文档库 最新最全的文档下载
当前位置:文档库 › 数列求和定稿讲义和练习

数列求和定稿讲义和练习

数列求和定稿讲义和练习
数列求和定稿讲义和练习

数列求和

一:核心梳理、茅塞顿开

数列求和的常用方法

1.公式法

(1)直接应用等差、等比数列的求和公式;

(2)掌握一些常见的数列的前n项和:123

+++……+n=,1+3+5+……+=

2.倒序相加法:如果一个数列{}n a,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如数列的前n项和就是此法推导的。

3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如数列的前n项和就是用此法推导的.

4.裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。常见的拆项公式

有:

1

()

n n k

=

+

,=,

1

(21)(21)

n n

=

-+

,等.

例1.求和:

(1)

)

(

)2

(

)1

(2n

a

a

a n-

+

+

-

+

-

(2)

)1

2

)(

1

2(

1

5

3

1

3

1

1

+

-

+

+

?

+

?n

n

(3)

)1

(

3

2

11

2≠

+

+

+

+-x

nx

x

x n

四、练习题:

1.数列}{n a 的通项公式是)(11

+∈++=N n n n a n ,若它的前n 项和为10,则其项数n 为

A .11

B .99

C .120

D .121

2.数列 ,211

,,3211

,211

,1n ++++++的前n 项和为

A .122+n n

B .12+n n

C .12

++n n D .12+n n

3.数列}{n a 的通项是14-=n a n ,n a a a b n

n +++= 21

,则数列}{n b 的的前n 项和为

4.设221

)(+=x x f ,利用课本中推导等差数列前n 项和公式的方法,

可求

)0()4()5(f f f ++-+- )6()5(f f ++的值为A .23 B .2 C .22 D .22

6.22222212979899100-++-+- 的值是

7.数列 ,21

)12(,,815,413,211n n +-的前n 项和为n S ,则=n S

8.在等比数列}{n a 中,1221-=+++n n a a a ,则=+++22221n a a a

9.数列2211,(12),(122),,(1222),n -+++++++的通项公式n a = ,前n 项和n S = .

10.若数列{}n a 满足 12a =,1(1)2n n na n a +-+=,则数列{}n a 的通项公式n a =_ __

13.已知数列}{n a 是等差数列,其前n 项和为.621

,33=?=S a S n

(I )求数列}{n a 的通项公式; (II )求和:n

S S S 1

1121+++ .

14.设数列}{n a 的前n 项和为2

2n S n =,}{n b 为等比数列,且.)(,112211b a a b b a =-=

(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n

n n b a c =,求数列}{n c 的前n 项和n T .

15. 设数列{}n a 的前n 项和为n S ,且对任意正整数n ,4096n n a S +=。

(1)求数列{}n a 的通项公式(2)设数列2{log }n a 的前n 项和为n T

16若{}

n a 的通项为n a =,则前100项和100S = 。

17若{}n a 的通项为141

2-=n a n ,则前n 项和=n S 。

18.已知数列{}n a 的前n 项和)34()1(2117139511--++-+-+-=-n S n n ,=-+312215S S S

19.在数列{}n a 中,11=a ,241+=+n n a S ,

(1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列;

(2)设,2

n n n a c =求证:数列{}n c 是等差数列; (3)求数列{}n a 的通项公式及前n 项和公式。

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

数列的通项公式与求和的常见方法

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =,12n n a a +-=* ()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,1 3n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=* ()n N ∈,求数 列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++* ()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足2 11=a ,n a a n n 21+=+,* ()n N ∈求 数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈, 13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,*()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,2 51n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可得数列 λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{} n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列 {}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-* ()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新的等差数 列。 例:已知数列{}n a 满足11a =,122 n n n a a a += +*()n N ∈, 求数列{}n a 的通项公式。 变式练习: 1. 已 知 数 列 {} n a 满 足 11 a =, 1(1)n n na n a +=++(1)n n +, * ()n N ∈,求数列{}n a 的 通项公式。 2. 已知首项都为1的两个数列{}n a 、{} n b (0n b ≠* n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b =求数列{}n c 的通 项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ=-++11,即数列? ? ????n n p a 为以p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数 列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1 15 5+++=n n n a a ,11=a ,求数列 {}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列 {}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的 前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2232221n a a a a ++++Λ. 类型二:分组求和法 例. 求数列的前n 项和: 232 1 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 2 1 )12(+ +=,求n S . 类型三:倒序相加法 例.求ο ο ο ο 88sin 3sin 2sin 1sin 2 2 2 2+???+++ο 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设n n n b a c = ,求数列}{n c 的前n 项和n T . 类型五:裂项相消法 例.已知数列}{n a 中,) 2(1 += n n a n ,求n S . 1.求数列 1 1 ,,321,211++???++n n 的前n 项和. 2.在数列}{n a 中,1 1211++???++++=n n n n a n , 又1 2 +?=n n n a a b ,求数列}{n b 的前n 项的和. 3.求和 求数列的通项与求和作业 1.已知数列}{n a 的首项11=a (1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________ 1 11{}:1,{}.31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

