。切去护套后,露出的每根芯线绝缘层可用钢丝钳或电工刀按照剖削塑料硬线绝缘层的方法分别除去。其次是缠绕,单股芯线有绞接和缠绕两种方法,绞接法是先将已剖除绝缘层并去掉氧化层的两根线头呈“×”形相交,互相绞合2-3圈,接着扳直两个线头的自由端,将每根线自由端在对边的线芯上紧密缠绕到线芯直径的6-8倍长,将多余的线头剪去,修理好切口毛刺即可。 缠绕法是将已去除绝缘层和氧化层的线头相对交叠,再用直径为1.6mm的裸铜线做缠绕线在其上进行缠绕,其中线头直径在5mm及以下的缠绕长度为60mm,直径大于5mm的,缠绕长度为90mm。 1、单股芯线T形连接时可用绞接法和缠绕法。绞接法是先将除去绝缘层和氧化层的线头与干线剖削处的芯线十字相交,注意在支路芯线根部留出3-5mm裸线,接着顺时针方向将支路芯线在干中芯线上紧密缠绕6-8圈。剪去多余线头,修整好毛刺。 2、多股铜导线的直接连接。多股铜导线的直接连接,首先将剥去绝缘层的多股芯线拉直,将其靠近绝缘层的约1/3芯线绞合拧紧,而将其余2/3芯线成伞状散开,另一根需连接的导线芯线也如此处理。接着将两伞状芯线相对着互相插入后捏平芯线,然后将每一边的芯线线头分作3组,先将某一边的第1组线头翘起并紧密缠绕在芯线上,再将第2组线头翘起并紧密缠绕在芯线上,最后将第3组线头翘起并紧密缠绕在芯线上。以同样方法缠绕另一边的线头。

电路图与实物图互画练习

L 1 L 2 S 1 图 8 图4甲 典型例题: 例1.将两个灯泡串联起来 .将两个灯泡并联起来 例2. 根据电路图连接实物图 例 3.按照实物图作出电路图 生什么变化?灯的亮灭情况如何?试根据下列条件画出相应的等效电路图。 ⑴只闭合开关S 3,其余开关断开; ⑵只闭合开关S 2,其余开关断开; ⑶同时闭合S 1和S 3,其余开关断开; ⑷同时闭合S 1和S 2,其余开关断开; 时闭合时,哪些灯发光?其等效电路如何?例5.如图2所示的电路中,⑴当只闭合开关S 1时,哪些灯发光? 其等效电路如何?⑵当开关S 1和S 2同 例6(1)请你设计一个楼梯灯的电路图。 练习1、图1中灯泡L 1和L 2串联,开关控制两灯的通、断电。 2、图2中灯泡L 1和L 2并联,开关同时控制两灯的通、断电。 3图3中灯泡L 1和L 2并联,开关S 1同时控制两灯,开关S 2只控制灯泡L 2。 4图4、图5中灯泡L 1和L 2并联, S 是总开关, S 1只控制灯泡L 1, S 2只控制灯泡L 2。 5、图6中三个灯泡并联,S 是总开关,S 1只控制灯泡L 1, S 2只控制灯泡L 2。 6、图 7、图 8、图 9、图10、图11、图12、图13中两灯并联,S 是总开关,S 1只控制灯泡L 1,请将所缺的导线补上。 7、在图13中只接通开关S 时,两灯都亮,同时接通S 和S 1时L 1亮,L 2不亮。 10、灯泡L 1和L 2并联, S 是总开关, S 1只控制灯泡L 1, S 2只控制灯泡L 2。 8、按要求连接实物图,并画出电路图: (1) 图4甲要求: L 1、L 2并联,开关S 1控制L 1,开关S 2控制 L 1、L 2。 9 S 同时与___________ 10_______电路和______电路。马路上的路灯同时亮,同时灭,任一盏灯烧坏其它灯仍发光,它们之间是采用了______接法。 图4 3 L 1 L 2 图 1 L 1 L 2 图 2 L 1 L 2 S 1 图 3 S 2 S 2 L 1 L 2 S 1 图 4 S S S 1 L 1 L 2 图 9 S 1 S L 1 L 2 图 7 L 1 L 2 S 1 S 2 S 图 5 L 1 L 2 L 3 S 1 S S 2 图 6 图 10 S 1 S L 1 L 2 图 11 L 2 S 1 S L 1 S S 1 L 1 L 2 图 12 L 1 L 2 S 1 13 S 1 L 2 S

