文档库 最新最全的文档下载
当前位置:文档库 › 活用未知数_巧解几何题

活用未知数_巧解几何题

活用未知数_巧解几何题
活用未知数_巧解几何题

活用未知数 巧解几何题

在初中阶段,除了几个特定的问题常用设未知数列方程的方法以外,其实还有很多题目类型可以通过引入未知数,利用方程思想来解决。特别是几何问题,学生由于受到定式思维的影响,很难意识到几何与方程之间的关系,从而更加难以从方程的角度切入解决几何问题。因此,本文试举例探讨几类几何题利用未知数,根据几何性质建立等量关系列方程的解题思路和方法。

1 在等腰三角形中引入未知数

例1(2009年邵阳市中考题) 如图1-1,在梯形ABCD 中,CD AD AB ==,AB AC ⊥,将CB 延长至点F ,使CD BF =. (1) 求ABC ∠的度数;

(2) 求证:CAF ?为等腰三角形.

图1-1 分析:从已知条件可以得到两个等腰三角形和一个等腰梯形,根据等边对等角的性质,我们不难得到多个角度之间的数量关系,很容易想到从某一个角出发,依次得到各个角的度数,来得到题目所求角的度数。但是,这个题目最大的困扰就是没有给出任何一个角的度数,也就是说我们没有一个出发点,那么这么多的数量关系也无法利用。因此,我们可以引入未知数,设

x ABC =∠,以这个角为切入点根据数量关系依次得出所需角的表达式,再根据他们之间的等量关系列方程求解,即巧妙地突破了这个题目的难点。

解: (1)设 x ABC =∠

∵ AB AC ⊥ ∴ 90=∠CAB ∴ )90(x ABC CAB ACB -=∠-∠=∠ 又∵ BC AD // ∴ )90(x ACB DAC -=∠=∠

∵ CD AD = ∴ )90(x DAC DCA -=∠=∠

∴ )2180()90()90(x x x ACB DCA DCB -=-+-=∠+∠=∠ ∵ AB CD = ∴ ABC DCB ∠=∠

即 x x =-)2180( 解得 60=x

60=∠ABC

(2) 略

总结:本题利用等腰三角形的性质和三角形内角和定理,将线段间的相等关系转化为角度之间的相等关系,然后选取题目所求角设未知数x ,其他各角均可用含x 的代数式表示出来,利用等腰梯形的性质寻求等量关系列方程,求得题目所求。通过引入未知数,经过代换,列方程解决问题的方法是突破三角形问题最常见的技巧。 2 在勾股定理中引入未知数

F D C B

A

例2(人教版八年级数学教材第71页,综合运用第10题) 如图2-1,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果将这根芦苇拉向水池一边的中点,它的顶端恰好到水池边的水面上,水的深度和这根芦苇的长度分别是多少?

图2-1 图2-2

分析:如图2-1显然可知,当芦苇被拉至水池一边时,则刚好与池壁、池底围成一个直角三角形,为了方便解题,我们把这个直角三角形截出来,如图2-2。此时,AC 的长即为水的深度,AB 的长即为芦苇的长度。不难想到,我们需求的边长即为直角三角形的边长,可用勾股定理解决。但是有一个困惑,勾股定理可以计算一个未知量的大小,但是在直角三角形中两条边都未知的情况下如何来解决呢?这是我们可以考虑引入未知数,利用一个未知数来表示两个未知量,再利用勾股定理列方程即可突破本题的难点。

解:不妨设x BC =尺,即水的深度为x 尺;

由题意知,芦苇的高度比水的深度多出一尺,即)1(+=x AB 尺

有勾股定理得:2

22AB BC AC =+

即 222)1(5+=+x x 解得12=x

∴ 12=BC 尺,13=AB 尺

答:水的深度为12尺,芦苇的长度为13尺。

总结:通常勾股定理的三个量中已知两个量可求第三个量,若仅知一个量而两个量未知则不可直接求出,因此我们可以考虑引入一个未知数,通过两边关系用x 的代数式将未知的两条边表示出来,利用勾股定理列方程从而求所得。这个策略方法可以应用出勾股定理的多个问题中,总之条件不够,未知数来凑。 3 在三角函数中引入未知数

例3(2012年珠海市中考题) 如图3-1,水渠边有一棵大木瓜

树,树干DO(不计粗细)上有两个木瓜A 、B(不计大小),树干垂直

于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C

处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°。求C 处到

树干DO 的距离CO.(结果精确到1米,参考数据:73.13≈,41.12≈)