数列求和习题及答案.docx

§ 数列求和 ( : 45 分 分: 100 分) 一、 ( 每小 7 分,共 35 分 ) * 1 1.在等比数列 {a n } ( n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前 10 和 ( ) A . 2- 18 B . 2- 19 2 2 C . 2- 1 10 D . 2- 1 11 2 2 2.若数列 {a n } 的通 公式 a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ( ) n 2 n + 1 2 A . 2 + n -1 B . 2 + n - 1 C . 2n + 1+ n 2- 2 D . 2n + n - 2 3.已知等比数列 {a n } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lg a , b = 18,b = 12, n n n 3 6 数列 {b n } 的前 n 和的最大 等于 ( ) A . 126 B . 130 C . 132 D . 134 4.数列 {a } 的通 公式 n - 1 ·(4 n - 3) , 它的前 100 之和 S 等于 ( ) n a = ( - 1) n 100 A . 200 B .- 200 C . 400 D .- 400 5.数列 1·n , 2(n -1),3(n -2) ,?, n ·1的和 ( ) n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3) n(n + 1)(n + 2) 二、填空 ( 每小 6 分,共 24 分 ) 6.等比数列 {a } 的前 n 和 n 2 2 2 S =2 - 1, a + a +?+ a = ________. n n 1 2 n 7.已知数列 {a } 的通 a 与前 n 和 S 之 足关系式 S = 2- 3a , a = __________. n n n n n n 8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b } 足 b =log 3a , 数列 的前 n n n n n 1 b b n + 1 n 和 S = ________. n 9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数 a n ,数列 {a n } 的前 n 和 S n , S 100 的 ________. 三、解答 ( 共 41 分 ) 10. (13 分 ) 已知数列 n n 和, 于任意的 * {a } 的各 均 正数, S 其前 n n ∈N 足关系式 2S n = 3a n -3. (1) 求数列 {a } 的通 公式; n (2) 数列 {b } 的通 公式是 b = 1 ,前 n 和 T ,求 : 于任意的 n n n log 3a n ·log 3a n + 1 正数 n , 有 T n <1. } 足 a + a + a = 28,且 a + 2 是 a , a 的等差 11. (14 分) 已知 增的等比数列 {a n 2 3 4 3 2 4

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的 n 3 1 2 5、 S n k 3 [ n(n 1)]2 k 1 2 例】已知数列 a n 满足 a 1 1,a n 1 a n 4,n N * ,求数列 a n 的前 n 项和 S n . 练习 】已知 log 3 x ,求 x x 2 x 3 x n 的前 n 项和 . log 23 第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个 等差、等比或常见的数列,然后分别求和,再将其合并即可 . 若数列 c n 的通项公式为 c n a n b n ,其中数列 a n , b n 分别是等差数列和等比数 列,求和时一般用分组结合法。 na 1 (q 1) 2、等比数列前 n 和公式: S n a 1(1 q n ) a 1 a n q (q 1) 1 q 1 q (q 1) S n n a 1 a n na 1 21 自然数方幂和公式: 1、等差数列前 n 和公式: 3、 S n n k k1 1 n(n 1) 2 n 4、 S n k 2 k1 1 n(n 1)(2n 1) 6

1 1 1 1 1 【例】数列1 ,2 ,3 ,4 , ,n n, 求数列的前n项和. 2 4 8 16 2n

练习】数列a n 的通项公式a n 2n2n 1 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用 . 裂项法的实质是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的 常用的通项分解(裂项)如: 1 1 1 例1】数列1,112,1 213, ,1 2 31n, ,求该数列的前n项和 .通项) 1) a n 2) a n n1 a n 11 nk 3) a n 2n 1 2n 1 2 2n 1 2n 1 a n 5) a n log a 1 1log a n 1 log

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

(完整版)数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n (n +1) ,则S 5等于( ) A .1 B.5 6 C.16 D.130 B [∵a n =1n (n +1)=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n = 1 a n a n +1 ,求数列{b n }的前n 项和. [解] (1)由已知得???? ? 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9 2d =10a 1+45d =100, 解得??? a 1=1, d =2, 3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n = 1(2n -1)(2n +1)=12? ?? ??1 2n -1-12n +1,8分 所以T n =12? ? ???1-13+13-15+…+12n -1-12n +1 =12? ????1-12n +1=n 2n +1 .12分

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项 公式? 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +?? =+ ??? *()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

4.构造新数列: 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+211 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足3 21=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的 通项1___n a ?=?? 12 n n =≥ 2!n a n =)2(≥n 解

相关文档
相关文档 最新文档