模拟量两线制与四线制接法

模拟量两线制与四线制接法(个人经验总结)发上来,供大家参考。 概述:两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 接法:传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四

线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

第一章 直流电路及其分析方法

《电工与电子技术基础》自测题 第1章直流电路及其分析方法 判断题 1.1 电路的基本概念 1.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 2.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 3.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相同。 答案:X 4.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相反。 答案:V 5.电路中各物理量的正方向都可以任意选取。 [ ] 答案:V 6.某电路图中,已知电压U=-30V,则说明图中电压实际方向与所标电压方向相反。 答案:V 7.组成电路的最基本部件是:电源、负载和中间环节 [ ] 答案:V 8.电源就是将其它形式的能量转换成电能的装置。 [ ] 答案:V 9.如果电流的大小和方向均不随时间变化,就称为直流。 [ ] 答案:V 10.电场力是使正电荷从高电位移向低电位。 [ ] 答案:V 11.电场力是使正电荷从低电位移向高电位。 [ ] 答案:X 1.2 电路基础知识 1.所求电路中的电流(或电压)为+。说明元件的电流(或电压)的实际方向与参考方向一致;若为-,则实际方向与参考方向相反。[ ] 答案:V 2.阻值不同的几个电阻相并联,阻值小的电阻消耗功率小。[ ] 答案:X

答案:X 4.电路就是电流通过的路径。 [ ] 答案:V 5.电路中选取各物理量的正方向,应尽量选择它的实际方向。 [ ] 答案:V 6.电路中电流的实际方向总是和任意选取的正方向相同。 [ ] 答案:X 7.电阻是用来表示电流通过导体时所受到阻碍作用大小的物理量。[ ] 答案:V 8.导体的电阻不仅与其材料有关,还与其尺寸有关。 [ ] 答案:V 9.导体的电阻只与其材料有关,而与其尺寸无关。 [ ] 答案:X 10.导体的电阻与其材料无关,而只与其尺寸有关。 [ ] 答案:X 11.电阻中电流I的大小与加在电阻两端的电压U成正比,与其电阻值成反比。[ ] 答案:V 12.电阻中电流I的大小与加在电阻两端的电压U成反比,与其电阻值成正比。[ ] 答案:X 13.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较差的外特性。 [ ]答案:X 14.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较好的外特性。 [ ]答案:V 15.欧姆定律是分析计算简单电路的基本定律。 [ ] 答案:V 16.平时我们常说负载增大,其含义是指电路取用的功率增大。 [ ] 答案:V 17.平时我们常说负载减小,其含义是指电路取用的功率减小。 [ ] 答案:V 18.平时我们常说负载增大,其含义是指电路取用的功率减小。 [ ] 答案:X 19.平时我们常说负载减小,其含义是指电路取用的功率增大。 [ ] 答案:X 20.在串联电路中,电阻越大,分得的电压越大。 [ ] 答案:V 21.在串联电路中,电阻越小,分得的电压越大。 [ ] 答案:X 22.在串联电路中,电阻越大,分得的电压越小。 [ ] 答案:X 23.在串联电路中,电阻越小,分得的电压越小。 [ ] 答案:V 24.在并联电路中,电阻越小,通过的电流越大。 [ ] 答案:V 25.在并联电路中,电阻越大,通过的电流越大。 [ ]