分析:此类题型是非常典型的解直角三角形的应用题,此题中唯一的已知边是AB=2,而由于知识能力的原因,我的的初中生

解决三角函数问题只能在直角三角形中解决,而已知边AB 却不是直角三角形的边,换言之,我们真正需要用到的直角三角形中没有已知边,那么很明显,此题我们去烧条件,很难直接切入。因此,我们必须自己创设一个切入C B A

点,不妨引入未知数,设所求x CO =米,利用三角函数分别表示出AO 和BO 的长,在利用等量关系DO AO AB -=列方程求解,此题便水到渠成。

解:不妨设x CO =米

在AOC RT ?中,∵ 45=∠ACO

∴x CO AO ==米

在BOC RT ?中,∵ 30=∠BCO

∴CO BO BCO =

∠tan , 即x BO =33, 解得x BO 33=米 而 DO AO AB -=

∴ x x 3

32-= 解得33+=x , 即7.40≈C 米 总结:在解直角三角形时,我们通常会遇到由于知识水平不够而造成条件不可直接用,以致缺乏切入点,此时我们往往可以通过引入未知数来求寻求切入点,通过题意将各个所需量表达出来列方程求解即可。这种方法也是解直角三角形最为常见的技巧之一。

4 内切圆问题中引入未知数

例4(人教版九年级数学上册第97页例2) 如图4-1,ABC ?的内切圆⊙O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且AB=9cm ,BC=14cm ,CA=13cm ,求AF ,BD ,CE 的长.

分析:此题不难想到利用切线长定理解决问题,但是由切线长定理不可直接求得某条线段的长度,而只能得到三组相等的线段,结合已知条件又可得到三组等量关系,于是我们此时引入未知数,利用得到的等量关系列出方程组,即可轻松解决这个问题。

解:设cm x AF =,cm y BD =,cm z CE =

由切线长定理可知:

cm x AF AE ==

cm y BD BF ==

cm z CE CD ==

∴ 可列方程组: 图4-1

?????=+=+=+13149z x z y y x 解得??

???===954z y x

∴cm AF 4=,cm BD 5=,cm CE 9=

总结:内切圆问题中,往往会出现多组切线,因此可利用切线长定理可得多组相等的线段,如果我们解决这类题型能够适时引入未知数,利用方程思想来解决问题也是一个不错的选择。 5 动点问题中引入未知数

例5(2010年重庆市潼南中考试题) 已知:如图5-1,一次函数121+=

x y 的图像与x 轴交于点A ,与y 轴交于点B ;二次函数c bx x y ++=

221的图像与一次函数121+=x y 的图像交于B 、C 两点,O F E

C B A

与x 轴交于D 、E 两点且点D 坐标为(1,0).

(1)求二次函数的解析式;

(2)求四边形BDEC 的面积S

(3)点P 是x 轴上一动点,当点P 运动到何位置时,使得PBC ?是以P 为直角顶点的直角三角形?求出此时点P 的坐标?

分析:本题的第(3)小题是典型的动点几何题,

而动点问题最大的困难在于图形是变化的,线段的长

度、图形的形状都会随着动点的变化而变化,所以我

们不能用常规的计算方法得出结果。解决这类题目,

我们就要抓住一个关键:设未知数。因为未知数是

可以表示任意数,因此就可以借助这个静态字母表

示一个动态几何量,则恰好突破的这个难点。

解:(1)略, 二次函数的解析式为12

3212+-=x x y ; (2)略,四边形BDEC 的面积S 为2

9; (3)设点P 的坐标为(m ,0) 则221x BP +=,2024222=+=BC ,222)4(3m PC -+=

当PBC ?是以P 为直角顶点的直角三角形时,

则 BC PC BP =+22

所以列方程得: 20])4(3[)1(222=-+++m x

解得: 11=m ,32=m

∴ 点P 的坐标为(1,0)或(3,0)

总结:解决动点问题最大的困难就在一个“动”字,因为我们的学生的数学解题思维是建立在静态问题上的,所以一旦图形动起来,学生无法入手,找不到方向。因此,要解决这个问题就要求学生能够将动点问题静态处理,所以抓住关键,设未知数,通过集合性质得到等量关系,列方程解决。

以上几个例题,是笔者在教学过程中遇到的几个引入未知数,利用方程思想来解决的典型例题,把几何问题中某个量设为未知数,利用题设条件、几何定义、定理与有关性质,建立等量关系,列出有关方程或方程组的代数法来求解,这种解题策略而使用得当往往可以减少很多繁琐的几何证明,使思路更加清晰明了,解题更加简便。因此,我们在教学时可以适当培养学生在几何题中建立方程模型的思维能力,灵活学生的解题技巧,从而提升学生学习数学的综素养与思维能力。

【参考文献】

[1]课程教材研究所,中学数学课程教材研究开发中心编著.义务教育课程标准实验教科书·数学.北京:人民教育出版社,2009,3

[2]严慧主编.数学中考专题突破.广州:广东省出版集团,广东人民出版社,2012年11月

[3]海楠.列方程解初中几何题举例.中学生数学,2010,12

[4]王爱民.用列方程的方法解几何题.冀东学刊,1997,6

[5]朱昌宝.构造一元二次方程解几何题.语数外学习(九年级),2007,2

与圆相关的动态几何问题

与圆相关的动态几何问题-中学数学论文 与圆相关的动态几何问题 文/彭胜生 以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,这类问题常常集几何、代数知识于一体,解决这类问题的关键要掌握图形在运动中伴随着出现一定的图形位置、数量关系的“变”与“不变”性,灵活运用有关数学知识解决问题。 随着课改的不断深入,数学中考题型也在不断创新,动态几何问题逐年增多,其中与圆相关的动态几何问题占比较大,这类动态几何通常包含点动、线动、形动等三类问题。 一、点动型 点动型就是指在题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题型。解题时要根据这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。 例1 解决这类点动问题的常常用的是“分段发现法”,也就是通过对运动过程中“拐

点”进行探究,从动态的角度去分析可能出现的变与不变的情况,以静制动。 二、线动型 线动型就是指在题设图形中,设计一条或两条线通过平移或旋转的运动方式,使其与已知几何图形产生交点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。 例2 解决这类线动问题的关键是要把握图形运动与变化的全过程,抓住其中的等量关系和变量关系及运动变化中图形的特殊位置,进而探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要。 三、形动型 形动型是对给定的图形(或其一部分)实行某种位置变化,然后在新的图形中分析有关图形之间的关系。这类问题常与探究性、存在性等结合在一起,考察学生动手、观察、探索与实践能力。圆主要有移动、滚动、转动及翻动等四种常用基本运动。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

动态几何问题 -

动态几何问题 动态几何形成的最值问题是动态几何中的基本类型,包括单动点形成的最值问题,双(多)动点形成的最值问题,线动形成的最值问题,面动形成的最值问题.本专题原创编写单动点形成的最值问题模拟题. 在中考压轴题中,单动点形成的最值问题的重点和难点在于应用数形结合的思想准确地进行分类和选择正确的解题方法. 原创模拟预测题1.如图,已知直线3 34y x = -与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB .则△PAB 面积的最大值是( ) A .8 B .12 C .21 2 D .172 【答案】C . 【解析】 试题分析:∵直线334y x = -与x 轴、y 轴分别交于A 、B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,﹣3),34120x y --=,即OA=4,OB=3,由勾股定理得:AB=5,∴ 点C (0,1)到直线34120x y --=223041234?-?-+16 5,∴圆C 上点到直线 334y x =-的最大距离是1615+=215,∴△PAB 面积的最大值是121525??=212,故选C . 考点:圆的综合题;最值问题;动点型. 原创模拟预测题2.菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .

【答案】(233-,23-). 【解析】 考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题;动点型;压轴题;综合题. 原创模拟预测题3.如图,已知抛物线 2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式; (2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.

中考数学专题 动态几何之单动点形成的面积问题(含解析)

专题27 动态几何之单动点形成的面积问题 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。 (4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF 的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.

高考数学用补形法解立体几何题

高考数学用补形法解立体几何题 1. 正四面体补为正方体 例1. 求棱长为1的正四面体的体积。 图1 分析:常规的思路是直接用三棱锥的体积公式去求,但要首先求出此三棱锥的高,求高比较繁琐。如果将正四面体ABCD补形为正方 体(如图1),那么此正方体的棱长为,因此,求正四面体的体 积便有了新的求解思路: 例2. 如图2,正三棱锥S-ABC的侧棱与底面边长都相等,如果E、F、G分别是SC、AB、AC的中点,那么异面直线EF与BG所成角 的余弦值等于__________。图2