关于三相四线制、三相五线制 电源的产生,线路概念

企业、车间及居民区等地的机电设备常用到三相四线制供电、三相五线制供电,其意义是什么?发电、变电、配电和输电的意义是什么?工业一次供电、二次供电是什么?线路的标识符号如何?本文理实一体化讲解清楚。 二.任务论述 (一)发电厂分类 发电厂是把其他形式的能量转换成电能的企业,有常规电能和绿色电能企业两类: 1. 比较常规的电能 比较常规的发电厂,主要有如下4种: (1)火力发电厂 是指利用煤、石油、天然气或其他燃料的化学能来生产电能的发电厂,其发电过程是:化学能→热能→机械能→电能。 (2)水力发电厂 是指利用水流的动能和势能来生产电能的发电厂,水流量的大小和水头的高低,决定了水流能量的大小。水力发电厂发电其过程为:水能→机械能→电能。 (3)原子能发电厂 是指利用核能来生产电能的发电厂,又称核电厂(核电站),原子核各个核子(中子与质子)之间具有强大的结合力,重核分裂和轻核聚合时,都会放出巨大的能量,称为核能。目前技术比较成熟,形成规模投入运营的只是重核裂变释放出的核能生产电能的原子能发电厂。从能量转换的观点分析,是由重核裂变核能→热能→机械能→电能的转换过程。 (4)垃圾发电厂 垃圾发电是把各种垃圾收集后,进行分类处理,其中:一是对燃烧值较高的进行高温焚烧产生热能转化为高温蒸气,推动涡轮机转动发出电能。二是对不能燃烧的有机物进行发酵、厌氧处理、最后干燥脱硫产生沼气。再经燃烧,把热能转化为蒸气推动涡轮机转动发出电能。 2. 绿色电能企业 绿色电能是指用特定的发电设备发电,在发电过程中不排放或很少排放对环境有害的废气、废水和废物,具有环保性质的能源,主要有以下4种: (1)地热发电厂 地热能是指贮存在地球内部的可再生热能 (2)风能发电厂 是指利用风能来生产电能的发电厂 (3)太阳能发电厂 太阳能是指太阳光的辐射能量 (4)海洋能发电厂 海洋能是海水流动动能、海洋热能、潮汐能和波浪能等能源的总称。 (5)生物质能发电 生物质能就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,

两线制变送器和四线制信号传输方式

二线制传输方式中,供电电源、负载电阻、变送器是串联的,即二根导线同时传送变送器所需的电源和输出电流信号,目前大多数变送器均为二线制变送器;四线制方式中,供电电源、负载电阻是分别与变送器相连的,即供电电源和变送器输出信号分别用二根导线传输。......请看变送器八问八答。 一.什么是两线制电流变送器? 什么是两线制?两线制有什么优点? 两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。两线制与三线制(一根正电源线,两根信号线,其中一根共G ND) 和四线制(两根正负电源线,两根信号线,其中一根GND)相比,两线制的优点是: 1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用; 2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;两线制与三线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。 3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远; 4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制.... 5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。 6,在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。 三线制和四线制变送器均不具上述优点即将被两线制变送器所取代,从国外的行业动态及变送器心片供求量即可略知一斑,电流变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米甚至更远。设备现场的环境较为恶劣,强电