分析:常规的思路是“平移法”,取GA的中点H,连结EH、FH,则∠EFH即为所求,但解△EFH的运算量较大。联想到正四面体可补形为正方体(如图3),相当于求与BG所成角的余弦值。在此正方体的左边补上一个大小相同的正方体,构成一个长方体(如图4),则相当于求长方体对角线BD与侧棱所成角的余弦值。 设正方体边长为1,则长方体对角线BD的长为。在中, 2. 三条侧棱两两垂直的三棱锥或对棱相等的三棱锥或一条侧棱垂直于底面的三棱锥都可以考虑补形为长方体 例3. 如图5,是直二面角, ,,那么AB与面β所成的角等于() 图5 A. 90° B. 60° C. 45° D. 30°

分析:由α⊥β,BD⊥CD,得BD⊥α同理得:AC⊥β因此,AC ⊥CD,BD⊥CD,AC⊥BD不妨把三棱锥A-BCD补形为长方体(如图5),易得∠ABC为所求的角。在Rt△ABC中,,选D。例4. 如图6,四面体P-ABC中,侧棱PA、PB、PC两两垂直,O为面ABC 上一点,且O到平面PAB、平面PAC、平面PBC的距离分别为2,3,4,求OP的长度。 分析:可补一个“小”长方体(如图6),由此可得“小”长方体的长、宽、高分别为2,3,4,求OP长可转化为求该“小”长方体的对角线长,得: 3. 一般三棱锥(三棱柱)可补形为三棱柱(平行六面体) 例5. 已知三棱锥P-ABC中,PA⊥BC,PA=BC=a,PA、BC的公垂线段DE=h,求证三棱锥的体积是。分析:以ABC为底面,PA为侧棱补形为一个三棱柱ABC-,进一步补形为平行六面体ABCD-(如图7),那么

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH ACB S -, 1//,EF AA ∴异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

高中数学立体几何建系方法

立体几何建系方法 熟悉几个补形建系的技巧 基本模型:长方体 ; 下面几个多面体可考虑补成长方体建系: (1)三棱锥P ABC -,其中,2 PA ABC ABC π ⊥∠= . 特点:BC PAB ⊥面;四个面均为直角三角形。 建系方法: (2)四棱锥P-ABCD,其中,PA ABCD ⊥面ABCD 为矩形。 建系方法: (3)正四面体A-BCD 建系方法: (4)两个面互相垂直建系方法 1、(2011年高考重庆卷文科20) 如题(20)图,在四面体 ABCD 中, 平面ABC ⊥平面ACD ,,2,1AB BC AC AD BC CD ⊥==== (Ⅰ)求四面体ABCD 的体积; (Ⅱ)求二面角C-AB-D 的平面角的正切值。 P A B C A C D P

2、(06山东),已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点, 又BO=2,PO=2,PB⊥PD. (Ⅰ)求异面直线PD与BC所成角的余弦值; (Ⅱ)求二面角P-AB-C的大小; 3、在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点. (Ⅰ)证明:ED为异面直线BB1与AC1的公垂线; (Ⅱ)设AA1=AC=2AB,求二面角A1-AD-C1的大小. A B C D E A1 B1 C1

4.如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=o ,E F ,分别是BC PC ,的中点. (Ⅰ)证明:AE PD ⊥; (Ⅱ)若H 为 PD 上的动点,EH 与平面PAD 所成最大角的正切值 为2 E A F C --的余弦值. 5、(08安徽)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点. (1)求异面直线AB 与MD 所成角的大小; (2)求点B 到平面OCD 的距离. P B E C D F A

例谈构造平行六面体解立体几何题

例谈构造平行六面体解立体几何题 立体几何题的题设中若有“垂直”(包括线线垂直、线面垂直及面面垂直)可以试着构造长方体来求解,若没有“垂直”也可尝试构造平行六面体来求解.本文以普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版)(下简称教科书)中的题目及几道高考题来谈谈这种解题方法. 题1 (教科书第106页例2)如图1,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从,A B 到直线l (库底与水坝的交线)的距离AC 和BD 分别为a 和b ,CD 的长为c ,AB 的长为d .求库底与水坝所成二面角的余弦值. 图1 图2 解 可在如图2所示的平行六面体中求解:因为,//CD AC AC A D '⊥,所以CD A D '⊥.又CD BD ⊥,所以CD ⊥面A DB ',得AA A B ''⊥,所以222A B d c '=-. 在A BD '?中,由余弦定理可求得2222 cos 2a b c d A DB ab ++-'∠=,此即所求二面角的余弦值. 题 2 (教科书第107页练习第2题)如图3,60?的二面角棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,求CD 的长. 图3 图4 解 可在如图4所示的平行六面体中求解:在ACE ?中,6,6,60AC AE BD CAE ===∠=?,由余弦定理可求得252CE =.