改方电路办理办法

精心整理 自动闭塞区段改变方向办理方法 一有关设备名称及其意义 控制台盘面(或显示器)上,在每个接车口设有改变方向电路表示灯及按钮,名称及意义如下: 1.监督区间表示灯(JQD):当办理了发车进路或列车占用区间时,显示红色灯光。 2.接车方向表示灯(JD):车站处于接车方向时,显示黄色灯光。 3.发车方向表示灯(FD):车站处于发车方向时,显示绿色灯光。 4.辅助办理表示灯(FZD):当设备故障或相邻两端车站出现双接状态,双方进行辅助办理时,辅助办理表示灯显示白色灯光。发车站列车越过出站信号机后,辅助办理表示灯熄灭,接车站办理后3s熄灭。 5.总辅助办理按钮(ZFA):非自复式带计数器按钮。辅助办理时,先登记破封按压总辅助办理按钮,然后进行接车或发车的辅助办理。 6.发车辅助办理按钮(FFA):自复式带铅封按钮。在区间空闲,监督区间表示灯显示红灯或出现“双接”,恢复原发车方向及原接车站要改为发车方向时,登记破封,按压总辅助办理按钮和该按钮。在辅助办理表示灯亮白灯后,发车方向表示灯亮绿灯为止,本站即改为发车方向。 7.接车辅助办理按钮(JFA):自复式带铅封按钮。在区间空闲,监督区间表示灯显示红灯或出现“双接”,恢复原接车方向及原发车站要改为接车方向时,登记破封,待对方站先按压总辅助办理按钮和发车辅助办理按钮后本站按压总辅助办理按钮和该按钮,在辅助办理表示灯亮白灯后,接车方向表示灯亮黄灯为止,本站即改为接车方向。 8.双线自动闭塞区段,控制台上设有办理改变运行方向按钮(非自复式带铅封按钮)及表示灯、计数器:正常办理改变运行方向时使用,防止错误改变方向。 二改变方向接发车办理方法 正常办理: 1.双线自动闭塞区段。 1.1首先破封(仅由要改为发车的车站操作)按下办理改变运行方向按钮,办理改变运行方向表示灯闪绿色(或闪红色)灯光。 1.2原接车站要办理反方向发车,值班员只要按压排列发车进路的始终端按钮,即可改变运行方向,使原接车站变为发车站,发车方向表示灯亮绿灯,原发车站变为接车站,接车方向表示灯亮黄灯,办理了发车进路或列车占用区间后,双方车站的监督区间表示灯亮红灯。列车完全进入接车站内,监督区间表示灯13s后熄灭。 1.3改变运行方向(发车表示灯点亮绿灯)后,值班员应拉出改变运行方向按钮。 2.单线自动闭塞区段。 原接车站要办理反方向发车,值班员只要按压排列发车进路的始终端按钮,即可改变运行方向,使原接车站变为发车站,原发车站变为接车站,发车站的发车方向表示灯亮绿灯,接车站的

三相四线与三相五线

三相四线制与三相五线制 三相四线制的漏电保护器严格地讲,在输入端必须是按照规定四根线都接入,而输出端可以是只接一相线一零线(单相)或两相(比如电焊机的380V两相)或三相(比如电动机)或三相四线都接(比如电机加照明)。(1)如果零线不经漏电保护器而直接和用电设备连接,那从相线出来的电流(指单相)在“回路”到电源时就不经过漏电保护器了,此时漏电保护器就检测到这个电流(相当于漏电流),所以就引起漏电保护器跳闸。(2)还有当三相电路中由于负载不平衡而引起中性点不是零电位,导致零线有电流,所以零线经过保护器的话也会引起跳闸。(3)但是不管接什么设备,输出端的零线都不得接地,否则将无法正常供电,如需对设备接保护接地线必须从设备外壳直接接线至大地。(4)三相四线制用漏电保护器一定用四极的.如果用三极的,在三相负载不平衡时由于没有零线电流的返回,漏电保护器就判断线路是在漏电,所以一合闸就会跳闸。 不过这次没有像上次那样直接对焊,而是用更为可靠的接线端子,还因此专门买了液压钳;不过此次重点的发现不在于如何接线,而在于用户的地沟中的两根电源线,粗的一根是三相五线,细的一根是独立地线。而我们的控制柜的三相电一直是采用三相四线制,且除火线外的零线与外壳相连;地沟中的地线与零线也是相通的。由于控制柜中使用的三相电其实是用于为三个220V的整流滤波电源供电(因为220V线路的电流不够大),因此须保证零线与任一根火线的线电 压为220V。最后接法是将火线直接对接,而控制柜的零线与地沟中的零线对接。回到宾馆上网才发现关于三相四线制与三相五线制还有很多的知识点的,特别是其中的一些名词让我想到了Paker驱动器手册中的名词。现将关于此方面的知识点整理如下(整理自网络): 国际电工委员会(IEC)对基本供电系统的名称做了统一规定,即TT系统,TN 系统,IT系统。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。其中,TN系统又分为TN-C、TN-S、TN-C-S,详情见下图:

电路图和实物图相互转化专题

电路连接练习(1) 1、按电路图,将实物连成电路. 2、根据图所示的电路图连接图所示的实物图 3、按电路图(甲)连接图(乙): 4、按图所示的实物图画电路图: 5、按图所示的实物图画电路图:; 6、按图所示的实物图画电路图: 7、按图所示的实物图画电路图: 8、按图所示的实物图画电路图: 9、按图所示的实物图画电路图: 10、按图所示的实物图画电路图:》

11、按图所示的实物图画电路图: 12、按图所示的实物图画电路图: 13、按图所示的实物图画电路图: 14、按图所示的实物图画电路图: [ 15、按图所示的实物图画电路图:] : ?;

电路连接练习(2) 16、按图所示的实物图画电路图: ( 17、按图所示的实物图画电路图: 18、将下图中的元件连接起来,形成并联电路并标出电流的方向.(要求每个开关控制一个灯泡) 19、将下图中给出的元件用导线按要求连接起来,标出电流流动的方向: (1)用开关控制灯泡 (2)用开关控制电动机和发光二极管20、一节电池一个开关、两盏灯L1和L2要组成并联电路,还应再连接两根线就可以了。 ) 21、根据电路图连接实物图: 22、根据电路图连接实物图: 23、根据电路图连接实物图:

24 、 根据电路图 连接实物图: | 25、图B 所示的实物图画成电路图: 26、按图所示的实物图画电路图: 27、根据实物图 画出电路图; 28、根据实物图 画出电路图; 29、将下图中的元件连接起来,形成串联电路并标出电流的方向. { 30、某医院安装了一种呼唤电铃,使各病床的病人均可单独呼叫,只要一按床头的开关,值班室的电铃就响,且与该病床相对应的指示灯亮,请在图中画出正确的连接方法: :

改方电路办理办法

改方电路办理办法 Jenny was compiled in January 2021

自动闭塞区段改变方向办理方法 一有关设备名称及其意义 控制台盘面(或显示器)上,在每个接车口设有改变方向电路表示灯及按钮,名称及意义如下: 1.监督区间表示灯(JQD):当办理了发车进路或列车占用区间时,显示红色灯光。 2.接车方向表示灯(JD):车站处于接车方向时,显示黄色灯光。 3.发车方向表示灯(FD):车站处于发车方向时,显示绿色灯光。 4.辅助办理表示灯(FZD):当设备故障或相邻两端车站出现双接状态,双方进行辅助办理时,辅助办理表示灯显示白色灯光。发车站列车越过出站信号机后,辅助办理表示灯熄灭,接车站办理后3s熄灭。 5.总辅助办理按钮(ZFA):非自复式带计数器按钮。辅助办理时,先登记破封按压总辅助办理按钮,然后进行接车或发车的辅助办理。 6.发车辅助办理按钮(FFA):自复式带铅封按钮。在区间空闲,监督区间表示灯显示红灯或出现“双接”,恢复原发车方向及原接车站要改为发车方向时,登记破封,按压总辅助办理按钮和该按钮。在辅助办理表示灯亮白灯后,发车方向表示灯亮绿灯为止,本站即改为发车方向。 7.接车辅助办理按钮(JFA):自复式带铅封按钮。在区间空闲,监督区间表示灯显示红灯或出现“双接”,恢复原接车方向及原发车站要改为接车方向时,登记破封,待对方站先按压总辅助办理按钮和发车辅助办理按钮后本站按压总辅助办理按钮和该按钮,在辅助办理表示灯亮白灯后,接车方向表示灯亮黄灯为止,本站即改为接车方向。 8.双线自动闭塞区段,控制台上设有办理改变运行方向按钮(非自复式带铅封按钮)及表示灯、计数器:正常办理改变运行方向时使用,防止错误改变方向。 二改变方向接发车办理方法 正常办理: 1.双线自动闭塞区段。 1.1首先破封(仅由要改为发车的车站操作)按下办理改变运行方向按钮,办理改变运行方向表示灯闪绿色(或闪红色)灯光。 1.2原接车站要办理反方向发车,值班员只要按压排列发车进路的始终端按钮,即可改变运行方向,使原接车站变为发车站,发车方向表示灯亮绿灯,原发车站变为接车站,接车方向表示灯亮黄灯,办理了发车进路或列车占用区间后,双方车站的监督区间表示灯亮红灯。列车完全进入接车站内,监督区间表示灯13s后熄灭。 1.3改变运行方向(发车表示灯点亮绿灯)后,值班员应拉出改变运行方向按钮。 2.单线自动闭塞区段。 原接车站要办理反方向发车,值班员只要按压排列发车进路的始终端按钮,即可改变运行方向,使原接车站变为发车站,原发车站变为接车站,发车站的发车方向表示灯