可证BA ⊥面ACE ,所以有DE CE ⊥,在CDE ?中可求得217CD =. 题3 (教科书第113页第12题)一条线段夹在一个直二面角的两个半平面内,它与两个半平面所成的角都是30?,求这条线段与这个二面角的棱所成角的大小. 解 可在如图5所示的长方体中求解:30ADB DAE ∠=∠=?,可不妨设2AD =,得1,3,2DE CB AB AE BD BE CD =======,所以在Rt ACD ?中可求得45ADC ∠=?,即夹在直二面角A BE D --的线段AD 与棱BE 所成角的大小是45?. 图5 题 4 已知两平行平面,αβ的距离为23,点,A B α∈,点,C D β∈,且3,2AB CD ==,异面直线,AB CD 成60?角,求四面体ABCD 的体积. 解 可在如图6所示的平行六面体中求解: 图6 在图6所示的平行六面体中,60A CD '∠=?或120?, 133,23sin 322 A CD A C A B S A CD '?''===??∠=,所以13323332 A BCD A BCD V V '--===. 题 5 (2012·安徽·文·15) 若四面体ABCD 的三组对棱分别相等,即,,A B CD A C B D AD BC ===,则下列命题正确的是 (写出所有正确命题的编号)。 ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等 ③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180° ④连接四面体ABCD 每组对棱中点的线段相互垂直平分 ⑤从四面体ABCD 每个顶点出发的三条棱可作为一个三角形的三边长

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

立体几何存在性问题

立体几何存在性问题
未命名
一、解答题 1.在多面体
中,底面
是梯形,四边形
形,

,面
面,
.
.
(1)求证:平面
平面 ;
是正方
(2)设 为线段 上一点,
,试问在线段 上是否存在一点 ,使得
平面 ,若存在,试指出点 的位置;若不存在,说明理由?
(3)在(2)的条件下,求点 到平面 的距离.
2.如图,四棱锥
中,底面
是直角梯形,


,侧面 是等腰直角三角形,
,平面
平面
,点 分别是棱
上的点,平面 平面
(Ⅰ)确定点 的位置,并说明理由;
(Ⅱ)求三棱锥
的体积.
3.如图,在长方体
中,
,点 在棱 上,


点 为棱 的中点,过 的平面 与棱 为菱形.
交于 ,与棱 交于 ,且四边形
(1)证明:平面
平面

(2)确定点 的具体位置(不需说明理由),并求四棱锥
的体积.
4.如图 2,已知在四棱锥
中,平面
平面 ,底面 为矩形.
(1)求证:平面
平面 ;
(2)若 5.如图,三棱锥 点.
的三条侧棱两两垂直,
,试求点 到平面 的距离. , , 分别是棱 , 的中
(1)证明:平面
平面 ;
(2)若四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,



.

解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点, 12,F F 是C 上的两个焦点,若120MF MF ?

故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -, )N a .

磁场中的动态圆问题分析

摘要:磁场中动态圆问题是高中物理的难点,圆轨迹的变化规律的确定是难中之难,本文就动态圆问题进行总结归类,分确定入射点和速度大小,不确定速度方向;确定入射点和速度方向,不确定速度大小;确定入射速度,不确定入射点三种模型进行归类总结,旨在为以后的解题提供帮助。 关键词:磁场;动态圆;带电粒子 带电粒子在磁场中的动态圆问题是近几年高考的热点。这类题目的难点在于带电粒子在磁场中运动轨迹的圆心在变化。解这类题目的关键是准确找出符合题意的临界轨迹圆弧,基本方法是找圆心、画圆、求半径、定时间。下面分几种模型进行阐述: 模型一:确定入射点和速度大小,不确定速度方向 如图所示,磁场中P点有带正电粒子,以相等速度V沿各个方向射入磁场中。 1.找圆心方法 以P点为圆心,R长为半径画圆,圆周上各点即为所求圆心O。 2.模型特征 (1)各动态圆圆心轨迹为圆。 (2)各动态圆均相交于同一点P。 (3)在纸面内,各粒子所能打到的区域是以2R为半径的圆(包络面)。 (4)各动态圆周期T相同。 3.例题分析