三相三线制与三相四线制

三相三线制 三相三线制(three-phase three-wire system )不引出中性线的星型接法和三角形接法。电力系统高压架空线路一般采用三相三线制,三条线路分别代表a,b,c 三相,我们 在野外看到的输电线路,一回即有三根线(即三相),三根线可能水平排列,也可能是三角 形排列的;对每一相可能是单独的一根线(一般为钢芯铝绞线),也有可能是分裂线(电压 等级很高的架空线路中,为了减小电晕损耗和线路电抗,采用分裂导线,多根线组成一相线, 一般2-4 分裂,在特高压交直流工程中可能用到6-8 分裂),没有中性线,故称三相三线制。 三相交流发电机的三个定子绕组的末端联结在一起,从三个绕组的始端引出三根火线 向外供电、没有中线的三相制叫三相三线制。 电晕:曲率半径小的导体电极对空气放电,便产生了电晕。 (电晕产生热效应和臭氧、氮的氧化物,使线圈内局部温度升高,导致胶粘剂变 质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。) 三相四线制 概述 在低压配电网中,输电线路一般采用三相四线制,其中 三相四线制 三条线路分别代表A,B,C 三相,另一条是中性线N(如果该回路电源侧的中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。在进入 用户的单相输电线路中,有两条线,一条我们称为火线,另一条我们称为零线,零线正常情 况下要通过电流以构成单相线路中电流的回路。而三相系统中,三相平衡时,中性线(零线)是无电流的,故称三相四线制;在380V 低压配电网中为了从380V 线间电压中获得220V 相间电压而设N 线,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。

二线制、三线制和四线制区别

浅谈二线制、三线制和四线制 我们讨论的两线制、三线制、四线制,是指各种输出为模拟直流电流信号的变送器,其工作原理和结构上的区别,而并非只指变送器的接线形式。否则热电偶配毫伏计测量温度可称为是两线制的鼻祖了! 几线制的称谓,是在两线制变送器诞生后才有的。这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。因此最先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。但目前,很多变送器采用二线制。 因为要实现两线制变送器必须同时满足以下条件: 1.V≤Emin-ImaxRLmax 变送器的输出端电压V等于规定的最低电源电压减去电流在负载电阻和传输导线电阻上的压降。 2. I≤Imin 变送器的正常工作电流I必须小于或等于变送器的输出电流。 3. P<Imin(Emin-IminRLmax) 变送器的最小消耗功率P不能超过上式,通常<90mW。 式中:Emin=最低电源电压,对多数仪表而言Emin=24(1-5%)=22.8V,5%为24V 电源允许的负向变化量; Imax=20mA; Imin=4mA; RLmax=250Ω+传输导线电阻。 如果变送器在设计上满足了上述的三个条件,就可实现两线制传输。所谓两线制

即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。两线制变送器由于信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为 4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。而且两线制还便于使用安全栅,利于安全防爆。 两线制变送器如图一所示,其供电为24V.DC,输出信号为4-20mA.DC,负载电阻为250Ω,24V电源的负线电位最低,它就是信号公共线,对于智能变送器还可在4-20mA.DC信号上加载HART协议的FSK键控信号。 图一两线制变送器接线示意图 由于4-20mA.DC(1-5V.DC)信号制的普及和应用,在控制系统应用中为了便于连接,就要求信号制的统一,为此要求一些非电动单元组合的仪表,如在线分析、机械量、电量等仪表,能采用输出为4-20mA.DC信号制,但是由于其转换电路复

四线制自动闭塞改方电路动作详解

四线制自动闭塞改方电路 自动闭塞四线制方向电路(电号0041) (与DS6-K5B结合) 一、简介 方向电路是双向自动闭塞的关键电路,它是两站间闭塞关系的基础,并通过它建立各站间的双向自动闭塞区间。因此它是双向自动闭塞制式中不可缺少的关键组成部分。 我国过去使用的方向电路均为两线制方向电路,该电路在我国单线自动闭塞区段使用甚广,在长期的使用过程中,结合我国的情况作过一些修改,但据现场反映该电路运用过程中经常出现故障,影响了现场的正常运输。为此,根据我国国情及在国产器材的基础上,参考国外有关发展动态,研制了新的方向电路。将方向回路与区间轨道电路的监督回路分别独立设置,构成四线制方向电路。 本电路在室内试验的基础上,又结合工程进行了室外试验,五年多来使用正常,并于1986年在南京通过了部级审查。 当时的铁道部部基建总局、鉴定委员会分别以(1986)198号文、铁鉴(1986)629号文下达了审查意见和对双方向自动闭塞方向电路标准设计意见书的批复,要求对“单线自动闭塞四线制方向电路,进行相应的修改,使其适用于需要双向运行的自动闭塞区段,为此编制了“自动闭塞四线制方向电路图册”电号0041(试用标准图)。 为使大家更好地学习理解和DS6-K5B计算机联锁结合的自动闭塞四线制方向电路,特编写以下电路原理说明。 二、技术条件: 1、电路应能监督区间的空闲及占用和相邻车站的接车、发车状态。当确认整个区间空闲及对方站未建立发车进路时方能改变运行方向的办理而自动改变运行方向。 2、改变运行方向应由处于接车状态的车站办理,随发车进路的办理而改变运行方向。 3、电路应防止当区间轨道电路瞬时分路不良时,错误改变运行方向。 4、电路应符合故障导向安全的原则,保证不出现敌对发车的可能。 5、电路应适用于各种制式的自动闭塞。 6、因故不能改变运行方向时,可使用辅助方式办理。按辅助方向改变运行方向后,第一次出站信号的开放必须检查该相邻

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

DCS中两线制与四线制的互换接法研究

DCS中两线制与四线制的互换接法研究 张倍 摘要本文介绍了DCS中两线制与四线制的原理及区别,以艾默生DeltaV系统为例,分析了一种两线制变送器接入四线制卡件和四线制信号接入两线制卡件的方法。并对该方法进行了验证总结。 关键字DCS 两线制四线制 在DCS的模拟量输入信号中,4-20mA信号已经成为仪表及变送器所使用的标准信号,得到了普遍的使用。但在实际使用中,由于变送器配电方式的不同,4-20mA 信号变送器又分为两线制、三线制和四线制等。其中三线制已不多见,两线制与四线制在工厂中已大量使用。在DCS中,对4-20mA信号的接入不同厂家存在差异,有的需要组态,有的需要跳线,有的更换端子,有的提供多个端子按需要接入。本文所采用的艾默生DeltaV系统,采用的是同卡件更换不同的接线端子的方法区分两线制和四线制信号的接入。在工厂中,由于接线端子已经按照最初设计配好数量和位置,在后续生产过程中,如果出现需要增加一个两线制或四线制点位,但对应端子没有富裕,就存在需要将两线制信号接入四线制端子上或将四线制信号接入两线制端子上的情况,以满足实际需求。本文对此方法进行了研究。 1.DCS中两线制与四线制的原理及区别 1.1两线制原理 所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。两线制变送器由于信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。而且两线制还便于使用安全栅,利于安全防爆。

图1 两线制变送器接线示意图 两线制变送器如图一所示,其供电为24V.DC,输出信号为4-20mA.DC,负载电阻为250Ω,24V电源的负线电位最低,它就是信号公共线,对于智能变送器还可在4-20mA.DC信号上加载HART协议的FSK键控信号。 1.2四线制原理 由于4-20mA.DC(1-5V.DC)信号制的普及和应用,在控制系统应用中为了便于连接,就要求信号制的统一,为此要求一些非电动单元组合的仪表,如在线分析、机械量、电量等仪表,能采用输出为4-20mA.DC信号制,但是由于其转换电路复杂、功耗大等原因,难于全部满足上述的三个条件,而无法做到两线制,就只能采用外接电源的方法来做输出为4-20mA.DC的四线制变送器了。