(1)如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。许多质量为m、带电量为+q的粒子以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中哪个图是正确的()。 解:如图所示,圆心轨迹是以O为圆心,半径为R的一个圆弧,右边界是沿ON方向出射的粒子轨迹包围的部分,左边界是2R为半径的圆的包络线,所以正确答案是A。 模型二:确定入射点和速度方向,不确定速度大小 如图所示,磁场中P点,不同速度的带正电的粒子沿水平方向射出。 1.找圆心方法 带电粒子射入磁场的方向不变,大小变化,则所有粒子运动轨迹的圆心都在垂直于初速度的直线上。 2.模型特征

用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略 罗建中 一、棱锥补成棱柱 例1 一个四面体的所有棱长都为 2,四个顶点在同一球面上,则球的表面积为 A. π3 B. π 4 C. π3 3 D. π 6 分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD1 1 1 1 D C B A -,则四面体D BC A 1 1 -就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积 2 2 3 4 S?? ? ? ? ? π = π =3。 评注:对棱长全相等的正四面体通常把它补成正方体。若是相对棱长相等的四面体,则可考虑把它补成长方体。 例2 如图1,在底面是直角梯形的四棱锥ABCD S-中,∠ABC=? 90,SA⊥面ABCD,SA=AB=BC=1,AD=2 1 。 (1)求四棱锥ABCD S-的体积; (2)求面SCD与面SBA所成的二面角的正切值。 解:(1)解答略。 (2)以SA为棱,构造正方体AECB-SFGH,如图2,分别取棱SF、HG中点M、N,连结DM、MN、SN、ND,设ND与SC相交于O,连接MO。 则有面MDN∥面SAB,且SM⊥面MDN, 所以所求的二面角等于二面角S-DN-M。 在正方体AECB-SFGH中,△NSD与△NMD都是等腰三角形,所以SO⊥DN, MO⊥DN,所以∠SOM是二面角S-DN-M的平面角。又MO2 1 = SB=2 2 ,SM=2 1 ,所以2 2 MO SM SOM tan= = ∠ ,故所求二面角的正切值是2 2 。

评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。 二、三棱柱可补成四棱柱 例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=?90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。 解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面 11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以 3 D A 1=,又∠ABC=?90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以 AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=?90,所以DE ∥BC ,D 为AC 中点,且 1BC 21 DE == , 故 2 DE D A E A 2211=+=,而 d S D A S V 11ABB A 1ABMC ?=?=平行六面体。 所以 3 2 3 2S D A S d 11ABB A 1ABMC ==?= 。 评注:本例通过斜三棱柱补成四棱柱,从而达到把线面距离转化为面面距离,再通过等积变换达到简化解题之目 的。 三、棱台补成棱锥 例4 如图4,三棱柱ABC 111C B A -中,若E 、F 分别为AB 、AC 的中点,平面F C EB 11将三棱柱分成体积为1V 、2 V 的两部分,那么21V :V 等于多少?

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

动态几何中的定值问题

动态几何中的定值问题 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综 合分析和解决问题的能力。这类问题中就有一类是定值问题,下面通过例题来探究这类问题 的解答方法。 【问题1】已知一等腰直角三角形的两直角 边AB=AC=1,P 是斜边BC 上的一动点,过 P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF= 。 方法1:特殊值法:把P 点放在特殊的B 点或C 点或BC 中 点。此种方法只适合小题。 方法2:等量转化法:这是绝大部分同学能够想到的方法, PF=AE,PE=BE,所以PE+PF=BE+AE 。 方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ???=+??=?+? AB PE PF ?=+ 总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。 设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自 己讲掉。此题可叫差生或中等偏下的学生回答。 (设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。) 过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的 等腰三角形,问题有没有变化,又该如何解决?请看: 【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6, 过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF 还是定值吗?若是,是多少? 若不是,为什么? 方法1:三角形相似进行量的转化 ABM PBE PCF ??? ,AM PE PF AM PB AM PC PE PF AB PB PC AB AB ??? ==?== ()462455AM PB PC AM BC PE PF AB AB +???+==== (板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线 的长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静) 方法2:等面积法: ABC ABP APC S S S BC AM AB PE AC PF ???=+??=?+? 642455 BC AM PE PF AB ???+===(M 为BC 中点) (板书) (解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段 有关的量的常用方法。) (若学生想不到,可提示:在此题中,不变的东西是什么?不变的这个量和变量PE,PF 之间

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得: ()0AE CF EB FD λλ==<<∞,记()f λλλαβ=+, α O C B A F E D C B A G

相关文档
相关文档 最新文档