家庭装修电路改造开槽方法

家庭装修电路改造 电路设计要多路化,做到空调、厨房、卫生间、客厅、卧室、电脑及大功率电器分路布线;插座、开关分开,除一般照明、挂壁空调外各回路应独立使用漏电保护器;强、弱分开,音响、电话、多媒体、宽带网等弱电线路设计应合理规范。 1.墙身、地面开线槽之前用墨盒弹线,以便定位。管面与墙面应留15mm左右粉灰层,以防止墙面开裂。 2.未经允许不许随意破坏、更改公共电气设施,如避雷地线、保护接地等。 3.电源线管暗埋时,应考虑与弱电管线等保持500mm以上距离,电线管与热水管、煤气管之间的平行距离不小于300mm。 4.墙面线管走向尽可能减少转弯,并且要避开壁镜,家具等物的安装位置,防止被电锤、钉子损伤。

5.如无特殊要求,在同一套房内,开关离地1200-1500mm之间,距门边150-200mm处,插座离地300mm 左右,插座开关各在同一水平线上,高度差小于8mm,并列安装时高度差小于1mm,并且不被推拉门、家具等物遮挡。 6.各种强弱电插座接口宁多勿缺,床头两侧应设置电源插座及一个电话插座,电脑桌附近,客厅电视柜背景墙上都应设置三个以上的电源插座,并设置相应的电视、电话、多媒体、宽带网等插座。 7.音响、电视、电话、多媒体、宽带网等弱电线路的铺设方法及要求与电源线的铺设方法相同,其插座或线盒与电源插座并列安装,但强弱电线路不允许共用一套管。 8.所有入墙电线采用16以上的PVC阻燃管埋设,导线占管径<40%空间,与盒底连接使用专用接口件。 9.使用导线管时,电源线管从地面穿出应做合理的转弯半径,特别注意在地面下必须使用套管并加胶连接紧密,地面没有封闭之前,必须保护好PVC管套,不允许有破裂损伤;铺地板砖时PVC套管应被水泥沙浆完全覆盖。 上述作品版权归原作者所有,苏皖工长俱乐部平台只属于点赞和传播者,转载请注明来源

电路图与实物图互画练习(一)

实物图与电路图互画练习(一)一、根据左边的实物图画出相应的电路图 1、 2、 ] 3、 ( 4、 , 5、 / L1L2 S2 S1 1 2 3 4 5 6

6、 二、根据左边的电路图将右图中的实物连接起来 % 1、 ] 2、 ¥ 3、 。 4、 ( L 1 L 2 S 1 L 1 L 2 S 2 S 1 L 1 L 2 S 1 L 1 S 1 L 2 S 2 ? L 2 L 1 S 2 S 1

5、 实物图与电路图互画练习(二) 按要求连接实物图或画电路图 1、" 2、如图1,滑动变阻器的滑片向左滑动时, ^ 2、按左边的电路图连接图2的实物图。 — 3、在图3中按要求将两只伏特表接入电路并画出相应的电路图。 要求:V1测总电压,V2测L2电压 : L2 S2 ` S1 + _ S1 L2 S2 图1 A 图2 图3 V1 V2

4、将图4画成电路图,如在图中只改动一根导线 { 使电流表能直接测出两只小灯泡中的总电流,画出这根导线, 并把改过后的电路图画出来。 5、在图5上用笔画线表示导线把各电路元件按要求连接起来,要求:L1、L2并联;用开关控制整个电路;电流表测L1的电流;用滑动变阻器改变通过L2的电流大小且滑片向左移动时灯L2变亮。根据你的连接在右边方框内再画出相对应的电路图。 $ 6、在下列电路图中的圆圈内填入合适的电表,并按此电路图用笔画线将图6中的实物连接起来 。 7、 S L1 L2 改过后的电路图 ; L1 L2 图5 R { 图6

8、将下列图7和图8 图7 图8图7电路图 图8电路图

相关文档